Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Herve Codina | 10322 | 100.00% | 1 | 100.00% |
Total | 10322 | 1 |
// SPDX-License-Identifier: GPL-2.0 // // peb2466.c -- Infineon PEB2466 ALSA SoC driver // // Copyright 2023 CS GROUP France // // Author: Herve Codina <herve.codina@bootlin.com> #include <asm/unaligned.h> #include <linux/clk.h> #include <linux/firmware.h> #include <linux/gpio/consumer.h> #include <linux/gpio/driver.h> #include <linux/module.h> #include <linux/mutex.h> #include <linux/slab.h> #include <linux/spi/spi.h> #include <sound/pcm_params.h> #include <sound/soc.h> #include <sound/tlv.h> #define PEB2466_NB_CHANNEL 4 struct peb2466_lookup { u8 (*table)[4]; unsigned int count; }; #define PEB2466_TLV_SIZE (sizeof((unsigned int []){TLV_DB_SCALE_ITEM(0, 0, 0)}) / \ sizeof(unsigned int)) struct peb2466_lkup_ctrl { int reg; unsigned int index; const struct peb2466_lookup *lookup; unsigned int tlv_array[PEB2466_TLV_SIZE]; }; struct peb2466 { struct spi_device *spi; struct clk *mclk; struct gpio_desc *reset_gpio; u8 spi_tx_buf[2 + 8]; /* Cannot use stack area for SPI (dma-safe memory) */ u8 spi_rx_buf[2 + 8]; /* Cannot use stack area for SPI (dma-safe memory) */ struct regmap *regmap; struct { struct peb2466_lookup ax_lookup; struct peb2466_lookup ar_lookup; struct peb2466_lkup_ctrl ax_lkup_ctrl; struct peb2466_lkup_ctrl ar_lkup_ctrl; unsigned int tg1_freq_item; unsigned int tg2_freq_item; } ch[PEB2466_NB_CHANNEL]; int max_chan_playback; int max_chan_capture; struct { struct gpio_chip gpio_chip; struct mutex lock; struct { unsigned int xr0; unsigned int xr1; unsigned int xr2; unsigned int xr3; } cache; } gpio; }; #define PEB2466_CMD_R (1 << 5) #define PEB2466_CMD_W (0 << 5) #define PEB2466_CMD_MASK 0x18 #define PEB2466_CMD_XOP 0x18 /* XOP is 0bxxx11xxx */ #define PEB2466_CMD_SOP 0x10 /* SOP is 0bxxx10xxx */ #define PEB2466_CMD_COP 0x00 /* COP is 0bxxx0xxxx, handle 0bxxx00xxx */ #define PEB2466_CMD_COP1 0x08 /* COP is 0bxxx0xxxx, handle 0bxxx01xxx */ #define PEB2466_MAKE_XOP(_lsel) (PEB2466_CMD_XOP | (_lsel)) #define PEB2466_MAKE_SOP(_ad, _lsel) (PEB2466_CMD_SOP | ((_ad) << 6) | (_lsel)) #define PEB2466_MAKE_COP(_ad, _code) (PEB2466_CMD_COP | ((_ad) << 6) | (_code)) #define PEB2466_CR0(_ch) PEB2466_MAKE_SOP(_ch, 0x0) #define PEB2466_CR0_TH (1 << 7) #define PEB2466_CR0_IMR1 (1 << 6) #define PEB2466_CR0_FRX (1 << 5) #define PEB2466_CR0_FRR (1 << 4) #define PEB2466_CR0_AX (1 << 3) #define PEB2466_CR0_AR (1 << 2) #define PEB2466_CR0_THSEL_MASK (0x3 << 0) #define PEB2466_CR0_THSEL(_set) ((_set) << 0) #define PEB2466_CR1(_ch) PEB2466_MAKE_SOP(_ch, 0x1) #define PEB2466_CR1_ETG2 (1 << 7) #define PEB2466_CR1_ETG1 (1 << 6) #define PEB2466_CR1_PTG2 (1 << 5) #define PEB2466_CR1_PTG1 (1 << 4) #define PEB2466_CR1_LAW_MASK (1 << 3) #define PEB2466_CR1_LAW_ALAW (0 << 3) #define PEB2466_CR1_LAW_MULAW (1 << 3) #define PEB2466_CR1_PU (1 << 0) #define PEB2466_CR2(_ch) PEB2466_MAKE_SOP(_ch, 0x2) #define PEB2466_CR3(_ch) PEB2466_MAKE_SOP(_ch, 0x3) #define PEB2466_CR4(_ch) PEB2466_MAKE_SOP(_ch, 0x4) #define PEB2466_CR5(_ch) PEB2466_MAKE_SOP(_ch, 0x5) #define PEB2466_XR0 PEB2466_MAKE_XOP(0x0) #define PEB2466_XR1 PEB2466_MAKE_XOP(0x1) #define PEB2466_XR2 PEB2466_MAKE_XOP(0x2) #define PEB2466_XR3 PEB2466_MAKE_XOP(0x3) #define PEB2466_XR4 PEB2466_MAKE_XOP(0x4) #define PEB2466_XR5 PEB2466_MAKE_XOP(0x5) #define PEB2466_XR5_MCLK_1536 (0x0 << 6) #define PEB2466_XR5_MCLK_2048 (0x1 << 6) #define PEB2466_XR5_MCLK_4096 (0x2 << 6) #define PEB2466_XR5_MCLK_8192 (0x3 << 6) #define PEB2466_XR6 PEB2466_MAKE_XOP(0x6) #define PEB2466_XR6_PCM_OFFSET(_off) ((_off) << 0) #define PEB2466_XR7 PEB2466_MAKE_XOP(0x7) #define PEB2466_TH_FILTER_P1(_ch) PEB2466_MAKE_COP(_ch, 0x0) #define PEB2466_TH_FILTER_P2(_ch) PEB2466_MAKE_COP(_ch, 0x1) #define PEB2466_TH_FILTER_P3(_ch) PEB2466_MAKE_COP(_ch, 0x2) #define PEB2466_IMR1_FILTER_P1(_ch) PEB2466_MAKE_COP(_ch, 0x4) #define PEB2466_IMR1_FILTER_P2(_ch) PEB2466_MAKE_COP(_ch, 0x5) #define PEB2466_FRX_FILTER(_ch) PEB2466_MAKE_COP(_ch, 0x6) #define PEB2466_FRR_FILTER(_ch) PEB2466_MAKE_COP(_ch, 0x7) #define PEB2466_AX_FILTER(_ch) PEB2466_MAKE_COP(_ch, 0x8) #define PEB2466_AR_FILTER(_ch) PEB2466_MAKE_COP(_ch, 0x9) #define PEB2466_TG1(_ch) PEB2466_MAKE_COP(_ch, 0xc) #define PEB2466_TG2(_ch) PEB2466_MAKE_COP(_ch, 0xd) static int peb2466_write_byte(struct peb2466 *peb2466, u8 cmd, u8 val) { struct spi_transfer xfer = { .tx_buf = &peb2466->spi_tx_buf, .len = 2, }; peb2466->spi_tx_buf[0] = cmd | PEB2466_CMD_W; peb2466->spi_tx_buf[1] = val; dev_dbg(&peb2466->spi->dev, "write byte (cmd %02x) %02x\n", peb2466->spi_tx_buf[0], peb2466->spi_tx_buf[1]); return spi_sync_transfer(peb2466->spi, &xfer, 1); } static int peb2466_read_byte(struct peb2466 *peb2466, u8 cmd, u8 *val) { struct spi_transfer xfer = { .tx_buf = &peb2466->spi_tx_buf, .rx_buf = &peb2466->spi_rx_buf, .len = 3, }; int ret; peb2466->spi_tx_buf[0] = cmd | PEB2466_CMD_R; ret = spi_sync_transfer(peb2466->spi, &xfer, 1); if (ret) return ret; if (peb2466->spi_rx_buf[1] != 0x81) { dev_err(&peb2466->spi->dev, "spi xfer rd (cmd %02x) invalid ident byte (0x%02x)\n", peb2466->spi_tx_buf[0], peb2466->spi_rx_buf[1]); return -EILSEQ; } *val = peb2466->spi_rx_buf[2]; dev_dbg(&peb2466->spi->dev, "read byte (cmd %02x) %02x\n", peb2466->spi_tx_buf[0], *val); return 0; } static int peb2466_write_buf(struct peb2466 *peb2466, u8 cmd, const u8 *buf, unsigned int len) { struct spi_transfer xfer = { .tx_buf = &peb2466->spi_tx_buf, .len = len + 1, }; if (len > 8) return -EINVAL; peb2466->spi_tx_buf[0] = cmd | PEB2466_CMD_W; memcpy(&peb2466->spi_tx_buf[1], buf, len); dev_dbg(&peb2466->spi->dev, "write buf (cmd %02x, %u) %*ph\n", peb2466->spi_tx_buf[0], len, len, &peb2466->spi_tx_buf[1]); return spi_sync_transfer(peb2466->spi, &xfer, 1); } static int peb2466_reg_write(void *context, unsigned int reg, unsigned int val) { struct peb2466 *peb2466 = context; int ret; /* * Only XOP and SOP commands can be handled as registers. * COP commands are handled using direct peb2466_write_buf() calls. */ switch (reg & PEB2466_CMD_MASK) { case PEB2466_CMD_XOP: case PEB2466_CMD_SOP: ret = peb2466_write_byte(peb2466, reg, val); break; default: dev_err(&peb2466->spi->dev, "Not a XOP or SOP command\n"); ret = -EINVAL; break; } return ret; } static int peb2466_reg_read(void *context, unsigned int reg, unsigned int *val) { struct peb2466 *peb2466 = context; int ret; u8 tmp; /* Only XOP and SOP commands can be handled as registers */ switch (reg & PEB2466_CMD_MASK) { case PEB2466_CMD_XOP: case PEB2466_CMD_SOP: ret = peb2466_read_byte(peb2466, reg, &tmp); *val = tmp; break; default: dev_err(&peb2466->spi->dev, "Not a XOP or SOP command\n"); ret = -EINVAL; break; } return ret; } static const struct regmap_config peb2466_regmap_config = { .reg_bits = 8, .val_bits = 8, .max_register = 0xFF, .reg_write = peb2466_reg_write, .reg_read = peb2466_reg_read, .cache_type = REGCACHE_NONE, }; static int peb2466_lkup_ctrl_info(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_info *uinfo) { struct peb2466_lkup_ctrl *lkup_ctrl = (struct peb2466_lkup_ctrl *)kcontrol->private_value; uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER; uinfo->count = 1; uinfo->value.integer.min = 0; uinfo->value.integer.max = lkup_ctrl->lookup->count - 1; return 0; } static int peb2466_lkup_ctrl_get(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) { struct peb2466_lkup_ctrl *lkup_ctrl = (struct peb2466_lkup_ctrl *)kcontrol->private_value; ucontrol->value.integer.value[0] = lkup_ctrl->index; return 0; } static int peb2466_lkup_ctrl_put(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) { struct peb2466_lkup_ctrl *lkup_ctrl = (struct peb2466_lkup_ctrl *)kcontrol->private_value; struct snd_soc_component *component = snd_soc_kcontrol_component(kcontrol); struct peb2466 *peb2466 = snd_soc_component_get_drvdata(component); unsigned int index; int ret; index = ucontrol->value.integer.value[0]; if (index >= lkup_ctrl->lookup->count) return -EINVAL; if (index == lkup_ctrl->index) return 0; ret = peb2466_write_buf(peb2466, lkup_ctrl->reg, lkup_ctrl->lookup->table[index], 4); if (ret) return ret; lkup_ctrl->index = index; return 1; /* The value changed */ } static int peb2466_add_lkup_ctrl(struct snd_soc_component *component, struct peb2466_lkup_ctrl *lkup_ctrl, const char *name, int min_val, int step) { DECLARE_TLV_DB_SCALE(tlv_array, min_val, step, 0); struct snd_kcontrol_new control = {0}; BUILD_BUG_ON(sizeof(lkup_ctrl->tlv_array) < sizeof(tlv_array)); memcpy(lkup_ctrl->tlv_array, tlv_array, sizeof(tlv_array)); control.iface = SNDRV_CTL_ELEM_IFACE_MIXER; control.name = name; control.access = SNDRV_CTL_ELEM_ACCESS_TLV_READ | SNDRV_CTL_ELEM_ACCESS_READWRITE; control.tlv.p = lkup_ctrl->tlv_array; control.info = peb2466_lkup_ctrl_info; control.get = peb2466_lkup_ctrl_get; control.put = peb2466_lkup_ctrl_put; control.private_value = (unsigned long)lkup_ctrl; return snd_soc_add_component_controls(component, &control, 1); } enum peb2466_tone_freq { PEB2466_TONE_697HZ, PEB2466_TONE_800HZ, PEB2466_TONE_950HZ, PEB2466_TONE_1000HZ, PEB2466_TONE_1008HZ, PEB2466_TONE_2000HZ, }; static const u8 peb2466_tone_lookup[][4] = { [PEB2466_TONE_697HZ] = {0x0a, 0x33, 0x5a, 0x2c}, [PEB2466_TONE_800HZ] = {0x12, 0xD6, 0x5a, 0xc0}, [PEB2466_TONE_950HZ] = {0x1c, 0xf0, 0x5c, 0xc0}, [PEB2466_TONE_1000HZ] = {0}, /* lookup value not used for 1000Hz */ [PEB2466_TONE_1008HZ] = {0x1a, 0xae, 0x57, 0x70}, [PEB2466_TONE_2000HZ] = {0x00, 0x80, 0x50, 0x09}, }; static const char * const peb2466_tone_freq_txt[] = { [PEB2466_TONE_697HZ] = "697Hz", [PEB2466_TONE_800HZ] = "800Hz", [PEB2466_TONE_950HZ] = "950Hz", [PEB2466_TONE_1000HZ] = "1000Hz", [PEB2466_TONE_1008HZ] = "1008Hz", [PEB2466_TONE_2000HZ] = "2000Hz" }; static const struct soc_enum peb2466_tg_freq[][2] = { [0] = { SOC_ENUM_SINGLE(PEB2466_TG1(0), 0, ARRAY_SIZE(peb2466_tone_freq_txt), peb2466_tone_freq_txt), SOC_ENUM_SINGLE(PEB2466_TG2(0), 0, ARRAY_SIZE(peb2466_tone_freq_txt), peb2466_tone_freq_txt) }, [1] = { SOC_ENUM_SINGLE(PEB2466_TG1(1), 0, ARRAY_SIZE(peb2466_tone_freq_txt), peb2466_tone_freq_txt), SOC_ENUM_SINGLE(PEB2466_TG2(1), 0, ARRAY_SIZE(peb2466_tone_freq_txt), peb2466_tone_freq_txt) }, [2] = { SOC_ENUM_SINGLE(PEB2466_TG1(2), 0, ARRAY_SIZE(peb2466_tone_freq_txt), peb2466_tone_freq_txt), SOC_ENUM_SINGLE(PEB2466_TG2(2), 0, ARRAY_SIZE(peb2466_tone_freq_txt), peb2466_tone_freq_txt) }, [3] = { SOC_ENUM_SINGLE(PEB2466_TG1(3), 0, ARRAY_SIZE(peb2466_tone_freq_txt), peb2466_tone_freq_txt), SOC_ENUM_SINGLE(PEB2466_TG2(3), 0, ARRAY_SIZE(peb2466_tone_freq_txt), peb2466_tone_freq_txt) } }; static int peb2466_tg_freq_get(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) { struct snd_soc_component *component = snd_soc_kcontrol_component(kcontrol); struct peb2466 *peb2466 = snd_soc_component_get_drvdata(component); struct soc_enum *e = (struct soc_enum *)kcontrol->private_value; switch (e->reg) { case PEB2466_TG1(0): ucontrol->value.enumerated.item[0] = peb2466->ch[0].tg1_freq_item; break; case PEB2466_TG2(0): ucontrol->value.enumerated.item[0] = peb2466->ch[0].tg2_freq_item; break; case PEB2466_TG1(1): ucontrol->value.enumerated.item[0] = peb2466->ch[1].tg1_freq_item; break; case PEB2466_TG2(1): ucontrol->value.enumerated.item[0] = peb2466->ch[1].tg2_freq_item; break; case PEB2466_TG1(2): ucontrol->value.enumerated.item[0] = peb2466->ch[2].tg1_freq_item; break; case PEB2466_TG2(2): ucontrol->value.enumerated.item[0] = peb2466->ch[2].tg2_freq_item; break; case PEB2466_TG1(3): ucontrol->value.enumerated.item[0] = peb2466->ch[3].tg1_freq_item; break; case PEB2466_TG2(3): ucontrol->value.enumerated.item[0] = peb2466->ch[3].tg2_freq_item; break; default: return -EINVAL; } return 0; } static int peb2466_tg_freq_put(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) { struct snd_soc_component *component = snd_soc_kcontrol_component(kcontrol); struct peb2466 *peb2466 = snd_soc_component_get_drvdata(component); struct soc_enum *e = (struct soc_enum *)kcontrol->private_value; unsigned int *tg_freq_item; u8 cr1_reg, cr1_mask; unsigned int index; int ret; index = ucontrol->value.enumerated.item[0]; if (index >= ARRAY_SIZE(peb2466_tone_lookup)) return -EINVAL; switch (e->reg) { case PEB2466_TG1(0): tg_freq_item = &peb2466->ch[0].tg1_freq_item; cr1_reg = PEB2466_CR1(0); cr1_mask = PEB2466_CR1_PTG1; break; case PEB2466_TG2(0): tg_freq_item = &peb2466->ch[0].tg2_freq_item; cr1_reg = PEB2466_CR1(0); cr1_mask = PEB2466_CR1_PTG2; break; case PEB2466_TG1(1): tg_freq_item = &peb2466->ch[1].tg1_freq_item; cr1_reg = PEB2466_CR1(1); cr1_mask = PEB2466_CR1_PTG1; break; case PEB2466_TG2(1): tg_freq_item = &peb2466->ch[1].tg2_freq_item; cr1_reg = PEB2466_CR1(1); cr1_mask = PEB2466_CR1_PTG2; break; case PEB2466_TG1(2): tg_freq_item = &peb2466->ch[2].tg1_freq_item; cr1_reg = PEB2466_CR1(2); cr1_mask = PEB2466_CR1_PTG1; break; case PEB2466_TG2(2): tg_freq_item = &peb2466->ch[2].tg2_freq_item; cr1_reg = PEB2466_CR1(2); cr1_mask = PEB2466_CR1_PTG2; break; case PEB2466_TG1(3): tg_freq_item = &peb2466->ch[3].tg1_freq_item; cr1_reg = PEB2466_CR1(3); cr1_mask = PEB2466_CR1_PTG1; break; case PEB2466_TG2(3): tg_freq_item = &peb2466->ch[3].tg2_freq_item; cr1_reg = PEB2466_CR1(3); cr1_mask = PEB2466_CR1_PTG2; break; default: return -EINVAL; } if (index == *tg_freq_item) return 0; if (index == PEB2466_TONE_1000HZ) { ret = regmap_update_bits(peb2466->regmap, cr1_reg, cr1_mask, 0); if (ret) return ret; } else { ret = peb2466_write_buf(peb2466, e->reg, peb2466_tone_lookup[index], 4); if (ret) return ret; ret = regmap_update_bits(peb2466->regmap, cr1_reg, cr1_mask, cr1_mask); if (ret) return ret; } *tg_freq_item = index; return 1; /* The value changed */ } static const struct snd_kcontrol_new peb2466_ch0_out_mix_controls[] = { SOC_DAPM_SINGLE("TG1 Switch", PEB2466_CR1(0), 6, 1, 0), SOC_DAPM_SINGLE("TG2 Switch", PEB2466_CR1(0), 7, 1, 0), SOC_DAPM_SINGLE("Voice Switch", PEB2466_CR2(0), 0, 1, 0) }; static const struct snd_kcontrol_new peb2466_ch1_out_mix_controls[] = { SOC_DAPM_SINGLE("TG1 Switch", PEB2466_CR1(1), 6, 1, 0), SOC_DAPM_SINGLE("TG2 Switch", PEB2466_CR1(1), 7, 1, 0), SOC_DAPM_SINGLE("Voice Switch", PEB2466_CR2(1), 0, 1, 0) }; static const struct snd_kcontrol_new peb2466_ch2_out_mix_controls[] = { SOC_DAPM_SINGLE("TG1 Switch", PEB2466_CR1(2), 6, 1, 0), SOC_DAPM_SINGLE("TG2 Switch", PEB2466_CR1(2), 7, 1, 0), SOC_DAPM_SINGLE("Voice Switch", PEB2466_CR2(2), 0, 1, 0) }; static const struct snd_kcontrol_new peb2466_ch3_out_mix_controls[] = { SOC_DAPM_SINGLE("TG1 Switch", PEB2466_CR1(3), 6, 1, 0), SOC_DAPM_SINGLE("TG2 Switch", PEB2466_CR1(3), 7, 1, 0), SOC_DAPM_SINGLE("Voice Switch", PEB2466_CR2(3), 0, 1, 0) }; static const struct snd_kcontrol_new peb2466_controls[] = { /* Attenuators */ SOC_SINGLE("DAC0 -6dB Playback Switch", PEB2466_CR3(0), 2, 1, 0), SOC_SINGLE("DAC1 -6dB Playback Switch", PEB2466_CR3(1), 2, 1, 0), SOC_SINGLE("DAC2 -6dB Playback Switch", PEB2466_CR3(2), 2, 1, 0), SOC_SINGLE("DAC3 -6dB Playback Switch", PEB2466_CR3(3), 2, 1, 0), /* Amplifiers */ SOC_SINGLE("ADC0 +6dB Capture Switch", PEB2466_CR3(0), 3, 1, 0), SOC_SINGLE("ADC1 +6dB Capture Switch", PEB2466_CR3(1), 3, 1, 0), SOC_SINGLE("ADC2 +6dB Capture Switch", PEB2466_CR3(2), 3, 1, 0), SOC_SINGLE("ADC3 +6dB Capture Switch", PEB2466_CR3(3), 3, 1, 0), /* Tone generators */ SOC_ENUM_EXT("DAC0 TG1 Freq", peb2466_tg_freq[0][0], peb2466_tg_freq_get, peb2466_tg_freq_put), SOC_ENUM_EXT("DAC1 TG1 Freq", peb2466_tg_freq[1][0], peb2466_tg_freq_get, peb2466_tg_freq_put), SOC_ENUM_EXT("DAC2 TG1 Freq", peb2466_tg_freq[2][0], peb2466_tg_freq_get, peb2466_tg_freq_put), SOC_ENUM_EXT("DAC3 TG1 Freq", peb2466_tg_freq[3][0], peb2466_tg_freq_get, peb2466_tg_freq_put), SOC_ENUM_EXT("DAC0 TG2 Freq", peb2466_tg_freq[0][1], peb2466_tg_freq_get, peb2466_tg_freq_put), SOC_ENUM_EXT("DAC1 TG2 Freq", peb2466_tg_freq[1][1], peb2466_tg_freq_get, peb2466_tg_freq_put), SOC_ENUM_EXT("DAC2 TG2 Freq", peb2466_tg_freq[2][1], peb2466_tg_freq_get, peb2466_tg_freq_put), SOC_ENUM_EXT("DAC3 TG2 Freq", peb2466_tg_freq[3][1], peb2466_tg_freq_get, peb2466_tg_freq_put), }; static const struct snd_soc_dapm_widget peb2466_dapm_widgets[] = { SND_SOC_DAPM_SUPPLY("CH0 PWR", PEB2466_CR1(0), 0, 0, NULL, 0), SND_SOC_DAPM_SUPPLY("CH1 PWR", PEB2466_CR1(1), 0, 0, NULL, 0), SND_SOC_DAPM_SUPPLY("CH2 PWR", PEB2466_CR1(2), 0, 0, NULL, 0), SND_SOC_DAPM_SUPPLY("CH3 PWR", PEB2466_CR1(3), 0, 0, NULL, 0), SND_SOC_DAPM_DAC("CH0 DIN", "Playback", SND_SOC_NOPM, 0, 0), SND_SOC_DAPM_DAC("CH1 DIN", "Playback", SND_SOC_NOPM, 0, 0), SND_SOC_DAPM_DAC("CH2 DIN", "Playback", SND_SOC_NOPM, 0, 0), SND_SOC_DAPM_DAC("CH3 DIN", "Playback", SND_SOC_NOPM, 0, 0), SND_SOC_DAPM_SIGGEN("CH0 TG1"), SND_SOC_DAPM_SIGGEN("CH1 TG1"), SND_SOC_DAPM_SIGGEN("CH2 TG1"), SND_SOC_DAPM_SIGGEN("CH3 TG1"), SND_SOC_DAPM_SIGGEN("CH0 TG2"), SND_SOC_DAPM_SIGGEN("CH1 TG2"), SND_SOC_DAPM_SIGGEN("CH2 TG2"), SND_SOC_DAPM_SIGGEN("CH3 TG2"), SND_SOC_DAPM_MIXER("DAC0 Mixer", SND_SOC_NOPM, 0, 0, peb2466_ch0_out_mix_controls, ARRAY_SIZE(peb2466_ch0_out_mix_controls)), SND_SOC_DAPM_MIXER("DAC1 Mixer", SND_SOC_NOPM, 0, 0, peb2466_ch1_out_mix_controls, ARRAY_SIZE(peb2466_ch1_out_mix_controls)), SND_SOC_DAPM_MIXER("DAC2 Mixer", SND_SOC_NOPM, 0, 0, peb2466_ch2_out_mix_controls, ARRAY_SIZE(peb2466_ch2_out_mix_controls)), SND_SOC_DAPM_MIXER("DAC3 Mixer", SND_SOC_NOPM, 0, 0, peb2466_ch3_out_mix_controls, ARRAY_SIZE(peb2466_ch3_out_mix_controls)), SND_SOC_DAPM_PGA("DAC0 PGA", SND_SOC_NOPM, 0, 0, NULL, 0), SND_SOC_DAPM_PGA("DAC1 PGA", SND_SOC_NOPM, 0, 0, NULL, 0), SND_SOC_DAPM_PGA("DAC2 PGA", SND_SOC_NOPM, 0, 0, NULL, 0), SND_SOC_DAPM_PGA("DAC3 PGA", SND_SOC_NOPM, 0, 0, NULL, 0), SND_SOC_DAPM_OUTPUT("OUT0"), SND_SOC_DAPM_OUTPUT("OUT1"), SND_SOC_DAPM_OUTPUT("OUT2"), SND_SOC_DAPM_OUTPUT("OUT3"), SND_SOC_DAPM_INPUT("IN0"), SND_SOC_DAPM_INPUT("IN1"), SND_SOC_DAPM_INPUT("IN2"), SND_SOC_DAPM_INPUT("IN3"), SND_SOC_DAPM_DAC("ADC0", "Capture", SND_SOC_NOPM, 0, 0), SND_SOC_DAPM_DAC("ADC1", "Capture", SND_SOC_NOPM, 0, 0), SND_SOC_DAPM_DAC("ADC2", "Capture", SND_SOC_NOPM, 0, 0), SND_SOC_DAPM_DAC("ADC3", "Capture", SND_SOC_NOPM, 0, 0), }; static const struct snd_soc_dapm_route peb2466_dapm_routes[] = { { "CH0 DIN", NULL, "CH0 PWR" }, { "CH1 DIN", NULL, "CH1 PWR" }, { "CH2 DIN", NULL, "CH2 PWR" }, { "CH3 DIN", NULL, "CH3 PWR" }, { "CH0 TG1", NULL, "CH0 PWR" }, { "CH1 TG1", NULL, "CH1 PWR" }, { "CH2 TG1", NULL, "CH2 PWR" }, { "CH3 TG1", NULL, "CH3 PWR" }, { "CH0 TG2", NULL, "CH0 PWR" }, { "CH1 TG2", NULL, "CH1 PWR" }, { "CH2 TG2", NULL, "CH2 PWR" }, { "CH3 TG2", NULL, "CH3 PWR" }, { "DAC0 Mixer", "TG1 Switch", "CH0 TG1" }, { "DAC0 Mixer", "TG2 Switch", "CH0 TG2" }, { "DAC0 Mixer", "Voice Switch", "CH0 DIN" }, { "DAC0 Mixer", NULL, "CH0 DIN" }, { "DAC1 Mixer", "TG1 Switch", "CH1 TG1" }, { "DAC1 Mixer", "TG2 Switch", "CH1 TG2" }, { "DAC1 Mixer", "Voice Switch", "CH1 DIN" }, { "DAC1 Mixer", NULL, "CH1 DIN" }, { "DAC2 Mixer", "TG1 Switch", "CH2 TG1" }, { "DAC2 Mixer", "TG2 Switch", "CH2 TG2" }, { "DAC2 Mixer", "Voice Switch", "CH2 DIN" }, { "DAC2 Mixer", NULL, "CH2 DIN" }, { "DAC3 Mixer", "TG1 Switch", "CH3 TG1" }, { "DAC3 Mixer", "TG2 Switch", "CH3 TG2" }, { "DAC3 Mixer", "Voice Switch", "CH3 DIN" }, { "DAC3 Mixer", NULL, "CH3 DIN" }, { "DAC0 PGA", NULL, "DAC0 Mixer" }, { "DAC1 PGA", NULL, "DAC1 Mixer" }, { "DAC2 PGA", NULL, "DAC2 Mixer" }, { "DAC3 PGA", NULL, "DAC3 Mixer" }, { "OUT0", NULL, "DAC0 PGA" }, { "OUT1", NULL, "DAC1 PGA" }, { "OUT2", NULL, "DAC2 PGA" }, { "OUT3", NULL, "DAC3 PGA" }, { "ADC0", NULL, "IN0" }, { "ADC1", NULL, "IN1" }, { "ADC2", NULL, "IN2" }, { "ADC3", NULL, "IN3" }, { "ADC0", NULL, "CH0 PWR" }, { "ADC1", NULL, "CH1 PWR" }, { "ADC2", NULL, "CH2 PWR" }, { "ADC3", NULL, "CH3 PWR" }, }; static int peb2466_dai_set_tdm_slot(struct snd_soc_dai *dai, unsigned int tx_mask, unsigned int rx_mask, int slots, int width) { struct peb2466 *peb2466 = snd_soc_component_get_drvdata(dai->component); unsigned int chan; unsigned int mask; u8 slot; int ret; switch (width) { case 0: /* Not set -> default 8 */ case 8: break; default: dev_err(dai->dev, "tdm slot width %d not supported\n", width); return -EINVAL; } mask = tx_mask; slot = 0; chan = 0; while (mask && chan < PEB2466_NB_CHANNEL) { if (mask & 0x1) { ret = regmap_write(peb2466->regmap, PEB2466_CR5(chan), slot); if (ret) { dev_err(dai->dev, "chan %d set tx tdm slot failed (%d)\n", chan, ret); return ret; } chan++; } mask >>= 1; slot++; } if (mask) { dev_err(dai->dev, "too much tx slots defined (mask = 0x%x) support max %d\n", tx_mask, PEB2466_NB_CHANNEL); return -EINVAL; } peb2466->max_chan_playback = chan; mask = rx_mask; slot = 0; chan = 0; while (mask && chan < PEB2466_NB_CHANNEL) { if (mask & 0x1) { ret = regmap_write(peb2466->regmap, PEB2466_CR4(chan), slot); if (ret) { dev_err(dai->dev, "chan %d set rx tdm slot failed (%d)\n", chan, ret); return ret; } chan++; } mask >>= 1; slot++; } if (mask) { dev_err(dai->dev, "too much rx slots defined (mask = 0x%x) support max %d\n", rx_mask, PEB2466_NB_CHANNEL); return -EINVAL; } peb2466->max_chan_capture = chan; return 0; } static int peb2466_dai_set_fmt(struct snd_soc_dai *dai, unsigned int fmt) { struct peb2466 *peb2466 = snd_soc_component_get_drvdata(dai->component); u8 xr6; switch (fmt & SND_SOC_DAIFMT_FORMAT_MASK) { case SND_SOC_DAIFMT_DSP_A: xr6 = PEB2466_XR6_PCM_OFFSET(1); break; case SND_SOC_DAIFMT_DSP_B: xr6 = PEB2466_XR6_PCM_OFFSET(0); break; default: dev_err(dai->dev, "Unsupported format 0x%x\n", fmt & SND_SOC_DAIFMT_FORMAT_MASK); return -EINVAL; } return regmap_write(peb2466->regmap, PEB2466_XR6, xr6); } static int peb2466_dai_hw_params(struct snd_pcm_substream *substream, struct snd_pcm_hw_params *params, struct snd_soc_dai *dai) { struct peb2466 *peb2466 = snd_soc_component_get_drvdata(dai->component); unsigned int ch; int ret; u8 cr1; switch (params_format(params)) { case SNDRV_PCM_FORMAT_MU_LAW: cr1 = PEB2466_CR1_LAW_MULAW; break; case SNDRV_PCM_FORMAT_A_LAW: cr1 = PEB2466_CR1_LAW_ALAW; break; default: dev_err(&peb2466->spi->dev, "Unsupported format 0x%x\n", params_format(params)); return -EINVAL; } for (ch = 0; ch < PEB2466_NB_CHANNEL; ch++) { ret = regmap_update_bits(peb2466->regmap, PEB2466_CR1(ch), PEB2466_CR1_LAW_MASK, cr1); if (ret) return ret; } return 0; } static const unsigned int peb2466_sample_bits[] = {8}; static struct snd_pcm_hw_constraint_list peb2466_sample_bits_constr = { .list = peb2466_sample_bits, .count = ARRAY_SIZE(peb2466_sample_bits), }; static int peb2466_dai_startup(struct snd_pcm_substream *substream, struct snd_soc_dai *dai) { struct peb2466 *peb2466 = snd_soc_component_get_drvdata(dai->component); unsigned int max_ch; int ret; max_ch = (substream->stream == SNDRV_PCM_STREAM_PLAYBACK) ? peb2466->max_chan_playback : peb2466->max_chan_capture; /* * Disable stream support (min = 0, max = 0) if no timeslots were * configured. */ ret = snd_pcm_hw_constraint_minmax(substream->runtime, SNDRV_PCM_HW_PARAM_CHANNELS, max_ch ? 1 : 0, max_ch); if (ret < 0) return ret; return snd_pcm_hw_constraint_list(substream->runtime, 0, SNDRV_PCM_HW_PARAM_SAMPLE_BITS, &peb2466_sample_bits_constr); } static u64 peb2466_dai_formats[] = { SND_SOC_POSSIBLE_DAIFMT_DSP_A | SND_SOC_POSSIBLE_DAIFMT_DSP_B, }; static const struct snd_soc_dai_ops peb2466_dai_ops = { .startup = peb2466_dai_startup, .hw_params = peb2466_dai_hw_params, .set_tdm_slot = peb2466_dai_set_tdm_slot, .set_fmt = peb2466_dai_set_fmt, .auto_selectable_formats = peb2466_dai_formats, .num_auto_selectable_formats = ARRAY_SIZE(peb2466_dai_formats), }; static struct snd_soc_dai_driver peb2466_dai_driver = { .name = "peb2466", .playback = { .stream_name = "Playback", .channels_min = 1, .channels_max = PEB2466_NB_CHANNEL, .rates = SNDRV_PCM_RATE_8000, .formats = SNDRV_PCM_FMTBIT_MU_LAW | SNDRV_PCM_FMTBIT_A_LAW, }, .capture = { .stream_name = "Capture", .channels_min = 1, .channels_max = PEB2466_NB_CHANNEL, .rates = SNDRV_PCM_RATE_8000, .formats = SNDRV_PCM_FMTBIT_MU_LAW | SNDRV_PCM_FMTBIT_A_LAW, }, .ops = &peb2466_dai_ops, }; static int peb2466_reset_audio(struct peb2466 *peb2466) { static const struct reg_sequence reg_reset[] = { { .reg = PEB2466_XR6, .def = 0x00 }, { .reg = PEB2466_CR5(0), .def = 0x00 }, { .reg = PEB2466_CR4(0), .def = 0x00 }, { .reg = PEB2466_CR3(0), .def = 0x00 }, { .reg = PEB2466_CR2(0), .def = 0x00 }, { .reg = PEB2466_CR1(0), .def = 0x00 }, { .reg = PEB2466_CR0(0), .def = PEB2466_CR0_IMR1 }, { .reg = PEB2466_CR5(1), .def = 0x00 }, { .reg = PEB2466_CR4(1), .def = 0x00 }, { .reg = PEB2466_CR3(1), .def = 0x00 }, { .reg = PEB2466_CR2(1), .def = 0x00 }, { .reg = PEB2466_CR1(1), .def = 0x00 }, { .reg = PEB2466_CR0(1), .def = PEB2466_CR0_IMR1 }, { .reg = PEB2466_CR5(2), .def = 0x00 }, { .reg = PEB2466_CR4(2), .def = 0x00 }, { .reg = PEB2466_CR3(2), .def = 0x00 }, { .reg = PEB2466_CR2(2), .def = 0x00 }, { .reg = PEB2466_CR1(2), .def = 0x00 }, { .reg = PEB2466_CR0(2), .def = PEB2466_CR0_IMR1 }, { .reg = PEB2466_CR5(3), .def = 0x00 }, { .reg = PEB2466_CR4(3), .def = 0x00 }, { .reg = PEB2466_CR3(3), .def = 0x00 }, { .reg = PEB2466_CR2(3), .def = 0x00 }, { .reg = PEB2466_CR1(3), .def = 0x00 }, { .reg = PEB2466_CR0(3), .def = PEB2466_CR0_IMR1 }, }; static const u8 imr1_p1[8] = {0x00, 0x90, 0x09, 0x00, 0x90, 0x09, 0x00, 0x00}; static const u8 imr1_p2[8] = {0x7F, 0xFF, 0x00, 0x00, 0x90, 0x14, 0x40, 0x08}; static const u8 zero[8] = {0}; int ret; int i; for (i = 0; i < ARRAY_SIZE(peb2466->ch); i++) { peb2466->ch[i].tg1_freq_item = PEB2466_TONE_1000HZ; peb2466->ch[i].tg2_freq_item = PEB2466_TONE_1000HZ; /* * Even if not used, disabling IM/R1 filter is not recommended. * Instead, we must configure it with default coefficients and * enable it. * The filter will be enabled right after (in the following * regmap_multi_reg_write() call). */ ret = peb2466_write_buf(peb2466, PEB2466_IMR1_FILTER_P1(i), imr1_p1, 8); if (ret) return ret; ret = peb2466_write_buf(peb2466, PEB2466_IMR1_FILTER_P2(i), imr1_p2, 8); if (ret) return ret; /* Set all other filters coefficients to zero */ ret = peb2466_write_buf(peb2466, PEB2466_TH_FILTER_P1(i), zero, 8); if (ret) return ret; ret = peb2466_write_buf(peb2466, PEB2466_TH_FILTER_P2(i), zero, 8); if (ret) return ret; ret = peb2466_write_buf(peb2466, PEB2466_TH_FILTER_P3(i), zero, 8); if (ret) return ret; ret = peb2466_write_buf(peb2466, PEB2466_FRX_FILTER(i), zero, 8); if (ret) return ret; ret = peb2466_write_buf(peb2466, PEB2466_FRR_FILTER(i), zero, 8); if (ret) return ret; ret = peb2466_write_buf(peb2466, PEB2466_AX_FILTER(i), zero, 4); if (ret) return ret; ret = peb2466_write_buf(peb2466, PEB2466_AR_FILTER(i), zero, 4); if (ret) return ret; } return regmap_multi_reg_write(peb2466->regmap, reg_reset, ARRAY_SIZE(reg_reset)); } static int peb2466_fw_parse_thfilter(struct snd_soc_component *component, u16 tag, u32 lng, const u8 *data) { struct peb2466 *peb2466 = snd_soc_component_get_drvdata(component); u8 mask; int ret; int i; dev_info(component->dev, "fw TH filter: mask %x, %*phN\n", *data, lng - 1, data + 1); /* * TH_FILTER TLV data: * - @0 1 byte: Chan mask (bit set means related channel is concerned) * - @1 8 bytes: TH-Filter coefficients part1 * - @9 8 bytes: TH-Filter coefficients part2 * - @17 8 bytes: TH-Filter coefficients part3 */ mask = *data; for (i = 0; i < ARRAY_SIZE(peb2466->ch); i++) { if (!(mask & (1 << i))) continue; ret = regmap_update_bits(peb2466->regmap, PEB2466_CR0(i), PEB2466_CR0_TH, 0); if (ret) return ret; ret = peb2466_write_buf(peb2466, PEB2466_TH_FILTER_P1(i), data + 1, 8); if (ret) return ret; ret = peb2466_write_buf(peb2466, PEB2466_TH_FILTER_P2(i), data + 9, 8); if (ret) return ret; ret = peb2466_write_buf(peb2466, PEB2466_TH_FILTER_P3(i), data + 17, 8); if (ret) return ret; ret = regmap_update_bits(peb2466->regmap, PEB2466_CR0(i), PEB2466_CR0_TH | PEB2466_CR0_THSEL_MASK, PEB2466_CR0_TH | PEB2466_CR0_THSEL(i)); if (ret) return ret; } return 0; } static int peb2466_fw_parse_imr1filter(struct snd_soc_component *component, u16 tag, u32 lng, const u8 *data) { struct peb2466 *peb2466 = snd_soc_component_get_drvdata(component); u8 mask; int ret; int i; dev_info(component->dev, "fw IM/R1 filter: mask %x, %*phN\n", *data, lng - 1, data + 1); /* * IMR1_FILTER TLV data: * - @0 1 byte: Chan mask (bit set means related channel is concerned) * - @1 8 bytes: IM/R1-Filter coefficients part1 * - @9 8 bytes: IM/R1-Filter coefficients part2 */ mask = *data; for (i = 0; i < ARRAY_SIZE(peb2466->ch); i++) { if (!(mask & (1 << i))) continue; ret = regmap_update_bits(peb2466->regmap, PEB2466_CR0(i), PEB2466_CR0_IMR1, 0); if (ret) return ret; ret = peb2466_write_buf(peb2466, PEB2466_IMR1_FILTER_P1(i), data + 1, 8); if (ret) return ret; ret = peb2466_write_buf(peb2466, PEB2466_IMR1_FILTER_P2(i), data + 9, 8); if (ret) return ret; ret = regmap_update_bits(peb2466->regmap, PEB2466_CR0(i), PEB2466_CR0_IMR1, PEB2466_CR0_IMR1); if (ret) return ret; } return 0; } static int peb2466_fw_parse_frxfilter(struct snd_soc_component *component, u16 tag, u32 lng, const u8 *data) { struct peb2466 *peb2466 = snd_soc_component_get_drvdata(component); u8 mask; int ret; int i; dev_info(component->dev, "fw FRX filter: mask %x, %*phN\n", *data, lng - 1, data + 1); /* * FRX_FILTER TLV data: * - @0 1 byte: Chan mask (bit set means related channel is concerned) * - @1 8 bytes: FRX-Filter coefficients */ mask = *data; for (i = 0; i < ARRAY_SIZE(peb2466->ch); i++) { if (!(mask & (1 << i))) continue; ret = regmap_update_bits(peb2466->regmap, PEB2466_CR0(i), PEB2466_CR0_FRX, 0); if (ret) return ret; ret = peb2466_write_buf(peb2466, PEB2466_FRX_FILTER(i), data + 1, 8); if (ret) return ret; ret = regmap_update_bits(peb2466->regmap, PEB2466_CR0(i), PEB2466_CR0_FRX, PEB2466_CR0_FRX); if (ret) return ret; } return 0; } static int peb2466_fw_parse_frrfilter(struct snd_soc_component *component, u16 tag, u32 lng, const u8 *data) { struct peb2466 *peb2466 = snd_soc_component_get_drvdata(component); u8 mask; int ret; int i; dev_info(component->dev, "fw FRR filter: mask %x, %*phN\n", *data, lng - 1, data + 1); /* * FRR_FILTER TLV data: * - @0 1 byte: Chan mask (bit set means related channel is concerned) * - @1 8 bytes: FRR-Filter coefficients */ mask = *data; for (i = 0; i < ARRAY_SIZE(peb2466->ch); i++) { if (!(mask & (1 << i))) continue; ret = regmap_update_bits(peb2466->regmap, PEB2466_CR0(i), PEB2466_CR0_FRR, 0); if (ret) return ret; ret = peb2466_write_buf(peb2466, PEB2466_FRR_FILTER(i), data + 1, 8); if (ret) return ret; ret = regmap_update_bits(peb2466->regmap, PEB2466_CR0(i), PEB2466_CR0_FRR, PEB2466_CR0_FRR); if (ret) return ret; } return 0; } static int peb2466_fw_parse_axfilter(struct snd_soc_component *component, u16 tag, u32 lng, const u8 *data) { struct peb2466 *peb2466 = snd_soc_component_get_drvdata(component); u8 mask; int ret; int i; dev_info(component->dev, "fw AX filter: mask %x, %*phN\n", *data, lng - 1, data + 1); /* * AX_FILTER TLV data: * - @0 1 byte: Chan mask (bit set means related channel is concerned) * - @1 4 bytes: AX-Filter coefficients */ mask = *data; for (i = 0; i < ARRAY_SIZE(peb2466->ch); i++) { if (!(mask & (1 << i))) continue; ret = regmap_update_bits(peb2466->regmap, PEB2466_CR0(i), PEB2466_CR0_AX, 0); if (ret) return ret; ret = peb2466_write_buf(peb2466, PEB2466_AX_FILTER(i), data + 1, 4); if (ret) return ret; ret = regmap_update_bits(peb2466->regmap, PEB2466_CR0(i), PEB2466_CR0_AX, PEB2466_CR0_AX); if (ret) return ret; } return 0; } static int peb2466_fw_parse_arfilter(struct snd_soc_component *component, u16 tag, u32 lng, const u8 *data) { struct peb2466 *peb2466 = snd_soc_component_get_drvdata(component); u8 mask; int ret; int i; dev_info(component->dev, "fw AR filter: mask %x, %*phN\n", *data, lng - 1, data + 1); /* * AR_FILTER TLV data: * - @0 1 byte: Chan mask (bit set means related channel is concerned) * - @1 4 bytes: AR-Filter coefficients */ mask = *data; for (i = 0; i < ARRAY_SIZE(peb2466->ch); i++) { if (!(mask & (1 << i))) continue; ret = regmap_update_bits(peb2466->regmap, PEB2466_CR0(i), PEB2466_CR0_AR, 0); if (ret) return ret; ret = peb2466_write_buf(peb2466, PEB2466_AR_FILTER(i), data + 1, 4); if (ret) return ret; ret = regmap_update_bits(peb2466->regmap, PEB2466_CR0(i), PEB2466_CR0_AR, PEB2466_CR0_AR); if (ret) return ret; } return 0; } static const char * const peb2466_ax_ctrl_names[] = { "ADC0 Capture Volume", "ADC1 Capture Volume", "ADC2 Capture Volume", "ADC3 Capture Volume", }; static int peb2466_fw_parse_axtable(struct snd_soc_component *component, u16 tag, u32 lng, const u8 *data) { struct peb2466 *peb2466 = snd_soc_component_get_drvdata(component); struct peb2466_lkup_ctrl *lkup_ctrl; struct peb2466_lookup *lookup; u8 (*table)[4]; u32 table_size; u32 init_index; s32 min_val; s32 step; u8 mask; int ret; int i; /* * AX_TABLE TLV data: * - @0 1 byte: Chan mask (bit set means related channel is concerned) * - @1 32bits signed: Min table value in centi dB (MinVal) * ie -300 means -3.0 dB * - @5 32bits signed: Step from on item to other item in centi dB (Step) * ie 25 means 0.25 dB) * - @9 32bits unsigned: Item index in the table to use for the initial * value * - @13 N*4 bytes: Table composed of 4 bytes items. * Each item correspond to an AX filter value. * * The conversion from raw value item in the table to/from the value in * dB is: Raw value at index i <-> (MinVal + i * Step) in centi dB. */ /* Check Lng and extract the table size. */ if (lng < 13 || ((lng - 13) % 4)) { dev_err(component->dev, "fw AX table lng %u invalid\n", lng); return -EINVAL; } table_size = lng - 13; min_val = get_unaligned_be32(data + 1); step = get_unaligned_be32(data + 5); init_index = get_unaligned_be32(data + 9); if (init_index >= (table_size / 4)) { dev_err(component->dev, "fw AX table index %u out of table[%u]\n", init_index, table_size / 4); return -EINVAL; } dev_info(component->dev, "fw AX table: mask %x, min %d, step %d, %u items, tbl[%u] %*phN\n", *data, min_val, step, table_size / 4, init_index, 4, data + 13 + (init_index * 4)); BUILD_BUG_ON(sizeof(*table) != 4); table = devm_kzalloc(&peb2466->spi->dev, table_size, GFP_KERNEL); if (!table) return -ENOMEM; memcpy(table, data + 13, table_size); mask = *data; BUILD_BUG_ON(ARRAY_SIZE(peb2466_ax_ctrl_names) != ARRAY_SIZE(peb2466->ch)); for (i = 0; i < ARRAY_SIZE(peb2466->ch); i++) { if (!(mask & (1 << i))) continue; lookup = &peb2466->ch[i].ax_lookup; lookup->table = table; lookup->count = table_size / 4; ret = regmap_update_bits(peb2466->regmap, PEB2466_CR0(i), PEB2466_CR0_AX, 0); if (ret) return ret; ret = peb2466_write_buf(peb2466, PEB2466_AX_FILTER(i), lookup->table[init_index], 4); if (ret) return ret; ret = regmap_update_bits(peb2466->regmap, PEB2466_CR0(i), PEB2466_CR0_AX, PEB2466_CR0_AX); if (ret) return ret; lkup_ctrl = &peb2466->ch[i].ax_lkup_ctrl; lkup_ctrl->lookup = lookup; lkup_ctrl->reg = PEB2466_AX_FILTER(i); lkup_ctrl->index = init_index; ret = peb2466_add_lkup_ctrl(component, lkup_ctrl, peb2466_ax_ctrl_names[i], min_val, step); if (ret) return ret; } return 0; } static const char * const peb2466_ar_ctrl_names[] = { "DAC0 Playback Volume", "DAC1 Playback Volume", "DAC2 Playback Volume", "DAC3 Playback Volume", }; static int peb2466_fw_parse_artable(struct snd_soc_component *component, u16 tag, u32 lng, const u8 *data) { struct peb2466 *peb2466 = snd_soc_component_get_drvdata(component); struct peb2466_lkup_ctrl *lkup_ctrl; struct peb2466_lookup *lookup; u8 (*table)[4]; u32 table_size; u32 init_index; s32 min_val; s32 step; u8 mask; int ret; int i; /* * AR_TABLE TLV data: * - @0 1 byte: Chan mask (bit set means related channel is concerned) * - @1 32bits signed: Min table value in centi dB (MinVal) * ie -300 means -3.0 dB * - @5 32bits signed: Step from on item to other item in centi dB (Step) * ie 25 means 0.25 dB) * - @9 32bits unsigned: Item index in the table to use for the initial * value * - @13 N*4 bytes: Table composed of 4 bytes items. * Each item correspond to an AR filter value. * * The conversion from raw value item in the table to/from the value in * dB is: Raw value at index i <-> (MinVal + i * Step) in centi dB. */ /* Check Lng and extract the table size. */ if (lng < 13 || ((lng - 13) % 4)) { dev_err(component->dev, "fw AR table lng %u invalid\n", lng); return -EINVAL; } table_size = lng - 13; min_val = get_unaligned_be32(data + 1); step = get_unaligned_be32(data + 5); init_index = get_unaligned_be32(data + 9); if (init_index >= (table_size / 4)) { dev_err(component->dev, "fw AR table index %u out of table[%u]\n", init_index, table_size / 4); return -EINVAL; } dev_info(component->dev, "fw AR table: mask %x, min %d, step %d, %u items, tbl[%u] %*phN\n", *data, min_val, step, table_size / 4, init_index, 4, data + 13 + (init_index * 4)); BUILD_BUG_ON(sizeof(*table) != 4); table = devm_kzalloc(&peb2466->spi->dev, table_size, GFP_KERNEL); if (!table) return -ENOMEM; memcpy(table, data + 13, table_size); mask = *data; BUILD_BUG_ON(ARRAY_SIZE(peb2466_ar_ctrl_names) != ARRAY_SIZE(peb2466->ch)); for (i = 0; i < ARRAY_SIZE(peb2466->ch); i++) { if (!(mask & (1 << i))) continue; lookup = &peb2466->ch[i].ar_lookup; lookup->table = table; lookup->count = table_size / 4; ret = regmap_update_bits(peb2466->regmap, PEB2466_CR0(i), PEB2466_CR0_AR, 0); if (ret) return ret; ret = peb2466_write_buf(peb2466, PEB2466_AR_FILTER(i), lookup->table[init_index], 4); if (ret) return ret; ret = regmap_update_bits(peb2466->regmap, PEB2466_CR0(i), PEB2466_CR0_AR, PEB2466_CR0_AR); if (ret) return ret; lkup_ctrl = &peb2466->ch[i].ar_lkup_ctrl; lkup_ctrl->lookup = lookup; lkup_ctrl->reg = PEB2466_AR_FILTER(i); lkup_ctrl->index = init_index; ret = peb2466_add_lkup_ctrl(component, lkup_ctrl, peb2466_ar_ctrl_names[i], min_val, step); if (ret) return ret; } return 0; } struct peb2466_fw_tag_def { u16 tag; u32 lng_min; u32 lng_max; int (*parse)(struct snd_soc_component *component, u16 tag, u32 lng, const u8 *data); }; #define PEB2466_TAG_DEF_LNG_EQ(__tag, __lng, __parse) { \ .tag = __tag, \ .lng_min = __lng, \ .lng_max = __lng, \ .parse = __parse, \ } #define PEB2466_TAG_DEF_LNG_MIN(__tag, __lng_min, __parse) { \ .tag = __tag, \ .lng_min = __lng_min, \ .lng_max = U32_MAX, \ .parse = __parse, \ } static const struct peb2466_fw_tag_def peb2466_fw_tag_defs[] = { /* TH FILTER */ PEB2466_TAG_DEF_LNG_EQ(0x0001, 1 + 3 * 8, peb2466_fw_parse_thfilter), /* IMR1 FILTER */ PEB2466_TAG_DEF_LNG_EQ(0x0002, 1 + 2 * 8, peb2466_fw_parse_imr1filter), /* FRX FILTER */ PEB2466_TAG_DEF_LNG_EQ(0x0003, 1 + 8, peb2466_fw_parse_frxfilter), /* FRR FILTER */ PEB2466_TAG_DEF_LNG_EQ(0x0004, 1 + 8, peb2466_fw_parse_frrfilter), /* AX FILTER */ PEB2466_TAG_DEF_LNG_EQ(0x0005, 1 + 4, peb2466_fw_parse_axfilter), /* AR FILTER */ PEB2466_TAG_DEF_LNG_EQ(0x0006, 1 + 4, peb2466_fw_parse_arfilter), /* AX TABLE */ PEB2466_TAG_DEF_LNG_MIN(0x0105, 1 + 3 * 4, peb2466_fw_parse_axtable), /* AR TABLE */ PEB2466_TAG_DEF_LNG_MIN(0x0106, 1 + 3 * 4, peb2466_fw_parse_artable), }; static const struct peb2466_fw_tag_def *peb2466_fw_get_tag_def(u16 tag) { int i; for (i = 0; i < ARRAY_SIZE(peb2466_fw_tag_defs); i++) { if (peb2466_fw_tag_defs[i].tag == tag) return &peb2466_fw_tag_defs[i]; } return NULL; } static int peb2466_fw_parse(struct snd_soc_component *component, const u8 *data, size_t size) { const struct peb2466_fw_tag_def *tag_def; size_t left; const u8 *buf; u16 val16; u16 tag; u32 lng; int ret; /* * Coefficients firmware binary structure (16bits and 32bits are * big-endian values). * * @0, 16bits: Magic (0x2466) * @2, 16bits: Version (0x0100 for version 1.0) * @4, 2+4+N bytes: TLV block * @4+(2+4+N) bytes: Next TLV block * ... * * Detail of a TLV block: * @0, 16bits: Tag * @2, 32bits: Lng * @6, lng bytes: Data * * The detail the Data for a given TLV Tag is provided in the related * parser. */ left = size; buf = data; if (left < 4) { dev_err(component->dev, "fw size %zu, exp at least 4\n", left); return -EINVAL; } /* Check magic */ val16 = get_unaligned_be16(buf); if (val16 != 0x2466) { dev_err(component->dev, "fw magic 0x%04x exp 0x2466\n", val16); return -EINVAL; } buf += 2; left -= 2; /* Check version */ val16 = get_unaligned_be16(buf); if (val16 != 0x0100) { dev_err(component->dev, "fw magic 0x%04x exp 0x0100\n", val16); return -EINVAL; } buf += 2; left -= 2; while (left) { if (left < 6) { dev_err(component->dev, "fw %td/%zu left %zu, exp at least 6\n", buf - data, size, left); return -EINVAL; } /* Check tag and lng */ tag = get_unaligned_be16(buf); lng = get_unaligned_be32(buf + 2); tag_def = peb2466_fw_get_tag_def(tag); if (!tag_def) { dev_err(component->dev, "fw %td/%zu tag 0x%04x unknown\n", buf - data, size, tag); return -EINVAL; } if (lng < tag_def->lng_min || lng > tag_def->lng_max) { dev_err(component->dev, "fw %td/%zu tag 0x%04x lng %u, exp [%u;%u]\n", buf - data, size, tag, lng, tag_def->lng_min, tag_def->lng_max); return -EINVAL; } buf += 6; left -= 6; if (left < lng) { dev_err(component->dev, "fw %td/%zu tag 0x%04x lng %u, left %zu\n", buf - data, size, tag, lng, left); return -EINVAL; } /* TLV block is valid -> parse the data part */ ret = tag_def->parse(component, tag, lng, buf); if (ret) { dev_err(component->dev, "fw %td/%zu tag 0x%04x lng %u parse failed\n", buf - data, size, tag, lng); return ret; } buf += lng; left -= lng; } return 0; } static int peb2466_load_coeffs(struct snd_soc_component *component, const char *fw_name) { const struct firmware *fw; int ret; ret = request_firmware(&fw, fw_name, component->dev); if (ret) return ret; ret = peb2466_fw_parse(component, fw->data, fw->size); release_firmware(fw); return ret; } static int peb2466_component_probe(struct snd_soc_component *component) { struct peb2466 *peb2466 = snd_soc_component_get_drvdata(component); const char *firmware_name; int ret; /* reset peb2466 audio part */ ret = peb2466_reset_audio(peb2466); if (ret) return ret; ret = of_property_read_string(peb2466->spi->dev.of_node, "firmware-name", &firmware_name); if (ret) return (ret == -EINVAL) ? 0 : ret; return peb2466_load_coeffs(component, firmware_name); } static const struct snd_soc_component_driver peb2466_component_driver = { .probe = peb2466_component_probe, .controls = peb2466_controls, .num_controls = ARRAY_SIZE(peb2466_controls), .dapm_widgets = peb2466_dapm_widgets, .num_dapm_widgets = ARRAY_SIZE(peb2466_dapm_widgets), .dapm_routes = peb2466_dapm_routes, .num_dapm_routes = ARRAY_SIZE(peb2466_dapm_routes), .endianness = 1, }; /* * The mapping used for the relationship between the gpio offset and the * physical pin is the following: * * offset pin * 0 SI1_0 * 1 SI1_1 * 2 SI2_0 * 3 SI2_1 * 4 SI3_0 * 5 SI3_1 * 6 SI4_0 * 7 SI4_1 * 8 SO1_0 * 9 SO1_1 * 10 SO2_0 * 11 SO2_1 * 12 SO3_0 * 13 SO3_1 * 14 SO4_0 * 15 SO4_1 * 16 SB1_0 * 17 SB1_1 * 18 SB2_0 * 19 SB2_1 * 20 SB3_0 * 21 SB3_1 * 22 SB4_0 * 23 SB4_1 * 24 SB1_2 * 25 SB2_2 * 26 SB3_2 * 27 SB4_2 */ static int peb2466_chip_gpio_offset_to_data_regmask(unsigned int offset, unsigned int *xr_reg, unsigned int *mask) { if (offset < 16) { /* * SIx_{0,1} and SOx_{0,1} * Read accesses read SIx_{0,1} values * Write accesses write SOx_{0,1} values */ *xr_reg = PEB2466_XR0; *mask = (1 << (offset % 8)); return 0; } if (offset < 24) { /* SBx_{0,1} */ *xr_reg = PEB2466_XR1; *mask = (1 << (offset - 16)); return 0; } if (offset < 28) { /* SBx_2 */ *xr_reg = PEB2466_XR3; *mask = (1 << (offset - 24 + 4)); return 0; } return -EINVAL; } static int peb2466_chip_gpio_offset_to_dir_regmask(unsigned int offset, unsigned int *xr_reg, unsigned int *mask) { if (offset < 16) { /* Direction cannot be changed for these GPIOs */ return -EINVAL; } if (offset < 24) { *xr_reg = PEB2466_XR2; *mask = (1 << (offset - 16)); return 0; } if (offset < 28) { *xr_reg = PEB2466_XR3; *mask = (1 << (offset - 24)); return 0; } return -EINVAL; } static unsigned int *peb2466_chip_gpio_get_cache(struct peb2466 *peb2466, unsigned int xr_reg) { unsigned int *cache; switch (xr_reg) { case PEB2466_XR0: cache = &peb2466->gpio.cache.xr0; break; case PEB2466_XR1: cache = &peb2466->gpio.cache.xr1; break; case PEB2466_XR2: cache = &peb2466->gpio.cache.xr2; break; case PEB2466_XR3: cache = &peb2466->gpio.cache.xr3; break; default: cache = NULL; break; } return cache; } static int peb2466_chip_gpio_update_bits(struct peb2466 *peb2466, unsigned int xr_reg, unsigned int mask, unsigned int val) { unsigned int tmp; unsigned int *cache; int ret; /* * Read and write accesses use different peb2466 internal signals (input * signals on reads and output signals on writes). regmap_update_bits * cannot be used to read/modify/write the value. * So, a specific cache value is used. */ mutex_lock(&peb2466->gpio.lock); cache = peb2466_chip_gpio_get_cache(peb2466, xr_reg); if (!cache) { ret = -EINVAL; goto end; } tmp = *cache; tmp &= ~mask; tmp |= val; ret = regmap_write(peb2466->regmap, xr_reg, tmp); if (ret) goto end; *cache = tmp; ret = 0; end: mutex_unlock(&peb2466->gpio.lock); return ret; } static void peb2466_chip_gpio_set(struct gpio_chip *c, unsigned int offset, int val) { struct peb2466 *peb2466 = gpiochip_get_data(c); unsigned int xr_reg; unsigned int mask; int ret; if (offset < 8) { /* * SIx_{0,1} signals cannot be set and writing the related * register will change the SOx_{0,1} signals */ dev_warn(&peb2466->spi->dev, "cannot set gpio %d (read-only)\n", offset); return; } ret = peb2466_chip_gpio_offset_to_data_regmask(offset, &xr_reg, &mask); if (ret) { dev_err(&peb2466->spi->dev, "cannot set gpio %d (%d)\n", offset, ret); return; } ret = peb2466_chip_gpio_update_bits(peb2466, xr_reg, mask, val ? mask : 0); if (ret) { dev_err(&peb2466->spi->dev, "set gpio %d (0x%x, 0x%x) failed (%d)\n", offset, xr_reg, mask, ret); } } static int peb2466_chip_gpio_get(struct gpio_chip *c, unsigned int offset) { struct peb2466 *peb2466 = gpiochip_get_data(c); bool use_cache = false; unsigned int *cache; unsigned int xr_reg; unsigned int mask; unsigned int val; int ret; if (offset >= 8 && offset < 16) { /* * SOx_{0,1} signals cannot be read. Reading the related * register will read the SIx_{0,1} signals. * Use the cache to get value; */ use_cache = true; } ret = peb2466_chip_gpio_offset_to_data_regmask(offset, &xr_reg, &mask); if (ret) { dev_err(&peb2466->spi->dev, "cannot get gpio %d (%d)\n", offset, ret); return -EINVAL; } if (use_cache) { cache = peb2466_chip_gpio_get_cache(peb2466, xr_reg); if (!cache) return -EINVAL; val = *cache; } else { ret = regmap_read(peb2466->regmap, xr_reg, &val); if (ret) { dev_err(&peb2466->spi->dev, "get gpio %d (0x%x, 0x%x) failed (%d)\n", offset, xr_reg, mask, ret); return ret; } } return !!(val & mask); } static int peb2466_chip_get_direction(struct gpio_chip *c, unsigned int offset) { struct peb2466 *peb2466 = gpiochip_get_data(c); unsigned int xr_reg; unsigned int mask; unsigned int val; int ret; if (offset < 8) { /* SIx_{0,1} */ return GPIO_LINE_DIRECTION_IN; } if (offset < 16) { /* SOx_{0,1} */ return GPIO_LINE_DIRECTION_OUT; } ret = peb2466_chip_gpio_offset_to_dir_regmask(offset, &xr_reg, &mask); if (ret) { dev_err(&peb2466->spi->dev, "cannot get gpio %d direction (%d)\n", offset, ret); return ret; } ret = regmap_read(peb2466->regmap, xr_reg, &val); if (ret) { dev_err(&peb2466->spi->dev, "get dir gpio %d (0x%x, 0x%x) failed (%d)\n", offset, xr_reg, mask, ret); return ret; } return val & mask ? GPIO_LINE_DIRECTION_OUT : GPIO_LINE_DIRECTION_IN; } static int peb2466_chip_direction_input(struct gpio_chip *c, unsigned int offset) { struct peb2466 *peb2466 = gpiochip_get_data(c); unsigned int xr_reg; unsigned int mask; int ret; if (offset < 8) { /* SIx_{0,1} */ return 0; } if (offset < 16) { /* SOx_{0,1} */ return -EINVAL; } ret = peb2466_chip_gpio_offset_to_dir_regmask(offset, &xr_reg, &mask); if (ret) { dev_err(&peb2466->spi->dev, "cannot set gpio %d direction (%d)\n", offset, ret); return ret; } ret = peb2466_chip_gpio_update_bits(peb2466, xr_reg, mask, 0); if (ret) { dev_err(&peb2466->spi->dev, "Set dir in gpio %d (0x%x, 0x%x) failed (%d)\n", offset, xr_reg, mask, ret); return ret; } return 0; } static int peb2466_chip_direction_output(struct gpio_chip *c, unsigned int offset, int val) { struct peb2466 *peb2466 = gpiochip_get_data(c); unsigned int xr_reg; unsigned int mask; int ret; if (offset < 8) { /* SIx_{0,1} */ return -EINVAL; } peb2466_chip_gpio_set(c, offset, val); if (offset < 16) { /* SOx_{0,1} */ return 0; } ret = peb2466_chip_gpio_offset_to_dir_regmask(offset, &xr_reg, &mask); if (ret) { dev_err(&peb2466->spi->dev, "cannot set gpio %d direction (%d)\n", offset, ret); return ret; } ret = peb2466_chip_gpio_update_bits(peb2466, xr_reg, mask, mask); if (ret) { dev_err(&peb2466->spi->dev, "Set dir in gpio %d (0x%x, 0x%x) failed (%d)\n", offset, xr_reg, mask, ret); return ret; } return 0; } static int peb2466_reset_gpio(struct peb2466 *peb2466) { static const struct reg_sequence reg_reset[] = { /* Output pins at 0, input/output pins as input */ { .reg = PEB2466_XR0, .def = 0 }, { .reg = PEB2466_XR1, .def = 0 }, { .reg = PEB2466_XR2, .def = 0 }, { .reg = PEB2466_XR3, .def = 0 }, }; peb2466->gpio.cache.xr0 = 0; peb2466->gpio.cache.xr1 = 0; peb2466->gpio.cache.xr2 = 0; peb2466->gpio.cache.xr3 = 0; return regmap_multi_reg_write(peb2466->regmap, reg_reset, ARRAY_SIZE(reg_reset)); } static int peb2466_gpio_init(struct peb2466 *peb2466) { int ret; mutex_init(&peb2466->gpio.lock); ret = peb2466_reset_gpio(peb2466); if (ret) return ret; peb2466->gpio.gpio_chip.owner = THIS_MODULE; peb2466->gpio.gpio_chip.label = dev_name(&peb2466->spi->dev); peb2466->gpio.gpio_chip.parent = &peb2466->spi->dev; peb2466->gpio.gpio_chip.base = -1; peb2466->gpio.gpio_chip.ngpio = 28; peb2466->gpio.gpio_chip.get_direction = peb2466_chip_get_direction; peb2466->gpio.gpio_chip.direction_input = peb2466_chip_direction_input; peb2466->gpio.gpio_chip.direction_output = peb2466_chip_direction_output; peb2466->gpio.gpio_chip.get = peb2466_chip_gpio_get; peb2466->gpio.gpio_chip.set = peb2466_chip_gpio_set; peb2466->gpio.gpio_chip.can_sleep = true; return devm_gpiochip_add_data(&peb2466->spi->dev, &peb2466->gpio.gpio_chip, peb2466); } static int peb2466_spi_probe(struct spi_device *spi) { struct peb2466 *peb2466; unsigned long mclk_rate; int ret; u8 xr5; spi->bits_per_word = 8; ret = spi_setup(spi); if (ret < 0) return ret; peb2466 = devm_kzalloc(&spi->dev, sizeof(*peb2466), GFP_KERNEL); if (!peb2466) return -ENOMEM; peb2466->spi = spi; peb2466->regmap = devm_regmap_init(&peb2466->spi->dev, NULL, peb2466, &peb2466_regmap_config); if (IS_ERR(peb2466->regmap)) return PTR_ERR(peb2466->regmap); peb2466->reset_gpio = devm_gpiod_get_optional(&peb2466->spi->dev, "reset", GPIOD_OUT_LOW); if (IS_ERR(peb2466->reset_gpio)) return PTR_ERR(peb2466->reset_gpio); peb2466->mclk = devm_clk_get(&peb2466->spi->dev, "mclk"); if (IS_ERR(peb2466->mclk)) return PTR_ERR(peb2466->mclk); ret = clk_prepare_enable(peb2466->mclk); if (ret) return ret; if (peb2466->reset_gpio) { gpiod_set_value_cansleep(peb2466->reset_gpio, 1); udelay(4); gpiod_set_value_cansleep(peb2466->reset_gpio, 0); udelay(4); } spi_set_drvdata(spi, peb2466); mclk_rate = clk_get_rate(peb2466->mclk); switch (mclk_rate) { case 1536000: xr5 = PEB2466_XR5_MCLK_1536; break; case 2048000: xr5 = PEB2466_XR5_MCLK_2048; break; case 4096000: xr5 = PEB2466_XR5_MCLK_4096; break; case 8192000: xr5 = PEB2466_XR5_MCLK_8192; break; default: dev_err(&peb2466->spi->dev, "Unsupported clock rate %lu\n", mclk_rate); ret = -EINVAL; goto failed; } ret = regmap_write(peb2466->regmap, PEB2466_XR5, xr5); if (ret) { dev_err(&peb2466->spi->dev, "Setting MCLK failed (%d)\n", ret); goto failed; } ret = devm_snd_soc_register_component(&spi->dev, &peb2466_component_driver, &peb2466_dai_driver, 1); if (ret) goto failed; if (IS_ENABLED(CONFIG_GPIOLIB)) { ret = peb2466_gpio_init(peb2466); if (ret) goto failed; } return 0; failed: clk_disable_unprepare(peb2466->mclk); return ret; } static void peb2466_spi_remove(struct spi_device *spi) { struct peb2466 *peb2466 = spi_get_drvdata(spi); clk_disable_unprepare(peb2466->mclk); } static const struct of_device_id peb2466_of_match[] = { { .compatible = "infineon,peb2466", }, { } }; MODULE_DEVICE_TABLE(of, peb2466_of_match); static const struct spi_device_id peb2466_id_table[] = { { "peb2466", 0 }, { } }; MODULE_DEVICE_TABLE(spi, peb2466_id_table); static struct spi_driver peb2466_spi_driver = { .driver = { .name = "peb2466", .of_match_table = peb2466_of_match, }, .id_table = peb2466_id_table, .probe = peb2466_spi_probe, .remove = peb2466_spi_remove, }; module_spi_driver(peb2466_spi_driver); MODULE_AUTHOR("Herve Codina <herve.codina@bootlin.com>"); MODULE_DESCRIPTION("PEB2466 ALSA SoC driver"); MODULE_LICENSE("GPL");
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1