Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Vladimir Barinov | 2789 | 29.59% | 1 | 0.88% |
Jarkko Nikula | 1327 | 14.08% | 22 | 19.47% |
Jyri Sarha | 1304 | 13.83% | 3 | 2.65% |
Peter Ujfalusi | 702 | 7.45% | 10 | 8.85% |
Mark Brown | 695 | 7.37% | 16 | 14.16% |
Daniel Mack | 615 | 6.52% | 4 | 3.54% |
Kuninori Morimoto | 277 | 2.94% | 4 | 3.54% |
Jan Weitzel | 266 | 2.82% | 1 | 0.88% |
Hebbar Gururaja | 260 | 2.76% | 3 | 2.65% |
Jiri Prchal | 250 | 2.65% | 7 | 6.19% |
Randolph Chung | 191 | 2.03% | 2 | 1.77% |
Peter Meerwald-Stadler | 102 | 1.08% | 1 | 0.88% |
Liam Girdwood | 97 | 1.03% | 4 | 3.54% |
Misael Lopez Cruz | 91 | 0.97% | 1 | 0.88% |
Dmitry Torokhov | 83 | 0.88% | 1 | 0.88% |
Saravanan Sekar | 82 | 0.87% | 1 | 0.88% |
Lars-Peter Clausen | 62 | 0.66% | 5 | 4.42% |
Dmitry Lavnikevich | 57 | 0.60% | 1 | 0.88% |
Ben Dooks | 38 | 0.40% | 1 | 0.88% |
Eero Nurkkala | 38 | 0.40% | 1 | 0.88% |
Axel Lin | 26 | 0.28% | 4 | 3.54% |
Chaithrika U S | 19 | 0.20% | 1 | 0.88% |
Troy Kisky | 12 | 0.13% | 1 | 0.88% |
Eric Miao | 12 | 0.13% | 1 | 0.88% |
Sachin Kamat | 4 | 0.04% | 2 | 1.77% |
Sebastian Reichel | 4 | 0.04% | 1 | 0.88% |
Guennadi Liakhovetski | 4 | 0.04% | 1 | 0.88% |
Jean Delvare | 4 | 0.04% | 1 | 0.88% |
Rick Mann | 2 | 0.02% | 1 | 0.88% |
Linus Torvalds (pre-git) | 2 | 0.02% | 1 | 0.88% |
Benoît Thébaudeau | 2 | 0.02% | 1 | 0.88% |
Thomas Gleixner | 1 | 0.01% | 1 | 0.88% |
Lucas De Marchi | 1 | 0.01% | 1 | 0.88% |
Nariman Poushin | 1 | 0.01% | 1 | 0.88% |
Fabio Estevam | 1 | 0.01% | 1 | 0.88% |
Linus Torvalds | 1 | 0.01% | 1 | 0.88% |
Uwe Kleine-König | 1 | 0.01% | 1 | 0.88% |
Bhumika Goyal | 1 | 0.01% | 1 | 0.88% |
Andreas Irestål | 1 | 0.01% | 1 | 0.88% |
Chen-Yu Tsai | 1 | 0.01% | 1 | 0.88% |
Total | 9426 | 113 |
// SPDX-License-Identifier: GPL-2.0-only /* ALSA SoC TLV320AIC3X codec driver * * Author: Vladimir Barinov, <vbarinov@embeddedalley.com> * Copyright: (C) 2007 MontaVista Software, Inc., <source@mvista.com> * * Based on sound/soc/codecs/wm8753.c by Liam Girdwood * * Notes: * The AIC3X is a driver for a low power stereo audio * codecs aic31, aic32, aic33, aic3007. * * It supports full aic33 codec functionality. * The compatibility with aic32, aic31 and aic3007 is as follows: * aic32/aic3007 | aic31 * --------------------------------------- * MONO_LOUT -> N/A | MONO_LOUT -> N/A * | IN1L -> LINE1L * | IN1R -> LINE1R * | IN2L -> LINE2L * | IN2R -> LINE2R * | MIC3L/R -> N/A * truncated internal functionality in * accordance with documentation * --------------------------------------- * * Hence the machine layer should disable unsupported inputs/outputs by * snd_soc_dapm_disable_pin(codec, "MONO_LOUT"), etc. */ #include <linux/module.h> #include <linux/moduleparam.h> #include <linux/init.h> #include <linux/delay.h> #include <linux/err.h> #include <linux/pm.h> #include <linux/i2c.h> #include <linux/gpio/consumer.h> #include <linux/regulator/consumer.h> #include <linux/of.h> #include <linux/slab.h> #include <sound/core.h> #include <sound/pcm.h> #include <sound/pcm_params.h> #include <sound/soc.h> #include <sound/initval.h> #include <sound/tlv.h> #include "tlv320aic3x.h" #define AIC3X_NUM_SUPPLIES 4 static const char *aic3x_supply_names[AIC3X_NUM_SUPPLIES] = { "IOVDD", /* I/O Voltage */ "DVDD", /* Digital Core Voltage */ "AVDD", /* Analog DAC Voltage */ "DRVDD", /* ADC Analog and Output Driver Voltage */ }; struct aic3x_priv; struct aic3x_disable_nb { struct notifier_block nb; struct aic3x_priv *aic3x; }; struct aic3x_setup_data { unsigned int gpio_func[2]; }; /* codec private data */ struct aic3x_priv { struct snd_soc_component *component; struct regmap *regmap; struct regulator_bulk_data supplies[AIC3X_NUM_SUPPLIES]; struct aic3x_disable_nb disable_nb[AIC3X_NUM_SUPPLIES]; struct aic3x_setup_data *setup; unsigned int sysclk; unsigned int dai_fmt; unsigned int tdm_delay; unsigned int slot_width; int master; struct gpio_desc *gpio_reset; bool shared_reset; int power; u16 model; /* Selects the micbias voltage */ enum aic3x_micbias_voltage micbias_vg; /* Output Common-Mode Voltage */ u8 ocmv; }; static const struct reg_default aic3x_reg[] = { { 0, 0x00 }, { 1, 0x00 }, { 2, 0x00 }, { 3, 0x10 }, { 4, 0x04 }, { 5, 0x00 }, { 6, 0x00 }, { 7, 0x00 }, { 8, 0x00 }, { 9, 0x00 }, { 10, 0x00 }, { 11, 0x01 }, { 12, 0x00 }, { 13, 0x00 }, { 14, 0x00 }, { 15, 0x80 }, { 16, 0x80 }, { 17, 0xff }, { 18, 0xff }, { 19, 0x78 }, { 20, 0x78 }, { 21, 0x78 }, { 22, 0x78 }, { 23, 0x78 }, { 24, 0x78 }, { 25, 0x00 }, { 26, 0x00 }, { 27, 0xfe }, { 28, 0x00 }, { 29, 0x00 }, { 30, 0xfe }, { 31, 0x00 }, { 32, 0x18 }, { 33, 0x18 }, { 34, 0x00 }, { 35, 0x00 }, { 36, 0x00 }, { 37, 0x00 }, { 38, 0x00 }, { 39, 0x00 }, { 40, 0x00 }, { 41, 0x00 }, { 42, 0x00 }, { 43, 0x80 }, { 44, 0x80 }, { 45, 0x00 }, { 46, 0x00 }, { 47, 0x00 }, { 48, 0x00 }, { 49, 0x00 }, { 50, 0x00 }, { 51, 0x04 }, { 52, 0x00 }, { 53, 0x00 }, { 54, 0x00 }, { 55, 0x00 }, { 56, 0x00 }, { 57, 0x00 }, { 58, 0x04 }, { 59, 0x00 }, { 60, 0x00 }, { 61, 0x00 }, { 62, 0x00 }, { 63, 0x00 }, { 64, 0x00 }, { 65, 0x04 }, { 66, 0x00 }, { 67, 0x00 }, { 68, 0x00 }, { 69, 0x00 }, { 70, 0x00 }, { 71, 0x00 }, { 72, 0x04 }, { 73, 0x00 }, { 74, 0x00 }, { 75, 0x00 }, { 76, 0x00 }, { 77, 0x00 }, { 78, 0x00 }, { 79, 0x00 }, { 80, 0x00 }, { 81, 0x00 }, { 82, 0x00 }, { 83, 0x00 }, { 84, 0x00 }, { 85, 0x00 }, { 86, 0x00 }, { 87, 0x00 }, { 88, 0x00 }, { 89, 0x00 }, { 90, 0x00 }, { 91, 0x00 }, { 92, 0x00 }, { 93, 0x00 }, { 94, 0x00 }, { 95, 0x00 }, { 96, 0x00 }, { 97, 0x00 }, { 98, 0x00 }, { 99, 0x00 }, { 100, 0x00 }, { 101, 0x00 }, { 102, 0x02 }, { 103, 0x00 }, { 104, 0x00 }, { 105, 0x00 }, { 106, 0x00 }, { 107, 0x00 }, { 108, 0x00 }, { 109, 0x00 }, }; static bool aic3x_volatile_reg(struct device *dev, unsigned int reg) { switch (reg) { case AIC3X_RESET: return true; default: return false; } } const struct regmap_config aic3x_regmap = { .max_register = DAC_ICC_ADJ, .reg_defaults = aic3x_reg, .num_reg_defaults = ARRAY_SIZE(aic3x_reg), .volatile_reg = aic3x_volatile_reg, .cache_type = REGCACHE_RBTREE, }; EXPORT_SYMBOL_GPL(aic3x_regmap); #define SOC_DAPM_SINGLE_AIC3X(xname, reg, shift, mask, invert) \ SOC_SINGLE_EXT(xname, reg, shift, mask, invert, \ snd_soc_dapm_get_volsw, snd_soc_dapm_put_volsw_aic3x) /* * All input lines are connected when !0xf and disconnected with 0xf bit field, * so we have to use specific dapm_put call for input mixer */ static int snd_soc_dapm_put_volsw_aic3x(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) { struct snd_soc_component *component = snd_soc_dapm_kcontrol_component(kcontrol); struct snd_soc_dapm_context *dapm = snd_soc_component_get_dapm(component); struct soc_mixer_control *mc = (struct soc_mixer_control *)kcontrol->private_value; unsigned int reg = mc->reg; unsigned int shift = mc->shift; int max = mc->max; unsigned int mask = (1 << fls(max)) - 1; unsigned int invert = mc->invert; unsigned short val; struct snd_soc_dapm_update update = {}; int connect, change; val = (ucontrol->value.integer.value[0] & mask); mask = 0xf; if (val) val = mask; connect = !!val; if (invert) val = mask - val; mask <<= shift; val <<= shift; change = snd_soc_component_test_bits(component, reg, mask, val); if (change) { update.kcontrol = kcontrol; update.reg = reg; update.mask = mask; update.val = val; snd_soc_dapm_mixer_update_power(dapm, kcontrol, connect, &update); } return change; } /* * mic bias power on/off share the same register bits with * output voltage of mic bias. when power on mic bias, we * need reclaim it to voltage value. * 0x0 = Powered off * 0x1 = MICBIAS output is powered to 2.0V, * 0x2 = MICBIAS output is powered to 2.5V * 0x3 = MICBIAS output is connected to AVDD */ static int mic_bias_event(struct snd_soc_dapm_widget *w, struct snd_kcontrol *kcontrol, int event) { struct snd_soc_component *component = snd_soc_dapm_to_component(w->dapm); struct aic3x_priv *aic3x = snd_soc_component_get_drvdata(component); switch (event) { case SND_SOC_DAPM_POST_PMU: /* change mic bias voltage to user defined */ snd_soc_component_update_bits(component, MICBIAS_CTRL, MICBIAS_LEVEL_MASK, aic3x->micbias_vg << MICBIAS_LEVEL_SHIFT); break; case SND_SOC_DAPM_PRE_PMD: snd_soc_component_update_bits(component, MICBIAS_CTRL, MICBIAS_LEVEL_MASK, 0); break; } return 0; } static const char * const aic3x_left_dac_mux[] = { "DAC_L1", "DAC_L3", "DAC_L2" }; static SOC_ENUM_SINGLE_DECL(aic3x_left_dac_enum, DAC_LINE_MUX, 6, aic3x_left_dac_mux); static const char * const aic3x_right_dac_mux[] = { "DAC_R1", "DAC_R3", "DAC_R2" }; static SOC_ENUM_SINGLE_DECL(aic3x_right_dac_enum, DAC_LINE_MUX, 4, aic3x_right_dac_mux); static const char * const aic3x_left_hpcom_mux[] = { "differential of HPLOUT", "constant VCM", "single-ended" }; static SOC_ENUM_SINGLE_DECL(aic3x_left_hpcom_enum, HPLCOM_CFG, 4, aic3x_left_hpcom_mux); static const char * const aic3x_right_hpcom_mux[] = { "differential of HPROUT", "constant VCM", "single-ended", "differential of HPLCOM", "external feedback" }; static SOC_ENUM_SINGLE_DECL(aic3x_right_hpcom_enum, HPRCOM_CFG, 3, aic3x_right_hpcom_mux); static const char * const aic3x_linein_mode_mux[] = { "single-ended", "differential" }; static SOC_ENUM_SINGLE_DECL(aic3x_line1l_2_l_enum, LINE1L_2_LADC_CTRL, 7, aic3x_linein_mode_mux); static SOC_ENUM_SINGLE_DECL(aic3x_line1l_2_r_enum, LINE1L_2_RADC_CTRL, 7, aic3x_linein_mode_mux); static SOC_ENUM_SINGLE_DECL(aic3x_line1r_2_l_enum, LINE1R_2_LADC_CTRL, 7, aic3x_linein_mode_mux); static SOC_ENUM_SINGLE_DECL(aic3x_line1r_2_r_enum, LINE1R_2_RADC_CTRL, 7, aic3x_linein_mode_mux); static SOC_ENUM_SINGLE_DECL(aic3x_line2l_2_ldac_enum, LINE2L_2_LADC_CTRL, 7, aic3x_linein_mode_mux); static SOC_ENUM_SINGLE_DECL(aic3x_line2r_2_rdac_enum, LINE2R_2_RADC_CTRL, 7, aic3x_linein_mode_mux); static const char * const aic3x_adc_hpf[] = { "Disabled", "0.0045xFs", "0.0125xFs", "0.025xFs" }; static SOC_ENUM_DOUBLE_DECL(aic3x_adc_hpf_enum, AIC3X_CODEC_DFILT_CTRL, 6, 4, aic3x_adc_hpf); static const char * const aic3x_agc_level[] = { "-5.5dB", "-8dB", "-10dB", "-12dB", "-14dB", "-17dB", "-20dB", "-24dB" }; static SOC_ENUM_SINGLE_DECL(aic3x_lagc_level_enum, LAGC_CTRL_A, 4, aic3x_agc_level); static SOC_ENUM_SINGLE_DECL(aic3x_ragc_level_enum, RAGC_CTRL_A, 4, aic3x_agc_level); static const char * const aic3x_agc_attack[] = { "8ms", "11ms", "16ms", "20ms" }; static SOC_ENUM_SINGLE_DECL(aic3x_lagc_attack_enum, LAGC_CTRL_A, 2, aic3x_agc_attack); static SOC_ENUM_SINGLE_DECL(aic3x_ragc_attack_enum, RAGC_CTRL_A, 2, aic3x_agc_attack); static const char * const aic3x_agc_decay[] = { "100ms", "200ms", "400ms", "500ms" }; static SOC_ENUM_SINGLE_DECL(aic3x_lagc_decay_enum, LAGC_CTRL_A, 0, aic3x_agc_decay); static SOC_ENUM_SINGLE_DECL(aic3x_ragc_decay_enum, RAGC_CTRL_A, 0, aic3x_agc_decay); static const char * const aic3x_poweron_time[] = { "0us", "10us", "100us", "1ms", "10ms", "50ms", "100ms", "200ms", "400ms", "800ms", "2s", "4s" }; static SOC_ENUM_SINGLE_DECL(aic3x_poweron_time_enum, HPOUT_POP_REDUCTION, 4, aic3x_poweron_time); static const char * const aic3x_rampup_step[] = { "0ms", "1ms", "2ms", "4ms" }; static SOC_ENUM_SINGLE_DECL(aic3x_rampup_step_enum, HPOUT_POP_REDUCTION, 2, aic3x_rampup_step); /* * DAC digital volumes. From -63.5 to 0 dB in 0.5 dB steps */ static DECLARE_TLV_DB_SCALE(dac_tlv, -6350, 50, 0); /* ADC PGA gain volumes. From 0 to 59.5 dB in 0.5 dB steps */ static DECLARE_TLV_DB_SCALE(adc_tlv, 0, 50, 0); /* * Output stage volumes. From -78.3 to 0 dB. Muted below -78.3 dB. * Step size is approximately 0.5 dB over most of the scale but increasing * near the very low levels. * Define dB scale so that it is mostly correct for range about -55 to 0 dB * but having increasing dB difference below that (and where it doesn't count * so much). This setting shows -50 dB (actual is -50.3 dB) for register * value 100 and -58.5 dB (actual is -78.3 dB) for register value 117. */ static DECLARE_TLV_DB_SCALE(output_stage_tlv, -5900, 50, 1); /* Output volumes. From 0 to 9 dB in 1 dB steps */ static const DECLARE_TLV_DB_SCALE(out_tlv, 0, 100, 0); static const struct snd_kcontrol_new aic3x_snd_controls[] = { /* Output */ SOC_DOUBLE_R_TLV("PCM Playback Volume", LDAC_VOL, RDAC_VOL, 0, 0x7f, 1, dac_tlv), /* * Output controls that map to output mixer switches. Note these are * only for swapped L-to-R and R-to-L routes. See below stereo controls * for direct L-to-L and R-to-R routes. */ SOC_SINGLE_TLV("Left Line Mixer PGAR Bypass Volume", PGAR_2_LLOPM_VOL, 0, 118, 1, output_stage_tlv), SOC_SINGLE_TLV("Left Line Mixer DACR1 Playback Volume", DACR1_2_LLOPM_VOL, 0, 118, 1, output_stage_tlv), SOC_SINGLE_TLV("Right Line Mixer PGAL Bypass Volume", PGAL_2_RLOPM_VOL, 0, 118, 1, output_stage_tlv), SOC_SINGLE_TLV("Right Line Mixer DACL1 Playback Volume", DACL1_2_RLOPM_VOL, 0, 118, 1, output_stage_tlv), SOC_SINGLE_TLV("Left HP Mixer PGAR Bypass Volume", PGAR_2_HPLOUT_VOL, 0, 118, 1, output_stage_tlv), SOC_SINGLE_TLV("Left HP Mixer DACR1 Playback Volume", DACR1_2_HPLOUT_VOL, 0, 118, 1, output_stage_tlv), SOC_SINGLE_TLV("Right HP Mixer PGAL Bypass Volume", PGAL_2_HPROUT_VOL, 0, 118, 1, output_stage_tlv), SOC_SINGLE_TLV("Right HP Mixer DACL1 Playback Volume", DACL1_2_HPROUT_VOL, 0, 118, 1, output_stage_tlv), SOC_SINGLE_TLV("Left HPCOM Mixer PGAR Bypass Volume", PGAR_2_HPLCOM_VOL, 0, 118, 1, output_stage_tlv), SOC_SINGLE_TLV("Left HPCOM Mixer DACR1 Playback Volume", DACR1_2_HPLCOM_VOL, 0, 118, 1, output_stage_tlv), SOC_SINGLE_TLV("Right HPCOM Mixer PGAL Bypass Volume", PGAL_2_HPRCOM_VOL, 0, 118, 1, output_stage_tlv), SOC_SINGLE_TLV("Right HPCOM Mixer DACL1 Playback Volume", DACL1_2_HPRCOM_VOL, 0, 118, 1, output_stage_tlv), /* Stereo output controls for direct L-to-L and R-to-R routes */ SOC_DOUBLE_R_TLV("Line PGA Bypass Volume", PGAL_2_LLOPM_VOL, PGAR_2_RLOPM_VOL, 0, 118, 1, output_stage_tlv), SOC_DOUBLE_R_TLV("Line DAC Playback Volume", DACL1_2_LLOPM_VOL, DACR1_2_RLOPM_VOL, 0, 118, 1, output_stage_tlv), SOC_DOUBLE_R_TLV("HP PGA Bypass Volume", PGAL_2_HPLOUT_VOL, PGAR_2_HPROUT_VOL, 0, 118, 1, output_stage_tlv), SOC_DOUBLE_R_TLV("HP DAC Playback Volume", DACL1_2_HPLOUT_VOL, DACR1_2_HPROUT_VOL, 0, 118, 1, output_stage_tlv), SOC_DOUBLE_R_TLV("HPCOM PGA Bypass Volume", PGAL_2_HPLCOM_VOL, PGAR_2_HPRCOM_VOL, 0, 118, 1, output_stage_tlv), SOC_DOUBLE_R_TLV("HPCOM DAC Playback Volume", DACL1_2_HPLCOM_VOL, DACR1_2_HPRCOM_VOL, 0, 118, 1, output_stage_tlv), /* Output pin controls */ SOC_DOUBLE_R_TLV("Line Playback Volume", LLOPM_CTRL, RLOPM_CTRL, 4, 9, 0, out_tlv), SOC_DOUBLE_R("Line Playback Switch", LLOPM_CTRL, RLOPM_CTRL, 3, 0x01, 0), SOC_DOUBLE_R_TLV("HP Playback Volume", HPLOUT_CTRL, HPROUT_CTRL, 4, 9, 0, out_tlv), SOC_DOUBLE_R("HP Playback Switch", HPLOUT_CTRL, HPROUT_CTRL, 3, 0x01, 0), SOC_DOUBLE_R_TLV("HPCOM Playback Volume", HPLCOM_CTRL, HPRCOM_CTRL, 4, 9, 0, out_tlv), SOC_DOUBLE_R("HPCOM Playback Switch", HPLCOM_CTRL, HPRCOM_CTRL, 3, 0x01, 0), /* * Note: enable Automatic input Gain Controller with care. It can * adjust PGA to max value when ADC is on and will never go back. */ SOC_DOUBLE_R("AGC Switch", LAGC_CTRL_A, RAGC_CTRL_A, 7, 0x01, 0), SOC_ENUM("Left AGC Target level", aic3x_lagc_level_enum), SOC_ENUM("Right AGC Target level", aic3x_ragc_level_enum), SOC_ENUM("Left AGC Attack time", aic3x_lagc_attack_enum), SOC_ENUM("Right AGC Attack time", aic3x_ragc_attack_enum), SOC_ENUM("Left AGC Decay time", aic3x_lagc_decay_enum), SOC_ENUM("Right AGC Decay time", aic3x_ragc_decay_enum), /* De-emphasis */ SOC_DOUBLE("De-emphasis Switch", AIC3X_CODEC_DFILT_CTRL, 2, 0, 0x01, 0), /* Input */ SOC_DOUBLE_R_TLV("PGA Capture Volume", LADC_VOL, RADC_VOL, 0, 119, 0, adc_tlv), SOC_DOUBLE_R("PGA Capture Switch", LADC_VOL, RADC_VOL, 7, 0x01, 1), SOC_ENUM("ADC HPF Cut-off", aic3x_adc_hpf_enum), /* Pop reduction */ SOC_ENUM("Output Driver Power-On time", aic3x_poweron_time_enum), SOC_ENUM("Output Driver Ramp-up step", aic3x_rampup_step_enum), }; /* For other than tlv320aic3104 */ static const struct snd_kcontrol_new aic3x_extra_snd_controls[] = { /* * Output controls that map to output mixer switches. Note these are * only for swapped L-to-R and R-to-L routes. See below stereo controls * for direct L-to-L and R-to-R routes. */ SOC_SINGLE_TLV("Left Line Mixer Line2R Bypass Volume", LINE2R_2_LLOPM_VOL, 0, 118, 1, output_stage_tlv), SOC_SINGLE_TLV("Right Line Mixer Line2L Bypass Volume", LINE2L_2_RLOPM_VOL, 0, 118, 1, output_stage_tlv), SOC_SINGLE_TLV("Left HP Mixer Line2R Bypass Volume", LINE2R_2_HPLOUT_VOL, 0, 118, 1, output_stage_tlv), SOC_SINGLE_TLV("Right HP Mixer Line2L Bypass Volume", LINE2L_2_HPROUT_VOL, 0, 118, 1, output_stage_tlv), SOC_SINGLE_TLV("Left HPCOM Mixer Line2R Bypass Volume", LINE2R_2_HPLCOM_VOL, 0, 118, 1, output_stage_tlv), SOC_SINGLE_TLV("Right HPCOM Mixer Line2L Bypass Volume", LINE2L_2_HPRCOM_VOL, 0, 118, 1, output_stage_tlv), /* Stereo output controls for direct L-to-L and R-to-R routes */ SOC_DOUBLE_R_TLV("Line Line2 Bypass Volume", LINE2L_2_LLOPM_VOL, LINE2R_2_RLOPM_VOL, 0, 118, 1, output_stage_tlv), SOC_DOUBLE_R_TLV("HP Line2 Bypass Volume", LINE2L_2_HPLOUT_VOL, LINE2R_2_HPROUT_VOL, 0, 118, 1, output_stage_tlv), SOC_DOUBLE_R_TLV("HPCOM Line2 Bypass Volume", LINE2L_2_HPLCOM_VOL, LINE2R_2_HPRCOM_VOL, 0, 118, 1, output_stage_tlv), }; static const struct snd_kcontrol_new aic3x_mono_controls[] = { SOC_DOUBLE_R_TLV("Mono Line2 Bypass Volume", LINE2L_2_MONOLOPM_VOL, LINE2R_2_MONOLOPM_VOL, 0, 118, 1, output_stage_tlv), SOC_DOUBLE_R_TLV("Mono PGA Bypass Volume", PGAL_2_MONOLOPM_VOL, PGAR_2_MONOLOPM_VOL, 0, 118, 1, output_stage_tlv), SOC_DOUBLE_R_TLV("Mono DAC Playback Volume", DACL1_2_MONOLOPM_VOL, DACR1_2_MONOLOPM_VOL, 0, 118, 1, output_stage_tlv), SOC_SINGLE("Mono Playback Switch", MONOLOPM_CTRL, 3, 0x01, 0), SOC_SINGLE_TLV("Mono Playback Volume", MONOLOPM_CTRL, 4, 9, 0, out_tlv), }; /* * Class-D amplifier gain. From 0 to 18 dB in 6 dB steps */ static DECLARE_TLV_DB_SCALE(classd_amp_tlv, 0, 600, 0); static const struct snd_kcontrol_new aic3x_classd_amp_gain_ctrl = SOC_DOUBLE_TLV("Class-D Playback Volume", CLASSD_CTRL, 6, 4, 3, 0, classd_amp_tlv); /* Left DAC Mux */ static const struct snd_kcontrol_new aic3x_left_dac_mux_controls = SOC_DAPM_ENUM("Route", aic3x_left_dac_enum); /* Right DAC Mux */ static const struct snd_kcontrol_new aic3x_right_dac_mux_controls = SOC_DAPM_ENUM("Route", aic3x_right_dac_enum); /* Left HPCOM Mux */ static const struct snd_kcontrol_new aic3x_left_hpcom_mux_controls = SOC_DAPM_ENUM("Route", aic3x_left_hpcom_enum); /* Right HPCOM Mux */ static const struct snd_kcontrol_new aic3x_right_hpcom_mux_controls = SOC_DAPM_ENUM("Route", aic3x_right_hpcom_enum); /* Left Line Mixer */ static const struct snd_kcontrol_new aic3x_left_line_mixer_controls[] = { SOC_DAPM_SINGLE("PGAL Bypass Switch", PGAL_2_LLOPM_VOL, 7, 1, 0), SOC_DAPM_SINGLE("DACL1 Switch", DACL1_2_LLOPM_VOL, 7, 1, 0), SOC_DAPM_SINGLE("PGAR Bypass Switch", PGAR_2_LLOPM_VOL, 7, 1, 0), SOC_DAPM_SINGLE("DACR1 Switch", DACR1_2_LLOPM_VOL, 7, 1, 0), /* Not on tlv320aic3104 */ SOC_DAPM_SINGLE("Line2L Bypass Switch", LINE2L_2_LLOPM_VOL, 7, 1, 0), SOC_DAPM_SINGLE("Line2R Bypass Switch", LINE2R_2_LLOPM_VOL, 7, 1, 0), }; /* Right Line Mixer */ static const struct snd_kcontrol_new aic3x_right_line_mixer_controls[] = { SOC_DAPM_SINGLE("PGAL Bypass Switch", PGAL_2_RLOPM_VOL, 7, 1, 0), SOC_DAPM_SINGLE("DACL1 Switch", DACL1_2_RLOPM_VOL, 7, 1, 0), SOC_DAPM_SINGLE("PGAR Bypass Switch", PGAR_2_RLOPM_VOL, 7, 1, 0), SOC_DAPM_SINGLE("DACR1 Switch", DACR1_2_RLOPM_VOL, 7, 1, 0), /* Not on tlv320aic3104 */ SOC_DAPM_SINGLE("Line2L Bypass Switch", LINE2L_2_RLOPM_VOL, 7, 1, 0), SOC_DAPM_SINGLE("Line2R Bypass Switch", LINE2R_2_RLOPM_VOL, 7, 1, 0), }; /* Mono Mixer */ static const struct snd_kcontrol_new aic3x_mono_mixer_controls[] = { SOC_DAPM_SINGLE("Line2L Bypass Switch", LINE2L_2_MONOLOPM_VOL, 7, 1, 0), SOC_DAPM_SINGLE("PGAL Bypass Switch", PGAL_2_MONOLOPM_VOL, 7, 1, 0), SOC_DAPM_SINGLE("DACL1 Switch", DACL1_2_MONOLOPM_VOL, 7, 1, 0), SOC_DAPM_SINGLE("Line2R Bypass Switch", LINE2R_2_MONOLOPM_VOL, 7, 1, 0), SOC_DAPM_SINGLE("PGAR Bypass Switch", PGAR_2_MONOLOPM_VOL, 7, 1, 0), SOC_DAPM_SINGLE("DACR1 Switch", DACR1_2_MONOLOPM_VOL, 7, 1, 0), }; /* Left HP Mixer */ static const struct snd_kcontrol_new aic3x_left_hp_mixer_controls[] = { SOC_DAPM_SINGLE("PGAL Bypass Switch", PGAL_2_HPLOUT_VOL, 7, 1, 0), SOC_DAPM_SINGLE("DACL1 Switch", DACL1_2_HPLOUT_VOL, 7, 1, 0), SOC_DAPM_SINGLE("PGAR Bypass Switch", PGAR_2_HPLOUT_VOL, 7, 1, 0), SOC_DAPM_SINGLE("DACR1 Switch", DACR1_2_HPLOUT_VOL, 7, 1, 0), /* Not on tlv320aic3104 */ SOC_DAPM_SINGLE("Line2L Bypass Switch", LINE2L_2_HPLOUT_VOL, 7, 1, 0), SOC_DAPM_SINGLE("Line2R Bypass Switch", LINE2R_2_HPLOUT_VOL, 7, 1, 0), }; /* Right HP Mixer */ static const struct snd_kcontrol_new aic3x_right_hp_mixer_controls[] = { SOC_DAPM_SINGLE("PGAL Bypass Switch", PGAL_2_HPROUT_VOL, 7, 1, 0), SOC_DAPM_SINGLE("DACL1 Switch", DACL1_2_HPROUT_VOL, 7, 1, 0), SOC_DAPM_SINGLE("PGAR Bypass Switch", PGAR_2_HPROUT_VOL, 7, 1, 0), SOC_DAPM_SINGLE("DACR1 Switch", DACR1_2_HPROUT_VOL, 7, 1, 0), /* Not on tlv320aic3104 */ SOC_DAPM_SINGLE("Line2L Bypass Switch", LINE2L_2_HPROUT_VOL, 7, 1, 0), SOC_DAPM_SINGLE("Line2R Bypass Switch", LINE2R_2_HPROUT_VOL, 7, 1, 0), }; /* Left HPCOM Mixer */ static const struct snd_kcontrol_new aic3x_left_hpcom_mixer_controls[] = { SOC_DAPM_SINGLE("PGAL Bypass Switch", PGAL_2_HPLCOM_VOL, 7, 1, 0), SOC_DAPM_SINGLE("DACL1 Switch", DACL1_2_HPLCOM_VOL, 7, 1, 0), SOC_DAPM_SINGLE("PGAR Bypass Switch", PGAR_2_HPLCOM_VOL, 7, 1, 0), SOC_DAPM_SINGLE("DACR1 Switch", DACR1_2_HPLCOM_VOL, 7, 1, 0), /* Not on tlv320aic3104 */ SOC_DAPM_SINGLE("Line2L Bypass Switch", LINE2L_2_HPLCOM_VOL, 7, 1, 0), SOC_DAPM_SINGLE("Line2R Bypass Switch", LINE2R_2_HPLCOM_VOL, 7, 1, 0), }; /* Right HPCOM Mixer */ static const struct snd_kcontrol_new aic3x_right_hpcom_mixer_controls[] = { SOC_DAPM_SINGLE("PGAL Bypass Switch", PGAL_2_HPRCOM_VOL, 7, 1, 0), SOC_DAPM_SINGLE("DACL1 Switch", DACL1_2_HPRCOM_VOL, 7, 1, 0), SOC_DAPM_SINGLE("PGAR Bypass Switch", PGAR_2_HPRCOM_VOL, 7, 1, 0), SOC_DAPM_SINGLE("DACR1 Switch", DACR1_2_HPRCOM_VOL, 7, 1, 0), /* Not on tlv320aic3104 */ SOC_DAPM_SINGLE("Line2L Bypass Switch", LINE2L_2_HPRCOM_VOL, 7, 1, 0), SOC_DAPM_SINGLE("Line2R Bypass Switch", LINE2R_2_HPRCOM_VOL, 7, 1, 0), }; /* Left PGA Mixer */ static const struct snd_kcontrol_new aic3x_left_pga_mixer_controls[] = { SOC_DAPM_SINGLE_AIC3X("Line1L Switch", LINE1L_2_LADC_CTRL, 3, 1, 1), SOC_DAPM_SINGLE_AIC3X("Line1R Switch", LINE1R_2_LADC_CTRL, 3, 1, 1), SOC_DAPM_SINGLE_AIC3X("Line2L Switch", LINE2L_2_LADC_CTRL, 3, 1, 1), SOC_DAPM_SINGLE_AIC3X("Mic3L Switch", MIC3LR_2_LADC_CTRL, 4, 1, 1), SOC_DAPM_SINGLE_AIC3X("Mic3R Switch", MIC3LR_2_LADC_CTRL, 0, 1, 1), }; /* Right PGA Mixer */ static const struct snd_kcontrol_new aic3x_right_pga_mixer_controls[] = { SOC_DAPM_SINGLE_AIC3X("Line1R Switch", LINE1R_2_RADC_CTRL, 3, 1, 1), SOC_DAPM_SINGLE_AIC3X("Line1L Switch", LINE1L_2_RADC_CTRL, 3, 1, 1), SOC_DAPM_SINGLE_AIC3X("Line2R Switch", LINE2R_2_RADC_CTRL, 3, 1, 1), SOC_DAPM_SINGLE_AIC3X("Mic3L Switch", MIC3LR_2_RADC_CTRL, 4, 1, 1), SOC_DAPM_SINGLE_AIC3X("Mic3R Switch", MIC3LR_2_RADC_CTRL, 0, 1, 1), }; /* Left PGA Mixer for tlv320aic3104 */ static const struct snd_kcontrol_new aic3104_left_pga_mixer_controls[] = { SOC_DAPM_SINGLE_AIC3X("Line1L Switch", LINE1L_2_LADC_CTRL, 3, 1, 1), SOC_DAPM_SINGLE_AIC3X("Line1R Switch", LINE1R_2_LADC_CTRL, 3, 1, 1), SOC_DAPM_SINGLE_AIC3X("Mic2L Switch", MIC3LR_2_LADC_CTRL, 4, 1, 1), SOC_DAPM_SINGLE_AIC3X("Mic2R Switch", MIC3LR_2_LADC_CTRL, 0, 1, 1), }; /* Right PGA Mixer for tlv320aic3104 */ static const struct snd_kcontrol_new aic3104_right_pga_mixer_controls[] = { SOC_DAPM_SINGLE_AIC3X("Line1R Switch", LINE1R_2_RADC_CTRL, 3, 1, 1), SOC_DAPM_SINGLE_AIC3X("Line1L Switch", LINE1L_2_RADC_CTRL, 3, 1, 1), SOC_DAPM_SINGLE_AIC3X("Mic2L Switch", MIC3LR_2_RADC_CTRL, 4, 1, 1), SOC_DAPM_SINGLE_AIC3X("Mic2R Switch", MIC3LR_2_RADC_CTRL, 0, 1, 1), }; /* Left Line1 Mux */ static const struct snd_kcontrol_new aic3x_left_line1l_mux_controls = SOC_DAPM_ENUM("Route", aic3x_line1l_2_l_enum); static const struct snd_kcontrol_new aic3x_right_line1l_mux_controls = SOC_DAPM_ENUM("Route", aic3x_line1l_2_r_enum); /* Right Line1 Mux */ static const struct snd_kcontrol_new aic3x_right_line1r_mux_controls = SOC_DAPM_ENUM("Route", aic3x_line1r_2_r_enum); static const struct snd_kcontrol_new aic3x_left_line1r_mux_controls = SOC_DAPM_ENUM("Route", aic3x_line1r_2_l_enum); /* Left Line2 Mux */ static const struct snd_kcontrol_new aic3x_left_line2_mux_controls = SOC_DAPM_ENUM("Route", aic3x_line2l_2_ldac_enum); /* Right Line2 Mux */ static const struct snd_kcontrol_new aic3x_right_line2_mux_controls = SOC_DAPM_ENUM("Route", aic3x_line2r_2_rdac_enum); static const struct snd_soc_dapm_widget aic3x_dapm_widgets[] = { /* Left DAC to Left Outputs */ SND_SOC_DAPM_DAC("Left DAC", "Left Playback", DAC_PWR, 7, 0), SND_SOC_DAPM_MUX("Left DAC Mux", SND_SOC_NOPM, 0, 0, &aic3x_left_dac_mux_controls), SND_SOC_DAPM_MUX("Left HPCOM Mux", SND_SOC_NOPM, 0, 0, &aic3x_left_hpcom_mux_controls), SND_SOC_DAPM_PGA("Left Line Out", LLOPM_CTRL, 0, 0, NULL, 0), SND_SOC_DAPM_PGA("Left HP Out", HPLOUT_CTRL, 0, 0, NULL, 0), SND_SOC_DAPM_PGA("Left HP Com", HPLCOM_CTRL, 0, 0, NULL, 0), /* Right DAC to Right Outputs */ SND_SOC_DAPM_DAC("Right DAC", "Right Playback", DAC_PWR, 6, 0), SND_SOC_DAPM_MUX("Right DAC Mux", SND_SOC_NOPM, 0, 0, &aic3x_right_dac_mux_controls), SND_SOC_DAPM_MUX("Right HPCOM Mux", SND_SOC_NOPM, 0, 0, &aic3x_right_hpcom_mux_controls), SND_SOC_DAPM_PGA("Right Line Out", RLOPM_CTRL, 0, 0, NULL, 0), SND_SOC_DAPM_PGA("Right HP Out", HPROUT_CTRL, 0, 0, NULL, 0), SND_SOC_DAPM_PGA("Right HP Com", HPRCOM_CTRL, 0, 0, NULL, 0), /* Inputs to Left ADC */ SND_SOC_DAPM_ADC("Left ADC", "Left Capture", LINE1L_2_LADC_CTRL, 2, 0), SND_SOC_DAPM_MUX("Left Line1L Mux", SND_SOC_NOPM, 0, 0, &aic3x_left_line1l_mux_controls), SND_SOC_DAPM_MUX("Left Line1R Mux", SND_SOC_NOPM, 0, 0, &aic3x_left_line1r_mux_controls), /* Inputs to Right ADC */ SND_SOC_DAPM_ADC("Right ADC", "Right Capture", LINE1R_2_RADC_CTRL, 2, 0), SND_SOC_DAPM_MUX("Right Line1L Mux", SND_SOC_NOPM, 0, 0, &aic3x_right_line1l_mux_controls), SND_SOC_DAPM_MUX("Right Line1R Mux", SND_SOC_NOPM, 0, 0, &aic3x_right_line1r_mux_controls), /* Mic Bias */ SND_SOC_DAPM_SUPPLY("Mic Bias", MICBIAS_CTRL, 6, 0, mic_bias_event, SND_SOC_DAPM_POST_PMU | SND_SOC_DAPM_PRE_PMD), SND_SOC_DAPM_OUTPUT("LLOUT"), SND_SOC_DAPM_OUTPUT("RLOUT"), SND_SOC_DAPM_OUTPUT("HPLOUT"), SND_SOC_DAPM_OUTPUT("HPROUT"), SND_SOC_DAPM_OUTPUT("HPLCOM"), SND_SOC_DAPM_OUTPUT("HPRCOM"), SND_SOC_DAPM_INPUT("LINE1L"), SND_SOC_DAPM_INPUT("LINE1R"), /* * Virtual output pin to detection block inside codec. This can be * used to keep codec bias on if gpio or detection features are needed. * Force pin on or construct a path with an input jack and mic bias * widgets. */ SND_SOC_DAPM_OUTPUT("Detection"), }; /* For other than tlv320aic3104 */ static const struct snd_soc_dapm_widget aic3x_extra_dapm_widgets[] = { /* Inputs to Left ADC */ SND_SOC_DAPM_MIXER("Left PGA Mixer", SND_SOC_NOPM, 0, 0, &aic3x_left_pga_mixer_controls[0], ARRAY_SIZE(aic3x_left_pga_mixer_controls)), SND_SOC_DAPM_MUX("Left Line2L Mux", SND_SOC_NOPM, 0, 0, &aic3x_left_line2_mux_controls), /* Inputs to Right ADC */ SND_SOC_DAPM_MIXER("Right PGA Mixer", SND_SOC_NOPM, 0, 0, &aic3x_right_pga_mixer_controls[0], ARRAY_SIZE(aic3x_right_pga_mixer_controls)), SND_SOC_DAPM_MUX("Right Line2R Mux", SND_SOC_NOPM, 0, 0, &aic3x_right_line2_mux_controls), /* * Not a real mic bias widget but similar function. This is for dynamic * control of GPIO1 digital mic modulator clock output function when * using digital mic. */ SND_SOC_DAPM_REG(snd_soc_dapm_micbias, "GPIO1 dmic modclk", AIC3X_GPIO1_REG, 4, 0xf, AIC3X_GPIO1_FUNC_DIGITAL_MIC_MODCLK, AIC3X_GPIO1_FUNC_DISABLED), /* * Also similar function like mic bias. Selects digital mic with * configurable oversampling rate instead of ADC converter. */ SND_SOC_DAPM_REG(snd_soc_dapm_micbias, "DMic Rate 128", AIC3X_ASD_INTF_CTRLA, 0, 3, 1, 0), SND_SOC_DAPM_REG(snd_soc_dapm_micbias, "DMic Rate 64", AIC3X_ASD_INTF_CTRLA, 0, 3, 2, 0), SND_SOC_DAPM_REG(snd_soc_dapm_micbias, "DMic Rate 32", AIC3X_ASD_INTF_CTRLA, 0, 3, 3, 0), /* Output mixers */ SND_SOC_DAPM_MIXER("Left Line Mixer", SND_SOC_NOPM, 0, 0, &aic3x_left_line_mixer_controls[0], ARRAY_SIZE(aic3x_left_line_mixer_controls)), SND_SOC_DAPM_MIXER("Right Line Mixer", SND_SOC_NOPM, 0, 0, &aic3x_right_line_mixer_controls[0], ARRAY_SIZE(aic3x_right_line_mixer_controls)), SND_SOC_DAPM_MIXER("Left HP Mixer", SND_SOC_NOPM, 0, 0, &aic3x_left_hp_mixer_controls[0], ARRAY_SIZE(aic3x_left_hp_mixer_controls)), SND_SOC_DAPM_MIXER("Right HP Mixer", SND_SOC_NOPM, 0, 0, &aic3x_right_hp_mixer_controls[0], ARRAY_SIZE(aic3x_right_hp_mixer_controls)), SND_SOC_DAPM_MIXER("Left HPCOM Mixer", SND_SOC_NOPM, 0, 0, &aic3x_left_hpcom_mixer_controls[0], ARRAY_SIZE(aic3x_left_hpcom_mixer_controls)), SND_SOC_DAPM_MIXER("Right HPCOM Mixer", SND_SOC_NOPM, 0, 0, &aic3x_right_hpcom_mixer_controls[0], ARRAY_SIZE(aic3x_right_hpcom_mixer_controls)), SND_SOC_DAPM_INPUT("MIC3L"), SND_SOC_DAPM_INPUT("MIC3R"), SND_SOC_DAPM_INPUT("LINE2L"), SND_SOC_DAPM_INPUT("LINE2R"), }; /* For tlv320aic3104 */ static const struct snd_soc_dapm_widget aic3104_extra_dapm_widgets[] = { /* Inputs to Left ADC */ SND_SOC_DAPM_MIXER("Left PGA Mixer", SND_SOC_NOPM, 0, 0, &aic3104_left_pga_mixer_controls[0], ARRAY_SIZE(aic3104_left_pga_mixer_controls)), /* Inputs to Right ADC */ SND_SOC_DAPM_MIXER("Right PGA Mixer", SND_SOC_NOPM, 0, 0, &aic3104_right_pga_mixer_controls[0], ARRAY_SIZE(aic3104_right_pga_mixer_controls)), /* Output mixers */ SND_SOC_DAPM_MIXER("Left Line Mixer", SND_SOC_NOPM, 0, 0, &aic3x_left_line_mixer_controls[0], ARRAY_SIZE(aic3x_left_line_mixer_controls) - 2), SND_SOC_DAPM_MIXER("Right Line Mixer", SND_SOC_NOPM, 0, 0, &aic3x_right_line_mixer_controls[0], ARRAY_SIZE(aic3x_right_line_mixer_controls) - 2), SND_SOC_DAPM_MIXER("Left HP Mixer", SND_SOC_NOPM, 0, 0, &aic3x_left_hp_mixer_controls[0], ARRAY_SIZE(aic3x_left_hp_mixer_controls) - 2), SND_SOC_DAPM_MIXER("Right HP Mixer", SND_SOC_NOPM, 0, 0, &aic3x_right_hp_mixer_controls[0], ARRAY_SIZE(aic3x_right_hp_mixer_controls) - 2), SND_SOC_DAPM_MIXER("Left HPCOM Mixer", SND_SOC_NOPM, 0, 0, &aic3x_left_hpcom_mixer_controls[0], ARRAY_SIZE(aic3x_left_hpcom_mixer_controls) - 2), SND_SOC_DAPM_MIXER("Right HPCOM Mixer", SND_SOC_NOPM, 0, 0, &aic3x_right_hpcom_mixer_controls[0], ARRAY_SIZE(aic3x_right_hpcom_mixer_controls) - 2), SND_SOC_DAPM_INPUT("MIC2L"), SND_SOC_DAPM_INPUT("MIC2R"), }; static const struct snd_soc_dapm_widget aic3x_dapm_mono_widgets[] = { /* Mono Output */ SND_SOC_DAPM_PGA("Mono Out", MONOLOPM_CTRL, 0, 0, NULL, 0), SND_SOC_DAPM_MIXER("Mono Mixer", SND_SOC_NOPM, 0, 0, &aic3x_mono_mixer_controls[0], ARRAY_SIZE(aic3x_mono_mixer_controls)), SND_SOC_DAPM_OUTPUT("MONO_LOUT"), }; static const struct snd_soc_dapm_widget aic3007_dapm_widgets[] = { /* Class-D outputs */ SND_SOC_DAPM_PGA("Left Class-D Out", CLASSD_CTRL, 3, 0, NULL, 0), SND_SOC_DAPM_PGA("Right Class-D Out", CLASSD_CTRL, 2, 0, NULL, 0), SND_SOC_DAPM_OUTPUT("SPOP"), SND_SOC_DAPM_OUTPUT("SPOM"), }; static const struct snd_soc_dapm_route intercon[] = { /* Left Input */ {"Left Line1L Mux", "single-ended", "LINE1L"}, {"Left Line1L Mux", "differential", "LINE1L"}, {"Left Line1R Mux", "single-ended", "LINE1R"}, {"Left Line1R Mux", "differential", "LINE1R"}, {"Left PGA Mixer", "Line1L Switch", "Left Line1L Mux"}, {"Left PGA Mixer", "Line1R Switch", "Left Line1R Mux"}, {"Left ADC", NULL, "Left PGA Mixer"}, /* Right Input */ {"Right Line1R Mux", "single-ended", "LINE1R"}, {"Right Line1R Mux", "differential", "LINE1R"}, {"Right Line1L Mux", "single-ended", "LINE1L"}, {"Right Line1L Mux", "differential", "LINE1L"}, {"Right PGA Mixer", "Line1L Switch", "Right Line1L Mux"}, {"Right PGA Mixer", "Line1R Switch", "Right Line1R Mux"}, {"Right ADC", NULL, "Right PGA Mixer"}, /* Left DAC Output */ {"Left DAC Mux", "DAC_L1", "Left DAC"}, {"Left DAC Mux", "DAC_L2", "Left DAC"}, {"Left DAC Mux", "DAC_L3", "Left DAC"}, /* Right DAC Output */ {"Right DAC Mux", "DAC_R1", "Right DAC"}, {"Right DAC Mux", "DAC_R2", "Right DAC"}, {"Right DAC Mux", "DAC_R3", "Right DAC"}, /* Left Line Output */ {"Left Line Mixer", "PGAL Bypass Switch", "Left PGA Mixer"}, {"Left Line Mixer", "DACL1 Switch", "Left DAC Mux"}, {"Left Line Mixer", "PGAR Bypass Switch", "Right PGA Mixer"}, {"Left Line Mixer", "DACR1 Switch", "Right DAC Mux"}, {"Left Line Out", NULL, "Left Line Mixer"}, {"Left Line Out", NULL, "Left DAC Mux"}, {"LLOUT", NULL, "Left Line Out"}, /* Right Line Output */ {"Right Line Mixer", "PGAL Bypass Switch", "Left PGA Mixer"}, {"Right Line Mixer", "DACL1 Switch", "Left DAC Mux"}, {"Right Line Mixer", "PGAR Bypass Switch", "Right PGA Mixer"}, {"Right Line Mixer", "DACR1 Switch", "Right DAC Mux"}, {"Right Line Out", NULL, "Right Line Mixer"}, {"Right Line Out", NULL, "Right DAC Mux"}, {"RLOUT", NULL, "Right Line Out"}, /* Left HP Output */ {"Left HP Mixer", "PGAL Bypass Switch", "Left PGA Mixer"}, {"Left HP Mixer", "DACL1 Switch", "Left DAC Mux"}, {"Left HP Mixer", "PGAR Bypass Switch", "Right PGA Mixer"}, {"Left HP Mixer", "DACR1 Switch", "Right DAC Mux"}, {"Left HP Out", NULL, "Left HP Mixer"}, {"Left HP Out", NULL, "Left DAC Mux"}, {"HPLOUT", NULL, "Left HP Out"}, /* Right HP Output */ {"Right HP Mixer", "PGAL Bypass Switch", "Left PGA Mixer"}, {"Right HP Mixer", "DACL1 Switch", "Left DAC Mux"}, {"Right HP Mixer", "PGAR Bypass Switch", "Right PGA Mixer"}, {"Right HP Mixer", "DACR1 Switch", "Right DAC Mux"}, {"Right HP Out", NULL, "Right HP Mixer"}, {"Right HP Out", NULL, "Right DAC Mux"}, {"HPROUT", NULL, "Right HP Out"}, /* Left HPCOM Output */ {"Left HPCOM Mixer", "PGAL Bypass Switch", "Left PGA Mixer"}, {"Left HPCOM Mixer", "DACL1 Switch", "Left DAC Mux"}, {"Left HPCOM Mixer", "PGAR Bypass Switch", "Right PGA Mixer"}, {"Left HPCOM Mixer", "DACR1 Switch", "Right DAC Mux"}, {"Left HPCOM Mux", "differential of HPLOUT", "Left HP Mixer"}, {"Left HPCOM Mux", "constant VCM", "Left HPCOM Mixer"}, {"Left HPCOM Mux", "single-ended", "Left HPCOM Mixer"}, {"Left HP Com", NULL, "Left HPCOM Mux"}, {"HPLCOM", NULL, "Left HP Com"}, /* Right HPCOM Output */ {"Right HPCOM Mixer", "PGAL Bypass Switch", "Left PGA Mixer"}, {"Right HPCOM Mixer", "DACL1 Switch", "Left DAC Mux"}, {"Right HPCOM Mixer", "PGAR Bypass Switch", "Right PGA Mixer"}, {"Right HPCOM Mixer", "DACR1 Switch", "Right DAC Mux"}, {"Right HPCOM Mux", "differential of HPROUT", "Right HP Mixer"}, {"Right HPCOM Mux", "constant VCM", "Right HPCOM Mixer"}, {"Right HPCOM Mux", "single-ended", "Right HPCOM Mixer"}, {"Right HPCOM Mux", "differential of HPLCOM", "Left HPCOM Mixer"}, {"Right HPCOM Mux", "external feedback", "Right HPCOM Mixer"}, {"Right HP Com", NULL, "Right HPCOM Mux"}, {"HPRCOM", NULL, "Right HP Com"}, }; /* For other than tlv320aic3104 */ static const struct snd_soc_dapm_route intercon_extra[] = { /* Left Input */ {"Left Line2L Mux", "single-ended", "LINE2L"}, {"Left Line2L Mux", "differential", "LINE2L"}, {"Left PGA Mixer", "Line2L Switch", "Left Line2L Mux"}, {"Left PGA Mixer", "Mic3L Switch", "MIC3L"}, {"Left PGA Mixer", "Mic3R Switch", "MIC3R"}, {"Left ADC", NULL, "GPIO1 dmic modclk"}, /* Right Input */ {"Right Line2R Mux", "single-ended", "LINE2R"}, {"Right Line2R Mux", "differential", "LINE2R"}, {"Right PGA Mixer", "Line2R Switch", "Right Line2R Mux"}, {"Right PGA Mixer", "Mic3L Switch", "MIC3L"}, {"Right PGA Mixer", "Mic3R Switch", "MIC3R"}, {"Right ADC", NULL, "GPIO1 dmic modclk"}, /* * Logical path between digital mic enable and GPIO1 modulator clock * output function */ {"GPIO1 dmic modclk", NULL, "DMic Rate 128"}, {"GPIO1 dmic modclk", NULL, "DMic Rate 64"}, {"GPIO1 dmic modclk", NULL, "DMic Rate 32"}, /* Left Line Output */ {"Left Line Mixer", "Line2L Bypass Switch", "Left Line2L Mux"}, {"Left Line Mixer", "Line2R Bypass Switch", "Right Line2R Mux"}, /* Right Line Output */ {"Right Line Mixer", "Line2L Bypass Switch", "Left Line2L Mux"}, {"Right Line Mixer", "Line2R Bypass Switch", "Right Line2R Mux"}, /* Left HP Output */ {"Left HP Mixer", "Line2L Bypass Switch", "Left Line2L Mux"}, {"Left HP Mixer", "Line2R Bypass Switch", "Right Line2R Mux"}, /* Right HP Output */ {"Right HP Mixer", "Line2L Bypass Switch", "Left Line2L Mux"}, {"Right HP Mixer", "Line2R Bypass Switch", "Right Line2R Mux"}, /* Left HPCOM Output */ {"Left HPCOM Mixer", "Line2L Bypass Switch", "Left Line2L Mux"}, {"Left HPCOM Mixer", "Line2R Bypass Switch", "Right Line2R Mux"}, /* Right HPCOM Output */ {"Right HPCOM Mixer", "Line2L Bypass Switch", "Left Line2L Mux"}, {"Right HPCOM Mixer", "Line2R Bypass Switch", "Right Line2R Mux"}, }; /* For tlv320aic3104 */ static const struct snd_soc_dapm_route intercon_extra_3104[] = { /* Left Input */ {"Left PGA Mixer", "Mic2L Switch", "MIC2L"}, {"Left PGA Mixer", "Mic2R Switch", "MIC2R"}, /* Right Input */ {"Right PGA Mixer", "Mic2L Switch", "MIC2L"}, {"Right PGA Mixer", "Mic2R Switch", "MIC2R"}, }; static const struct snd_soc_dapm_route intercon_mono[] = { /* Mono Output */ {"Mono Mixer", "Line2L Bypass Switch", "Left Line2L Mux"}, {"Mono Mixer", "PGAL Bypass Switch", "Left PGA Mixer"}, {"Mono Mixer", "DACL1 Switch", "Left DAC Mux"}, {"Mono Mixer", "Line2R Bypass Switch", "Right Line2R Mux"}, {"Mono Mixer", "PGAR Bypass Switch", "Right PGA Mixer"}, {"Mono Mixer", "DACR1 Switch", "Right DAC Mux"}, {"Mono Out", NULL, "Mono Mixer"}, {"MONO_LOUT", NULL, "Mono Out"}, }; static const struct snd_soc_dapm_route intercon_3007[] = { /* Class-D outputs */ {"Left Class-D Out", NULL, "Left Line Out"}, {"Right Class-D Out", NULL, "Left Line Out"}, {"SPOP", NULL, "Left Class-D Out"}, {"SPOM", NULL, "Right Class-D Out"}, }; static int aic3x_add_widgets(struct snd_soc_component *component) { struct aic3x_priv *aic3x = snd_soc_component_get_drvdata(component); struct snd_soc_dapm_context *dapm = snd_soc_component_get_dapm(component); switch (aic3x->model) { case AIC3X_MODEL_3X: case AIC3X_MODEL_33: case AIC3X_MODEL_3106: snd_soc_dapm_new_controls(dapm, aic3x_extra_dapm_widgets, ARRAY_SIZE(aic3x_extra_dapm_widgets)); snd_soc_dapm_add_routes(dapm, intercon_extra, ARRAY_SIZE(intercon_extra)); snd_soc_dapm_new_controls(dapm, aic3x_dapm_mono_widgets, ARRAY_SIZE(aic3x_dapm_mono_widgets)); snd_soc_dapm_add_routes(dapm, intercon_mono, ARRAY_SIZE(intercon_mono)); break; case AIC3X_MODEL_3007: snd_soc_dapm_new_controls(dapm, aic3x_extra_dapm_widgets, ARRAY_SIZE(aic3x_extra_dapm_widgets)); snd_soc_dapm_add_routes(dapm, intercon_extra, ARRAY_SIZE(intercon_extra)); snd_soc_dapm_new_controls(dapm, aic3007_dapm_widgets, ARRAY_SIZE(aic3007_dapm_widgets)); snd_soc_dapm_add_routes(dapm, intercon_3007, ARRAY_SIZE(intercon_3007)); break; case AIC3X_MODEL_3104: snd_soc_dapm_new_controls(dapm, aic3104_extra_dapm_widgets, ARRAY_SIZE(aic3104_extra_dapm_widgets)); snd_soc_dapm_add_routes(dapm, intercon_extra_3104, ARRAY_SIZE(intercon_extra_3104)); break; } return 0; } static int aic3x_hw_params(struct snd_pcm_substream *substream, struct snd_pcm_hw_params *params, struct snd_soc_dai *dai) { struct snd_soc_component *component = dai->component; struct aic3x_priv *aic3x = snd_soc_component_get_drvdata(component); int codec_clk = 0, bypass_pll = 0, fsref, last_clk = 0; u8 data, j, r, p, pll_q, pll_p = 1, pll_r = 1, pll_j = 1; u16 d, pll_d = 1; int clk; int width = aic3x->slot_width; if (!width) width = params_width(params); /* select data word length */ data = snd_soc_component_read(component, AIC3X_ASD_INTF_CTRLB) & (~(0x3 << 4)); switch (width) { case 16: break; case 20: data |= (0x01 << 4); break; case 24: data |= (0x02 << 4); break; case 32: data |= (0x03 << 4); break; } snd_soc_component_write(component, AIC3X_ASD_INTF_CTRLB, data); /* Fsref can be 44100 or 48000 */ fsref = (params_rate(params) % 11025 == 0) ? 44100 : 48000; /* Try to find a value for Q which allows us to bypass the PLL and * generate CODEC_CLK directly. */ for (pll_q = 2; pll_q < 18; pll_q++) if (aic3x->sysclk / (128 * pll_q) == fsref) { bypass_pll = 1; break; } if (bypass_pll) { pll_q &= 0xf; snd_soc_component_write(component, AIC3X_PLL_PROGA_REG, pll_q << PLLQ_SHIFT); snd_soc_component_write(component, AIC3X_GPIOB_REG, CODEC_CLKIN_CLKDIV); /* disable PLL if it is bypassed */ snd_soc_component_update_bits(component, AIC3X_PLL_PROGA_REG, PLL_ENABLE, 0); } else { snd_soc_component_write(component, AIC3X_GPIOB_REG, CODEC_CLKIN_PLLDIV); /* enable PLL when it is used */ snd_soc_component_update_bits(component, AIC3X_PLL_PROGA_REG, PLL_ENABLE, PLL_ENABLE); } /* Route Left DAC to left channel input and * right DAC to right channel input */ data = (LDAC2LCH | RDAC2RCH); data |= (fsref == 44100) ? FSREF_44100 : FSREF_48000; if (params_rate(params) >= 64000) data |= DUAL_RATE_MODE; snd_soc_component_write(component, AIC3X_CODEC_DATAPATH_REG, data); /* codec sample rate select */ data = (fsref * 20) / params_rate(params); if (params_rate(params) < 64000) data /= 2; data /= 5; data -= 2; data |= (data << 4); snd_soc_component_write(component, AIC3X_SAMPLE_RATE_SEL_REG, data); if (bypass_pll) return 0; /* Use PLL, compute appropriate setup for j, d, r and p, the closest * one wins the game. Try with d==0 first, next with d!=0. * Constraints for j are according to the datasheet. * The sysclk is divided by 1000 to prevent integer overflows. */ codec_clk = (2048 * fsref) / (aic3x->sysclk / 1000); for (r = 1; r <= 16; r++) for (p = 1; p <= 8; p++) { for (j = 4; j <= 55; j++) { /* This is actually 1000*((j+(d/10000))*r)/p * The term had to be converted to get * rid of the division by 10000; d = 0 here */ int tmp_clk = (1000 * j * r) / p; /* Check whether this values get closer than * the best ones we had before */ if (abs(codec_clk - tmp_clk) < abs(codec_clk - last_clk)) { pll_j = j; pll_d = 0; pll_r = r; pll_p = p; last_clk = tmp_clk; } /* Early exit for exact matches */ if (tmp_clk == codec_clk) goto found; } } /* try with d != 0 */ for (p = 1; p <= 8; p++) { j = codec_clk * p / 1000; if (j < 4 || j > 11) continue; /* do not use codec_clk here since we'd loose precision */ d = ((2048 * p * fsref) - j * aic3x->sysclk) * 100 / (aic3x->sysclk/100); clk = (10000 * j + d) / (10 * p); /* check whether this values get closer than the best * ones we had before */ if (abs(codec_clk - clk) < abs(codec_clk - last_clk)) { pll_j = j; pll_d = d; pll_r = 1; pll_p = p; last_clk = clk; } /* Early exit for exact matches */ if (clk == codec_clk) goto found; } if (last_clk == 0) { printk(KERN_ERR "%s(): unable to setup PLL\n", __func__); return -EINVAL; } found: snd_soc_component_update_bits(component, AIC3X_PLL_PROGA_REG, PLLP_MASK, pll_p); snd_soc_component_write(component, AIC3X_OVRF_STATUS_AND_PLLR_REG, pll_r << PLLR_SHIFT); snd_soc_component_write(component, AIC3X_PLL_PROGB_REG, pll_j << PLLJ_SHIFT); snd_soc_component_write(component, AIC3X_PLL_PROGC_REG, (pll_d >> 6) << PLLD_MSB_SHIFT); snd_soc_component_write(component, AIC3X_PLL_PROGD_REG, (pll_d & 0x3F) << PLLD_LSB_SHIFT); return 0; } static int aic3x_prepare(struct snd_pcm_substream *substream, struct snd_soc_dai *dai) { struct snd_soc_component *component = dai->component; struct aic3x_priv *aic3x = snd_soc_component_get_drvdata(component); int delay = 0; int width = aic3x->slot_width; if (!width) width = substream->runtime->sample_bits; /* TDM slot selection only valid in DSP_A/_B mode */ if (aic3x->dai_fmt == SND_SOC_DAIFMT_DSP_A) delay += (aic3x->tdm_delay*width + 1); else if (aic3x->dai_fmt == SND_SOC_DAIFMT_DSP_B) delay += aic3x->tdm_delay*width; /* Configure data delay */ snd_soc_component_write(component, AIC3X_ASD_INTF_CTRLC, delay); return 0; } static int aic3x_mute(struct snd_soc_dai *dai, int mute, int direction) { struct snd_soc_component *component = dai->component; u8 ldac_reg = snd_soc_component_read(component, LDAC_VOL) & ~MUTE_ON; u8 rdac_reg = snd_soc_component_read(component, RDAC_VOL) & ~MUTE_ON; if (mute) { snd_soc_component_write(component, LDAC_VOL, ldac_reg | MUTE_ON); snd_soc_component_write(component, RDAC_VOL, rdac_reg | MUTE_ON); } else { snd_soc_component_write(component, LDAC_VOL, ldac_reg); snd_soc_component_write(component, RDAC_VOL, rdac_reg); } return 0; } static int aic3x_set_dai_sysclk(struct snd_soc_dai *codec_dai, int clk_id, unsigned int freq, int dir) { struct snd_soc_component *component = codec_dai->component; struct aic3x_priv *aic3x = snd_soc_component_get_drvdata(component); /* set clock on MCLK or GPIO2 or BCLK */ snd_soc_component_update_bits(component, AIC3X_CLKGEN_CTRL_REG, PLLCLK_IN_MASK, clk_id << PLLCLK_IN_SHIFT); snd_soc_component_update_bits(component, AIC3X_CLKGEN_CTRL_REG, CLKDIV_IN_MASK, clk_id << CLKDIV_IN_SHIFT); aic3x->sysclk = freq; return 0; } static int aic3x_set_dai_fmt(struct snd_soc_dai *codec_dai, unsigned int fmt) { struct snd_soc_component *component = codec_dai->component; struct aic3x_priv *aic3x = snd_soc_component_get_drvdata(component); u8 iface_areg, iface_breg; iface_areg = snd_soc_component_read(component, AIC3X_ASD_INTF_CTRLA) & 0x3f; iface_breg = snd_soc_component_read(component, AIC3X_ASD_INTF_CTRLB) & 0x3f; switch (fmt & SND_SOC_DAIFMT_CLOCK_PROVIDER_MASK) { case SND_SOC_DAIFMT_CBP_CFP: aic3x->master = 1; iface_areg |= BIT_CLK_MASTER | WORD_CLK_MASTER; break; case SND_SOC_DAIFMT_CBC_CFC: aic3x->master = 0; iface_areg &= ~(BIT_CLK_MASTER | WORD_CLK_MASTER); break; case SND_SOC_DAIFMT_CBP_CFC: aic3x->master = 1; iface_areg |= BIT_CLK_MASTER; iface_areg &= ~WORD_CLK_MASTER; break; case SND_SOC_DAIFMT_CBC_CFP: aic3x->master = 1; iface_areg |= WORD_CLK_MASTER; iface_areg &= ~BIT_CLK_MASTER; break; default: return -EINVAL; } /* * match both interface format and signal polarities since they * are fixed */ switch (fmt & (SND_SOC_DAIFMT_FORMAT_MASK | SND_SOC_DAIFMT_INV_MASK)) { case (SND_SOC_DAIFMT_I2S | SND_SOC_DAIFMT_NB_NF): break; case (SND_SOC_DAIFMT_DSP_A | SND_SOC_DAIFMT_IB_NF): case (SND_SOC_DAIFMT_DSP_B | SND_SOC_DAIFMT_IB_NF): iface_breg |= (0x01 << 6); break; case (SND_SOC_DAIFMT_RIGHT_J | SND_SOC_DAIFMT_NB_NF): iface_breg |= (0x02 << 6); break; case (SND_SOC_DAIFMT_LEFT_J | SND_SOC_DAIFMT_NB_NF): iface_breg |= (0x03 << 6); break; default: return -EINVAL; } aic3x->dai_fmt = fmt & SND_SOC_DAIFMT_FORMAT_MASK; /* set iface */ snd_soc_component_write(component, AIC3X_ASD_INTF_CTRLA, iface_areg); snd_soc_component_write(component, AIC3X_ASD_INTF_CTRLB, iface_breg); return 0; } static int aic3x_set_dai_tdm_slot(struct snd_soc_dai *codec_dai, unsigned int tx_mask, unsigned int rx_mask, int slots, int slot_width) { struct snd_soc_component *component = codec_dai->component; struct aic3x_priv *aic3x = snd_soc_component_get_drvdata(component); unsigned int lsb; if (tx_mask != rx_mask) { dev_err(component->dev, "tx and rx masks must be symmetric\n"); return -EINVAL; } if (unlikely(!tx_mask)) { dev_err(component->dev, "tx and rx masks need to be non 0\n"); return -EINVAL; } /* TDM based on DSP mode requires slots to be adjacent */ lsb = __ffs(tx_mask); if ((lsb + 1) != __fls(tx_mask)) { dev_err(component->dev, "Invalid mask, slots must be adjacent\n"); return -EINVAL; } switch (slot_width) { case 16: case 20: case 24: case 32: break; default: dev_err(component->dev, "Unsupported slot width %d\n", slot_width); return -EINVAL; } aic3x->tdm_delay = lsb; aic3x->slot_width = slot_width; /* DOUT in high-impedance on inactive bit clocks */ snd_soc_component_update_bits(component, AIC3X_ASD_INTF_CTRLA, DOUT_TRISTATE, DOUT_TRISTATE); return 0; } static int aic3x_regulator_event(struct notifier_block *nb, unsigned long event, void *data) { struct aic3x_disable_nb *disable_nb = container_of(nb, struct aic3x_disable_nb, nb); struct aic3x_priv *aic3x = disable_nb->aic3x; if (event & REGULATOR_EVENT_DISABLE) { /* * Put codec to reset and require cache sync as at least one * of the supplies was disabled */ if (aic3x->gpio_reset) gpiod_set_value(aic3x->gpio_reset, 1); regcache_mark_dirty(aic3x->regmap); } return 0; } static int aic3x_set_power(struct snd_soc_component *component, int power) { struct aic3x_priv *aic3x = snd_soc_component_get_drvdata(component); unsigned int pll_c, pll_d; int ret; if (power) { ret = regulator_bulk_enable(ARRAY_SIZE(aic3x->supplies), aic3x->supplies); if (ret) goto out; aic3x->power = 1; if (aic3x->gpio_reset) { udelay(1); gpiod_set_value(aic3x->gpio_reset, 0); } /* Sync reg_cache with the hardware */ regcache_cache_only(aic3x->regmap, false); regcache_sync(aic3x->regmap); /* Rewrite paired PLL D registers in case cached sync skipped * writing one of them and thus caused other one also not * being written */ pll_c = snd_soc_component_read(component, AIC3X_PLL_PROGC_REG); pll_d = snd_soc_component_read(component, AIC3X_PLL_PROGD_REG); if (pll_c == aic3x_reg[AIC3X_PLL_PROGC_REG].def || pll_d == aic3x_reg[AIC3X_PLL_PROGD_REG].def) { snd_soc_component_write(component, AIC3X_PLL_PROGC_REG, pll_c); snd_soc_component_write(component, AIC3X_PLL_PROGD_REG, pll_d); } /* * Delay is needed to reduce pop-noise after syncing back the * registers */ mdelay(50); } else { /* * Do soft reset to this codec instance in order to clear * possible VDD leakage currents in case the supply regulators * remain on */ snd_soc_component_write(component, AIC3X_RESET, SOFT_RESET); regcache_mark_dirty(aic3x->regmap); aic3x->power = 0; /* HW writes are needless when bias is off */ regcache_cache_only(aic3x->regmap, true); ret = regulator_bulk_disable(ARRAY_SIZE(aic3x->supplies), aic3x->supplies); } out: return ret; } static int aic3x_set_bias_level(struct snd_soc_component *component, enum snd_soc_bias_level level) { struct aic3x_priv *aic3x = snd_soc_component_get_drvdata(component); switch (level) { case SND_SOC_BIAS_ON: break; case SND_SOC_BIAS_PREPARE: if (snd_soc_component_get_bias_level(component) == SND_SOC_BIAS_STANDBY && aic3x->master) { /* enable pll */ snd_soc_component_update_bits(component, AIC3X_PLL_PROGA_REG, PLL_ENABLE, PLL_ENABLE); } break; case SND_SOC_BIAS_STANDBY: if (!aic3x->power) aic3x_set_power(component, 1); if (snd_soc_component_get_bias_level(component) == SND_SOC_BIAS_PREPARE && aic3x->master) { /* disable pll */ snd_soc_component_update_bits(component, AIC3X_PLL_PROGA_REG, PLL_ENABLE, 0); } break; case SND_SOC_BIAS_OFF: if (aic3x->power) aic3x_set_power(component, 0); break; } return 0; } #define AIC3X_RATES SNDRV_PCM_RATE_8000_96000 #define AIC3X_FORMATS (SNDRV_PCM_FMTBIT_S16_LE | SNDRV_PCM_FMTBIT_S20_3LE | \ SNDRV_PCM_FMTBIT_S24_3LE | SNDRV_PCM_FMTBIT_S24_LE | \ SNDRV_PCM_FMTBIT_S32_LE) static const struct snd_soc_dai_ops aic3x_dai_ops = { .hw_params = aic3x_hw_params, .prepare = aic3x_prepare, .mute_stream = aic3x_mute, .set_sysclk = aic3x_set_dai_sysclk, .set_fmt = aic3x_set_dai_fmt, .set_tdm_slot = aic3x_set_dai_tdm_slot, .no_capture_mute = 1, }; static struct snd_soc_dai_driver aic3x_dai = { .name = "tlv320aic3x-hifi", .playback = { .stream_name = "Playback", .channels_min = 2, .channels_max = 2, .rates = AIC3X_RATES, .formats = AIC3X_FORMATS,}, .capture = { .stream_name = "Capture", .channels_min = 2, .channels_max = 2, .rates = AIC3X_RATES, .formats = AIC3X_FORMATS,}, .ops = &aic3x_dai_ops, .symmetric_rate = 1, }; static void aic3x_mono_init(struct snd_soc_component *component) { /* DAC to Mono Line Out default volume and route to Output mixer */ snd_soc_component_write(component, DACL1_2_MONOLOPM_VOL, DEFAULT_VOL | ROUTE_ON); snd_soc_component_write(component, DACR1_2_MONOLOPM_VOL, DEFAULT_VOL | ROUTE_ON); /* unmute all outputs */ snd_soc_component_update_bits(component, MONOLOPM_CTRL, UNMUTE, UNMUTE); /* PGA to Mono Line Out default volume, disconnect from Output Mixer */ snd_soc_component_write(component, PGAL_2_MONOLOPM_VOL, DEFAULT_VOL); snd_soc_component_write(component, PGAR_2_MONOLOPM_VOL, DEFAULT_VOL); /* Line2 to Mono Out default volume, disconnect from Output Mixer */ snd_soc_component_write(component, LINE2L_2_MONOLOPM_VOL, DEFAULT_VOL); snd_soc_component_write(component, LINE2R_2_MONOLOPM_VOL, DEFAULT_VOL); } /* * initialise the AIC3X driver * register the mixer and dsp interfaces with the kernel */ static int aic3x_init(struct snd_soc_component *component) { struct aic3x_priv *aic3x = snd_soc_component_get_drvdata(component); snd_soc_component_write(component, AIC3X_PAGE_SELECT, PAGE0_SELECT); snd_soc_component_write(component, AIC3X_RESET, SOFT_RESET); /* DAC default volume and mute */ snd_soc_component_write(component, LDAC_VOL, DEFAULT_VOL | MUTE_ON); snd_soc_component_write(component, RDAC_VOL, DEFAULT_VOL | MUTE_ON); /* DAC to HP default volume and route to Output mixer */ snd_soc_component_write(component, DACL1_2_HPLOUT_VOL, DEFAULT_VOL | ROUTE_ON); snd_soc_component_write(component, DACR1_2_HPROUT_VOL, DEFAULT_VOL | ROUTE_ON); snd_soc_component_write(component, DACL1_2_HPLCOM_VOL, DEFAULT_VOL | ROUTE_ON); snd_soc_component_write(component, DACR1_2_HPRCOM_VOL, DEFAULT_VOL | ROUTE_ON); /* DAC to Line Out default volume and route to Output mixer */ snd_soc_component_write(component, DACL1_2_LLOPM_VOL, DEFAULT_VOL | ROUTE_ON); snd_soc_component_write(component, DACR1_2_RLOPM_VOL, DEFAULT_VOL | ROUTE_ON); /* unmute all outputs */ snd_soc_component_update_bits(component, LLOPM_CTRL, UNMUTE, UNMUTE); snd_soc_component_update_bits(component, RLOPM_CTRL, UNMUTE, UNMUTE); snd_soc_component_update_bits(component, HPLOUT_CTRL, UNMUTE, UNMUTE); snd_soc_component_update_bits(component, HPROUT_CTRL, UNMUTE, UNMUTE); snd_soc_component_update_bits(component, HPLCOM_CTRL, UNMUTE, UNMUTE); snd_soc_component_update_bits(component, HPRCOM_CTRL, UNMUTE, UNMUTE); /* ADC default volume and unmute */ snd_soc_component_write(component, LADC_VOL, DEFAULT_GAIN); snd_soc_component_write(component, RADC_VOL, DEFAULT_GAIN); /* By default route Line1 to ADC PGA mixer */ snd_soc_component_write(component, LINE1L_2_LADC_CTRL, 0x0); snd_soc_component_write(component, LINE1R_2_RADC_CTRL, 0x0); /* PGA to HP Bypass default volume, disconnect from Output Mixer */ snd_soc_component_write(component, PGAL_2_HPLOUT_VOL, DEFAULT_VOL); snd_soc_component_write(component, PGAR_2_HPROUT_VOL, DEFAULT_VOL); snd_soc_component_write(component, PGAL_2_HPLCOM_VOL, DEFAULT_VOL); snd_soc_component_write(component, PGAR_2_HPRCOM_VOL, DEFAULT_VOL); /* PGA to Line Out default volume, disconnect from Output Mixer */ snd_soc_component_write(component, PGAL_2_LLOPM_VOL, DEFAULT_VOL); snd_soc_component_write(component, PGAR_2_RLOPM_VOL, DEFAULT_VOL); /* On tlv320aic3104, these registers are reserved and must not be written */ if (aic3x->model != AIC3X_MODEL_3104) { /* Line2 to HP Bypass default volume, disconnect from Output Mixer */ snd_soc_component_write(component, LINE2L_2_HPLOUT_VOL, DEFAULT_VOL); snd_soc_component_write(component, LINE2R_2_HPROUT_VOL, DEFAULT_VOL); snd_soc_component_write(component, LINE2L_2_HPLCOM_VOL, DEFAULT_VOL); snd_soc_component_write(component, LINE2R_2_HPRCOM_VOL, DEFAULT_VOL); /* Line2 Line Out default volume, disconnect from Output Mixer */ snd_soc_component_write(component, LINE2L_2_LLOPM_VOL, DEFAULT_VOL); snd_soc_component_write(component, LINE2R_2_RLOPM_VOL, DEFAULT_VOL); } switch (aic3x->model) { case AIC3X_MODEL_3X: case AIC3X_MODEL_33: case AIC3X_MODEL_3106: aic3x_mono_init(component); break; case AIC3X_MODEL_3007: snd_soc_component_write(component, CLASSD_CTRL, 0); break; } /* Output common-mode voltage = 1.5 V */ snd_soc_component_update_bits(component, HPOUT_SC, HPOUT_SC_OCMV_MASK, aic3x->ocmv << HPOUT_SC_OCMV_SHIFT); return 0; } static int aic3x_component_probe(struct snd_soc_component *component) { struct aic3x_priv *aic3x = snd_soc_component_get_drvdata(component); int ret, i; aic3x->component = component; for (i = 0; i < ARRAY_SIZE(aic3x->supplies); i++) { aic3x->disable_nb[i].nb.notifier_call = aic3x_regulator_event; aic3x->disable_nb[i].aic3x = aic3x; ret = devm_regulator_register_notifier( aic3x->supplies[i].consumer, &aic3x->disable_nb[i].nb); if (ret) { dev_err(component->dev, "Failed to request regulator notifier: %d\n", ret); return ret; } } regcache_mark_dirty(aic3x->regmap); aic3x_init(component); if (aic3x->setup) { if (aic3x->model != AIC3X_MODEL_3104) { /* setup GPIO functions */ snd_soc_component_write(component, AIC3X_GPIO1_REG, (aic3x->setup->gpio_func[0] & 0xf) << 4); snd_soc_component_write(component, AIC3X_GPIO2_REG, (aic3x->setup->gpio_func[1] & 0xf) << 4); } else { dev_warn(component->dev, "GPIO functionality is not supported on tlv320aic3104\n"); } } switch (aic3x->model) { case AIC3X_MODEL_3X: case AIC3X_MODEL_33: case AIC3X_MODEL_3106: snd_soc_add_component_controls(component, aic3x_extra_snd_controls, ARRAY_SIZE(aic3x_extra_snd_controls)); snd_soc_add_component_controls(component, aic3x_mono_controls, ARRAY_SIZE(aic3x_mono_controls)); break; case AIC3X_MODEL_3007: snd_soc_add_component_controls(component, aic3x_extra_snd_controls, ARRAY_SIZE(aic3x_extra_snd_controls)); snd_soc_add_component_controls(component, &aic3x_classd_amp_gain_ctrl, 1); break; case AIC3X_MODEL_3104: break; } /* set mic bias voltage */ switch (aic3x->micbias_vg) { case AIC3X_MICBIAS_2_0V: case AIC3X_MICBIAS_2_5V: case AIC3X_MICBIAS_AVDDV: snd_soc_component_update_bits(component, MICBIAS_CTRL, MICBIAS_LEVEL_MASK, (aic3x->micbias_vg) << MICBIAS_LEVEL_SHIFT); break; case AIC3X_MICBIAS_OFF: /* * noting to do. target won't enter here. This is just to avoid * compile time warning "warning: enumeration value * 'AIC3X_MICBIAS_OFF' not handled in switch" */ break; } aic3x_add_widgets(component); return 0; } static const struct snd_soc_component_driver soc_component_dev_aic3x = { .set_bias_level = aic3x_set_bias_level, .probe = aic3x_component_probe, .controls = aic3x_snd_controls, .num_controls = ARRAY_SIZE(aic3x_snd_controls), .dapm_widgets = aic3x_dapm_widgets, .num_dapm_widgets = ARRAY_SIZE(aic3x_dapm_widgets), .dapm_routes = intercon, .num_dapm_routes = ARRAY_SIZE(intercon), .use_pmdown_time = 1, .endianness = 1, }; static void aic3x_configure_ocmv(struct device *dev, struct aic3x_priv *aic3x) { struct device_node *np = dev->of_node; u32 value; int dvdd, avdd; if (np && !of_property_read_u32(np, "ai3x-ocmv", &value)) { /* OCMV setting is forced by DT */ if (value <= 3) { aic3x->ocmv = value; return; } } dvdd = regulator_get_voltage(aic3x->supplies[1].consumer); avdd = regulator_get_voltage(aic3x->supplies[2].consumer); if (avdd > 3600000 || dvdd > 1950000) { dev_warn(dev, "Too high supply voltage(s) AVDD: %d, DVDD: %d\n", avdd, dvdd); } else if (avdd == 3600000 && dvdd == 1950000) { aic3x->ocmv = HPOUT_SC_OCMV_1_8V; } else if (avdd > 3300000 && dvdd > 1800000) { aic3x->ocmv = HPOUT_SC_OCMV_1_65V; } else if (avdd > 3000000 && dvdd > 1650000) { aic3x->ocmv = HPOUT_SC_OCMV_1_5V; } else if (avdd >= 2700000 && dvdd >= 1525000) { aic3x->ocmv = HPOUT_SC_OCMV_1_35V; } else { dev_warn(dev, "Invalid supply voltage(s) AVDD: %d, DVDD: %d\n", avdd, dvdd); } } static const struct reg_sequence aic3007_class_d[] = { /* Class-D speaker driver init; datasheet p. 46 */ { AIC3X_PAGE_SELECT, 0x0D }, { 0xD, 0x0D }, { 0x8, 0x5C }, { 0x8, 0x5D }, { 0x8, 0x5C }, { AIC3X_PAGE_SELECT, 0x00 }, }; int aic3x_probe(struct device *dev, struct regmap *regmap, kernel_ulong_t driver_data) { struct aic3x_priv *aic3x; struct aic3x_setup_data *ai3x_setup; struct device_node *np = dev->of_node; int ret, i; u32 value; aic3x = devm_kzalloc(dev, sizeof(struct aic3x_priv), GFP_KERNEL); if (!aic3x) return -ENOMEM; aic3x->regmap = regmap; if (IS_ERR(aic3x->regmap)) { ret = PTR_ERR(aic3x->regmap); return ret; } regcache_cache_only(aic3x->regmap, true); dev_set_drvdata(dev, aic3x); if (np) { ai3x_setup = devm_kzalloc(dev, sizeof(*ai3x_setup), GFP_KERNEL); if (!ai3x_setup) return -ENOMEM; if (of_property_read_u32_array(np, "ai3x-gpio-func", ai3x_setup->gpio_func, 2) >= 0) { aic3x->setup = ai3x_setup; } if (!of_property_read_u32(np, "ai3x-micbias-vg", &value)) { switch (value) { case 1 : aic3x->micbias_vg = AIC3X_MICBIAS_2_0V; break; case 2 : aic3x->micbias_vg = AIC3X_MICBIAS_2_5V; break; case 3 : aic3x->micbias_vg = AIC3X_MICBIAS_AVDDV; break; default : aic3x->micbias_vg = AIC3X_MICBIAS_OFF; dev_err(dev, "Unsuitable MicBias voltage " "found in DT\n"); } } else { aic3x->micbias_vg = AIC3X_MICBIAS_OFF; } } aic3x->model = driver_data; aic3x->gpio_reset = devm_gpiod_get_optional(dev, "reset", GPIOD_OUT_HIGH); ret = PTR_ERR_OR_ZERO(aic3x->gpio_reset); if (ret) { if (ret != -EBUSY) return ret; /* * Apparently there are setups where the codec is sharing * its reset line. Try to get it non-exclusively, although * the utility of this is unclear: how do we make sure that * resetting one chip will not disturb the others that share * the same line? */ aic3x->gpio_reset = devm_gpiod_get(dev, "reset", GPIOD_ASIS | GPIOD_FLAGS_BIT_NONEXCLUSIVE); ret = PTR_ERR_OR_ZERO(aic3x->gpio_reset); if (ret) return ret; aic3x->shared_reset = true; } gpiod_set_consumer_name(aic3x->gpio_reset, "tlv320aic3x reset"); for (i = 0; i < ARRAY_SIZE(aic3x->supplies); i++) aic3x->supplies[i].supply = aic3x_supply_names[i]; ret = devm_regulator_bulk_get(dev, ARRAY_SIZE(aic3x->supplies), aic3x->supplies); if (ret) { dev_err(dev, "Failed to request supplies: %d\n", ret); return ret; } aic3x_configure_ocmv(dev, aic3x); if (aic3x->model == AIC3X_MODEL_3007) { ret = regmap_register_patch(aic3x->regmap, aic3007_class_d, ARRAY_SIZE(aic3007_class_d)); if (ret != 0) dev_err(dev, "Failed to init class D: %d\n", ret); } ret = devm_snd_soc_register_component(dev, &soc_component_dev_aic3x, &aic3x_dai, 1); if (ret) return ret; return 0; } EXPORT_SYMBOL(aic3x_probe); void aic3x_remove(struct device *dev) { struct aic3x_priv *aic3x = dev_get_drvdata(dev); /* Leave the codec in reset state */ if (aic3x->gpio_reset && !aic3x->shared_reset) gpiod_set_value(aic3x->gpio_reset, 1); } EXPORT_SYMBOL(aic3x_remove); MODULE_DESCRIPTION("ASoC TLV320AIC3X codec driver"); MODULE_AUTHOR("Vladimir Barinov"); MODULE_LICENSE("GPL");
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1