Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Paweł Anikiel | 1516 | 99.28% | 1 | 50.00% |
Kuninori Morimoto | 11 | 0.72% | 1 | 50.00% |
Total | 1527 | 2 |
// SPDX-License-Identifier: GPL-2.0-only #include <linux/module.h> #include <linux/of.h> #include <linux/platform_device.h> #include <sound/soc.h> /* * The I2S interface consists of two ring buffers - one for RX and one for * TX. A ring buffer has a producer index and a consumer index. Depending * on which way the data is flowing, either the software or the hardware * writes data and updates the producer index, and the other end reads data * and updates the consumer index. * * The pointer managed by software is updated using the .ack callback * (see chv3_dma_ack). This seems to be the only way to reliably obtain * the appl_ptr from within the driver and pass it to hardware. * * Because of the two pointer design, the ring buffer can never be full. With * capture this isn't a problem, because the hardware being the producer * will wait for the consumer index to move out of the way. With playback, * however, this is problematic, because ALSA wants to fill up the buffer * completely when waiting for hardware. In the .ack callback, the driver * would have to wait for the consumer index to move out of the way by * busy-waiting, which would keep stalling the kernel for quite a long time. * * The workaround to this problem is to "lie" to ALSA that the hw_pointer * is one frame behind what it actually is (see chv3_dma_pointer). This * way, ALSA will not try to fill up the entire buffer, and all callbacks * are wait-free. */ #define I2S_TX_ENABLE 0x00 #define I2S_TX_BASE_ADDR 0x04 #define I2S_TX_BUFFER_SIZE 0x08 #define I2S_TX_PRODUCER_IDX 0x0c #define I2S_TX_CONSUMER_IDX 0x10 #define I2S_RX_ENABLE 0x14 #define I2S_RX_BASE_ADDR 0x18 #define I2S_RX_BUFFER_SIZE 0x1c #define I2S_RX_PRODUCER_IDX 0x20 #define I2S_RX_CONSUMER_IDX 0x24 #define I2S_SOFT_RESET 0x2c #define I2S_SOFT_RESET_RX_BIT 0x1 #define I2S_SOFT_RESET_TX_BIT 0x2 #define I2S_RX_IRQ 0x4c #define I2S_RX_IRQ_CONST 0x50 #define I2S_TX_IRQ 0x54 #define I2S_TX_IRQ_CONST 0x58 #define I2S_IRQ_MASK 0x8 #define I2S_IRQ_CLR 0xc #define I2S_IRQ_RX_BIT 0x1 #define I2S_IRQ_TX_BIT 0x2 #define I2S_MAX_BUFFER_SIZE 0x200000 struct chv3_i2s_dev { struct device *dev; void __iomem *iobase; void __iomem *iobase_irq; struct snd_pcm_substream *rx_substream; struct snd_pcm_substream *tx_substream; int tx_bytes_to_fetch; }; static struct snd_soc_dai_driver chv3_i2s_dai = { .name = "chv3-i2s", .capture = { .channels_min = 1, .channels_max = 128, .rates = SNDRV_PCM_RATE_CONTINUOUS, .rate_min = 8000, .rate_max = 96000, .formats = SNDRV_PCM_FMTBIT_S32_LE, }, .playback = { .channels_min = 1, .channels_max = 128, .rates = SNDRV_PCM_RATE_CONTINUOUS, .rate_min = 8000, .rate_max = 96000, .formats = SNDRV_PCM_FMTBIT_S32_LE, }, }; static const struct snd_pcm_hardware chv3_dma_hw = { .info = SNDRV_PCM_INFO_INTERLEAVED | SNDRV_PCM_INFO_MMAP | SNDRV_PCM_INFO_MMAP_VALID | SNDRV_PCM_INFO_BLOCK_TRANSFER, .buffer_bytes_max = I2S_MAX_BUFFER_SIZE, .period_bytes_min = 64, .period_bytes_max = 8192, .periods_min = 4, .periods_max = 256, }; static inline void chv3_i2s_wr(struct chv3_i2s_dev *i2s, int offset, u32 val) { writel(val, i2s->iobase + offset); } static inline u32 chv3_i2s_rd(struct chv3_i2s_dev *i2s, int offset) { return readl(i2s->iobase + offset); } static irqreturn_t chv3_i2s_isr(int irq, void *data) { struct chv3_i2s_dev *i2s = data; u32 reg; reg = readl(i2s->iobase_irq + I2S_IRQ_CLR); if (!reg) return IRQ_NONE; if (reg & I2S_IRQ_RX_BIT) snd_pcm_period_elapsed(i2s->rx_substream); if (reg & I2S_IRQ_TX_BIT) snd_pcm_period_elapsed(i2s->tx_substream); writel(reg, i2s->iobase_irq + I2S_IRQ_CLR); return IRQ_HANDLED; } static int chv3_dma_open(struct snd_soc_component *component, struct snd_pcm_substream *substream) { struct snd_soc_pcm_runtime *rtd = snd_soc_substream_to_rtd(substream); struct chv3_i2s_dev *i2s = snd_soc_dai_get_drvdata(snd_soc_rtd_to_cpu(rtd, 0)); int res; snd_soc_set_runtime_hwparams(substream, &chv3_dma_hw); res = snd_pcm_hw_constraint_pow2(substream->runtime, 0, SNDRV_PCM_HW_PARAM_BUFFER_BYTES); if (res) return res; if (substream->stream == SNDRV_PCM_STREAM_CAPTURE) i2s->rx_substream = substream; else i2s->tx_substream = substream; return 0; } static int chv3_dma_close(struct snd_soc_component *component, struct snd_pcm_substream *substream) { struct snd_soc_pcm_runtime *rtd = snd_soc_substream_to_rtd(substream); struct chv3_i2s_dev *i2s = snd_soc_dai_get_drvdata(snd_soc_rtd_to_cpu(rtd, 0)); if (substream->pstr->stream == SNDRV_PCM_STREAM_CAPTURE) chv3_i2s_wr(i2s, I2S_RX_ENABLE, 0); else chv3_i2s_wr(i2s, I2S_TX_ENABLE, 0); return 0; } static int chv3_dma_pcm_construct(struct snd_soc_component *component, struct snd_soc_pcm_runtime *rtd) { struct chv3_i2s_dev *i2s = snd_soc_dai_get_drvdata(snd_soc_rtd_to_cpu(rtd, 0)); struct snd_pcm_substream *substream; int res; substream = rtd->pcm->streams[SNDRV_PCM_STREAM_PLAYBACK].substream; if (substream) { res = snd_dma_alloc_pages(SNDRV_DMA_TYPE_DEV, i2s->dev, I2S_MAX_BUFFER_SIZE, &substream->dma_buffer); if (res) return res; } substream = rtd->pcm->streams[SNDRV_PCM_STREAM_CAPTURE].substream; if (substream) { res = snd_dma_alloc_pages(SNDRV_DMA_TYPE_DEV, i2s->dev, I2S_MAX_BUFFER_SIZE, &substream->dma_buffer); if (res) return res; } return 0; } static int chv3_dma_hw_params(struct snd_soc_component *component, struct snd_pcm_substream *substream, struct snd_pcm_hw_params *params) { snd_pcm_set_runtime_buffer(substream, &substream->dma_buffer); return 0; } static int chv3_dma_prepare(struct snd_soc_component *component, struct snd_pcm_substream *substream) { struct snd_soc_pcm_runtime *rtd = snd_soc_substream_to_rtd(substream); struct chv3_i2s_dev *i2s = snd_soc_dai_get_drvdata(snd_soc_rtd_to_cpu(rtd, 0)); unsigned int buffer_bytes, period_bytes, period_size; buffer_bytes = snd_pcm_lib_buffer_bytes(substream); period_bytes = snd_pcm_lib_period_bytes(substream); period_size = substream->runtime->period_size; if (substream->pstr->stream == SNDRV_PCM_STREAM_CAPTURE) { chv3_i2s_wr(i2s, I2S_SOFT_RESET, I2S_SOFT_RESET_RX_BIT); chv3_i2s_wr(i2s, I2S_RX_BASE_ADDR, substream->dma_buffer.addr); chv3_i2s_wr(i2s, I2S_RX_BUFFER_SIZE, buffer_bytes); chv3_i2s_wr(i2s, I2S_RX_IRQ, (period_size << 8) | 1); chv3_i2s_wr(i2s, I2S_RX_ENABLE, 1); } else { chv3_i2s_wr(i2s, I2S_SOFT_RESET, I2S_SOFT_RESET_TX_BIT); chv3_i2s_wr(i2s, I2S_TX_BASE_ADDR, substream->dma_buffer.addr); chv3_i2s_wr(i2s, I2S_TX_BUFFER_SIZE, buffer_bytes); chv3_i2s_wr(i2s, I2S_TX_IRQ, ((period_bytes / i2s->tx_bytes_to_fetch) << 8) | 1); chv3_i2s_wr(i2s, I2S_TX_ENABLE, 1); } writel(I2S_IRQ_RX_BIT | I2S_IRQ_TX_BIT, i2s->iobase_irq + I2S_IRQ_MASK); return 0; } static snd_pcm_uframes_t chv3_dma_pointer(struct snd_soc_component *component, struct snd_pcm_substream *substream) { struct snd_soc_pcm_runtime *rtd = snd_soc_substream_to_rtd(substream); struct chv3_i2s_dev *i2s = snd_soc_dai_get_drvdata(snd_soc_rtd_to_cpu(rtd, 0)); u32 frame_bytes, buffer_bytes; u32 idx_bytes; frame_bytes = substream->runtime->frame_bits * 8; buffer_bytes = snd_pcm_lib_buffer_bytes(substream); if (substream->pstr->stream == SNDRV_PCM_STREAM_CAPTURE) { idx_bytes = chv3_i2s_rd(i2s, I2S_RX_PRODUCER_IDX); } else { idx_bytes = chv3_i2s_rd(i2s, I2S_TX_CONSUMER_IDX); /* lag the pointer by one frame */ idx_bytes = (idx_bytes - frame_bytes) & (buffer_bytes - 1); } return bytes_to_frames(substream->runtime, idx_bytes); } static int chv3_dma_ack(struct snd_soc_component *component, struct snd_pcm_substream *substream) { struct snd_pcm_runtime *runtime = substream->runtime; struct snd_soc_pcm_runtime *rtd = snd_soc_substream_to_rtd(substream); struct chv3_i2s_dev *i2s = snd_soc_dai_get_drvdata(snd_soc_rtd_to_cpu(rtd, 0)); unsigned int bytes, idx; bytes = frames_to_bytes(runtime, runtime->control->appl_ptr); idx = bytes & (snd_pcm_lib_buffer_bytes(substream) - 1); if (substream->pstr->stream == SNDRV_PCM_STREAM_CAPTURE) chv3_i2s_wr(i2s, I2S_RX_CONSUMER_IDX, idx); else chv3_i2s_wr(i2s, I2S_TX_PRODUCER_IDX, idx); return 0; } static const struct snd_soc_component_driver chv3_i2s_comp = { .name = "chv3-i2s-comp", .open = chv3_dma_open, .close = chv3_dma_close, .pcm_construct = chv3_dma_pcm_construct, .hw_params = chv3_dma_hw_params, .prepare = chv3_dma_prepare, .pointer = chv3_dma_pointer, .ack = chv3_dma_ack, }; static int chv3_i2s_probe(struct platform_device *pdev) { struct chv3_i2s_dev *i2s; int res; int irq; i2s = devm_kzalloc(&pdev->dev, sizeof(*i2s), GFP_KERNEL); if (!i2s) return -ENOMEM; i2s->iobase = devm_platform_ioremap_resource(pdev, 0); if (IS_ERR(i2s->iobase)) return PTR_ERR(i2s->iobase); i2s->iobase_irq = devm_platform_ioremap_resource(pdev, 1); if (IS_ERR(i2s->iobase_irq)) return PTR_ERR(i2s->iobase_irq); i2s->tx_bytes_to_fetch = (chv3_i2s_rd(i2s, I2S_TX_IRQ_CONST) >> 8) & 0xffff; i2s->dev = &pdev->dev; dev_set_drvdata(&pdev->dev, i2s); irq = platform_get_irq(pdev, 0); if (irq < 0) return -ENXIO; res = devm_request_irq(i2s->dev, irq, chv3_i2s_isr, 0, "chv3-i2s", i2s); if (res) return res; res = devm_snd_soc_register_component(&pdev->dev, &chv3_i2s_comp, &chv3_i2s_dai, 1); if (res) { dev_err(&pdev->dev, "couldn't register component: %d\n", res); return res; } return 0; } static const struct of_device_id chv3_i2s_of_match[] = { { .compatible = "google,chv3-i2s" }, {}, }; static struct platform_driver chv3_i2s_driver = { .probe = chv3_i2s_probe, .driver = { .name = "chv3-i2s", .of_match_table = chv3_i2s_of_match, }, }; module_platform_driver(chv3_i2s_driver); MODULE_AUTHOR("Pawel Anikiel <pan@semihalf.com>"); MODULE_DESCRIPTION("Chameleon v3 I2S interface"); MODULE_LICENSE("GPL");
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1