Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Jeeja KP | 3913 | 63.86% | 24 | 28.24% |
Szymon Mielczarek | 404 | 6.59% | 1 | 1.18% |
Dharageswari R | 293 | 4.78% | 8 | 9.41% |
Ramesh Babu K V | 276 | 4.50% | 2 | 2.35% |
Pradeep Tewani | 226 | 3.69% | 3 | 3.53% |
Cezary Rojewski | 161 | 2.63% | 4 | 4.71% |
Guneshwor Singh | 154 | 2.51% | 3 | 3.53% |
Hardik T Shah | 140 | 2.28% | 2 | 2.35% |
Subhransu S. Prusty | 130 | 2.12% | 5 | 5.88% |
Vinod Koul | 80 | 1.31% | 7 | 8.24% |
Pawel Harlozinski | 64 | 1.04% | 1 | 1.18% |
Jayachandran B | 60 | 0.98% | 1 | 1.18% |
Rakesh A Ughreja | 42 | 0.69% | 1 | 1.18% |
Amadeusz Sławiński | 26 | 0.42% | 4 | 4.71% |
Pardha Saradhi K | 24 | 0.39% | 1 | 1.18% |
Shreyas NC | 23 | 0.38% | 1 | 1.18% |
Takashi Iwai | 19 | 0.31% | 2 | 2.35% |
Kareem Shaik | 15 | 0.24% | 1 | 1.18% |
Jaikrishna Nemallapudi | 15 | 0.24% | 1 | 1.18% |
Sanyog Kale | 13 | 0.21% | 1 | 1.18% |
Omair Mohammed Abdullah | 12 | 0.20% | 1 | 1.18% |
Senthilnathan Veppur | 8 | 0.13% | 1 | 1.18% |
G Kranthi | 7 | 0.11% | 1 | 1.18% |
Sriram Periyasamy | 5 | 0.08% | 1 | 1.18% |
Jenny TC | 4 | 0.07% | 1 | 1.18% |
Guenter Roeck | 3 | 0.05% | 1 | 1.18% |
Pierre-Louis Bossart | 3 | 0.05% | 1 | 1.18% |
GuruprasadX Pawse | 2 | 0.03% | 1 | 1.18% |
Thomas Gleixner | 2 | 0.03% | 1 | 1.18% |
Colin Ian King | 1 | 0.02% | 1 | 1.18% |
Abhijeet Kumar | 1 | 0.02% | 1 | 1.18% |
Vedang Patel | 1 | 0.02% | 1 | 1.18% |
Total | 6127 | 85 |
// SPDX-License-Identifier: GPL-2.0-only /* * skl-message.c - HDA DSP interface for FW registration, Pipe and Module * configurations * * Copyright (C) 2015 Intel Corp * Author:Rafal Redzimski <rafal.f.redzimski@intel.com> * Jeeja KP <jeeja.kp@intel.com> * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ */ #include <linux/slab.h> #include <linux/pci.h> #include <sound/core.h> #include <sound/pcm.h> #include <uapi/sound/skl-tplg-interface.h> #include "skl-sst-dsp.h" #include "cnl-sst-dsp.h" #include "skl-sst-ipc.h" #include "skl.h" #include "../common/sst-dsp.h" #include "../common/sst-dsp-priv.h" #include "skl-topology.h" static int skl_alloc_dma_buf(struct device *dev, struct snd_dma_buffer *dmab, size_t size) { return snd_dma_alloc_pages(SNDRV_DMA_TYPE_DEV, dev, size, dmab); } static int skl_free_dma_buf(struct device *dev, struct snd_dma_buffer *dmab) { snd_dma_free_pages(dmab); return 0; } #define SKL_ASTATE_PARAM_ID 4 void skl_dsp_set_astate_cfg(struct skl_dev *skl, u32 cnt, void *data) { struct skl_ipc_large_config_msg msg = {0}; msg.large_param_id = SKL_ASTATE_PARAM_ID; msg.param_data_size = (cnt * sizeof(struct skl_astate_param) + sizeof(cnt)); skl_ipc_set_large_config(&skl->ipc, &msg, data); } static int skl_dsp_setup_spib(struct device *dev, unsigned int size, int stream_tag, int enable) { struct hdac_bus *bus = dev_get_drvdata(dev); struct hdac_stream *stream = snd_hdac_get_stream(bus, SNDRV_PCM_STREAM_PLAYBACK, stream_tag); if (!stream) return -EINVAL; /* enable/disable SPIB for this hdac stream */ snd_hdac_stream_spbcap_enable(bus, enable, stream->index); /* set the spib value */ snd_hdac_stream_set_spib(bus, stream, size); return 0; } static int skl_dsp_prepare(struct device *dev, unsigned int format, unsigned int size, struct snd_dma_buffer *dmab) { struct hdac_bus *bus = dev_get_drvdata(dev); struct hdac_ext_stream *estream; struct hdac_stream *stream; struct snd_pcm_substream substream; int ret; if (!bus) return -ENODEV; memset(&substream, 0, sizeof(substream)); substream.stream = SNDRV_PCM_STREAM_PLAYBACK; estream = snd_hdac_ext_stream_assign(bus, &substream, HDAC_EXT_STREAM_TYPE_HOST); if (!estream) return -ENODEV; stream = hdac_stream(estream); /* assign decouple host dma channel */ ret = snd_hdac_dsp_prepare(stream, format, size, dmab); if (ret < 0) return ret; skl_dsp_setup_spib(dev, size, stream->stream_tag, true); return stream->stream_tag; } static int skl_dsp_trigger(struct device *dev, bool start, int stream_tag) { struct hdac_bus *bus = dev_get_drvdata(dev); struct hdac_stream *stream; if (!bus) return -ENODEV; stream = snd_hdac_get_stream(bus, SNDRV_PCM_STREAM_PLAYBACK, stream_tag); if (!stream) return -EINVAL; snd_hdac_dsp_trigger(stream, start); return 0; } static int skl_dsp_cleanup(struct device *dev, struct snd_dma_buffer *dmab, int stream_tag) { struct hdac_bus *bus = dev_get_drvdata(dev); struct hdac_stream *stream; struct hdac_ext_stream *estream; if (!bus) return -ENODEV; stream = snd_hdac_get_stream(bus, SNDRV_PCM_STREAM_PLAYBACK, stream_tag); if (!stream) return -EINVAL; estream = stream_to_hdac_ext_stream(stream); skl_dsp_setup_spib(dev, 0, stream_tag, false); snd_hdac_ext_stream_release(estream, HDAC_EXT_STREAM_TYPE_HOST); snd_hdac_dsp_cleanup(stream, dmab); return 0; } static struct skl_dsp_loader_ops skl_get_loader_ops(void) { struct skl_dsp_loader_ops loader_ops; memset(&loader_ops, 0, sizeof(struct skl_dsp_loader_ops)); loader_ops.alloc_dma_buf = skl_alloc_dma_buf; loader_ops.free_dma_buf = skl_free_dma_buf; return loader_ops; }; static struct skl_dsp_loader_ops bxt_get_loader_ops(void) { struct skl_dsp_loader_ops loader_ops; memset(&loader_ops, 0, sizeof(loader_ops)); loader_ops.alloc_dma_buf = skl_alloc_dma_buf; loader_ops.free_dma_buf = skl_free_dma_buf; loader_ops.prepare = skl_dsp_prepare; loader_ops.trigger = skl_dsp_trigger; loader_ops.cleanup = skl_dsp_cleanup; return loader_ops; }; static const struct skl_dsp_ops dsp_ops[] = { { .id = PCI_DEVICE_ID_INTEL_HDA_SKL_LP, .num_cores = 2, .loader_ops = skl_get_loader_ops, .init = skl_sst_dsp_init, .init_fw = skl_sst_init_fw, .cleanup = skl_sst_dsp_cleanup }, { .id = PCI_DEVICE_ID_INTEL_HDA_KBL_LP, .num_cores = 2, .loader_ops = skl_get_loader_ops, .init = skl_sst_dsp_init, .init_fw = skl_sst_init_fw, .cleanup = skl_sst_dsp_cleanup }, { .id = PCI_DEVICE_ID_INTEL_HDA_APL, .num_cores = 2, .loader_ops = bxt_get_loader_ops, .init = bxt_sst_dsp_init, .init_fw = bxt_sst_init_fw, .cleanup = bxt_sst_dsp_cleanup }, { .id = PCI_DEVICE_ID_INTEL_HDA_GML, .num_cores = 2, .loader_ops = bxt_get_loader_ops, .init = bxt_sst_dsp_init, .init_fw = bxt_sst_init_fw, .cleanup = bxt_sst_dsp_cleanup }, { .id = PCI_DEVICE_ID_INTEL_HDA_CNL_LP, .num_cores = 4, .loader_ops = bxt_get_loader_ops, .init = cnl_sst_dsp_init, .init_fw = cnl_sst_init_fw, .cleanup = cnl_sst_dsp_cleanup }, { .id = PCI_DEVICE_ID_INTEL_HDA_CNL_H, .num_cores = 4, .loader_ops = bxt_get_loader_ops, .init = cnl_sst_dsp_init, .init_fw = cnl_sst_init_fw, .cleanup = cnl_sst_dsp_cleanup }, { .id = PCI_DEVICE_ID_INTEL_HDA_CML_LP, .num_cores = 4, .loader_ops = bxt_get_loader_ops, .init = cnl_sst_dsp_init, .init_fw = cnl_sst_init_fw, .cleanup = cnl_sst_dsp_cleanup }, { .id = PCI_DEVICE_ID_INTEL_HDA_CML_H, .num_cores = 4, .loader_ops = bxt_get_loader_ops, .init = cnl_sst_dsp_init, .init_fw = cnl_sst_init_fw, .cleanup = cnl_sst_dsp_cleanup }, }; const struct skl_dsp_ops *skl_get_dsp_ops(int pci_id) { int i; for (i = 0; i < ARRAY_SIZE(dsp_ops); i++) { if (dsp_ops[i].id == pci_id) return &dsp_ops[i]; } return NULL; } int skl_init_dsp(struct skl_dev *skl) { void __iomem *mmio_base; struct hdac_bus *bus = skl_to_bus(skl); struct skl_dsp_loader_ops loader_ops; int irq = bus->irq; const struct skl_dsp_ops *ops; struct skl_dsp_cores *cores; int ret; /* enable ppcap interrupt */ snd_hdac_ext_bus_ppcap_enable(bus, true); snd_hdac_ext_bus_ppcap_int_enable(bus, true); /* read the BAR of the ADSP MMIO */ mmio_base = pci_ioremap_bar(skl->pci, 4); if (mmio_base == NULL) { dev_err(bus->dev, "ioremap error\n"); return -ENXIO; } ops = skl_get_dsp_ops(skl->pci->device); if (!ops) { ret = -EIO; goto unmap_mmio; } loader_ops = ops->loader_ops(); ret = ops->init(bus->dev, mmio_base, irq, skl->fw_name, loader_ops, &skl); if (ret < 0) goto unmap_mmio; skl->dsp_ops = ops; cores = &skl->cores; cores->count = ops->num_cores; cores->state = kcalloc(cores->count, sizeof(*cores->state), GFP_KERNEL); if (!cores->state) { ret = -ENOMEM; goto unmap_mmio; } cores->usage_count = kcalloc(cores->count, sizeof(*cores->usage_count), GFP_KERNEL); if (!cores->usage_count) { ret = -ENOMEM; goto free_core_state; } dev_dbg(bus->dev, "dsp registration status=%d\n", ret); return 0; free_core_state: kfree(cores->state); unmap_mmio: iounmap(mmio_base); return ret; } int skl_free_dsp(struct skl_dev *skl) { struct hdac_bus *bus = skl_to_bus(skl); /* disable ppcap interrupt */ snd_hdac_ext_bus_ppcap_int_enable(bus, false); skl->dsp_ops->cleanup(bus->dev, skl); kfree(skl->cores.state); kfree(skl->cores.usage_count); if (skl->dsp->addr.lpe) iounmap(skl->dsp->addr.lpe); return 0; } /* * In the case of "suspend_active" i.e, the Audio IP being active * during system suspend, immediately excecute any pending D0i3 work * before suspending. This is needed for the IP to work in low power * mode during system suspend. In the case of normal suspend, cancel * any pending D0i3 work. */ int skl_suspend_late_dsp(struct skl_dev *skl) { struct delayed_work *dwork; if (!skl) return 0; dwork = &skl->d0i3.work; if (dwork->work.func) { if (skl->supend_active) flush_delayed_work(dwork); else cancel_delayed_work_sync(dwork); } return 0; } int skl_suspend_dsp(struct skl_dev *skl) { struct hdac_bus *bus = skl_to_bus(skl); int ret; /* if ppcap is not supported return 0 */ if (!bus->ppcap) return 0; ret = skl_dsp_sleep(skl->dsp); if (ret < 0) return ret; /* disable ppcap interrupt */ snd_hdac_ext_bus_ppcap_int_enable(bus, false); snd_hdac_ext_bus_ppcap_enable(bus, false); return 0; } int skl_resume_dsp(struct skl_dev *skl) { struct hdac_bus *bus = skl_to_bus(skl); int ret; /* if ppcap is not supported return 0 */ if (!bus->ppcap) return 0; /* enable ppcap interrupt */ snd_hdac_ext_bus_ppcap_enable(bus, true); snd_hdac_ext_bus_ppcap_int_enable(bus, true); /* check if DSP 1st boot is done */ if (skl->is_first_boot) return 0; /* * Disable dynamic clock and power gating during firmware * and library download */ skl->enable_miscbdcge(skl->dev, false); skl->clock_power_gating(skl->dev, false); ret = skl_dsp_wake(skl->dsp); skl->enable_miscbdcge(skl->dev, true); skl->clock_power_gating(skl->dev, true); if (ret < 0) return ret; if (skl->cfg.astate_cfg != NULL) { skl_dsp_set_astate_cfg(skl, skl->cfg.astate_cfg->count, skl->cfg.astate_cfg); } return ret; } enum skl_bitdepth skl_get_bit_depth(int params) { switch (params) { case 8: return SKL_DEPTH_8BIT; case 16: return SKL_DEPTH_16BIT; case 24: return SKL_DEPTH_24BIT; case 32: return SKL_DEPTH_32BIT; default: return SKL_DEPTH_INVALID; } } /* * Each module in DSP expects a base module configuration, which consists of * PCM format information, which we calculate in driver and resource values * which are read from widget information passed through topology binary * This is send when we create a module with INIT_INSTANCE IPC msg */ static void skl_set_base_module_format(struct skl_dev *skl, struct skl_module_cfg *mconfig, struct skl_base_cfg *base_cfg) { struct skl_module *module = mconfig->module; struct skl_module_res *res = &module->resources[mconfig->res_idx]; struct skl_module_iface *fmt = &module->formats[mconfig->fmt_idx]; struct skl_module_fmt *format = &fmt->inputs[0].fmt; base_cfg->audio_fmt.number_of_channels = format->channels; base_cfg->audio_fmt.s_freq = format->s_freq; base_cfg->audio_fmt.bit_depth = format->bit_depth; base_cfg->audio_fmt.valid_bit_depth = format->valid_bit_depth; base_cfg->audio_fmt.ch_cfg = format->ch_cfg; base_cfg->audio_fmt.sample_type = format->sample_type; dev_dbg(skl->dev, "bit_depth=%x valid_bd=%x ch_config=%x\n", format->bit_depth, format->valid_bit_depth, format->ch_cfg); base_cfg->audio_fmt.channel_map = format->ch_map; base_cfg->audio_fmt.interleaving = format->interleaving_style; base_cfg->cpc = res->cpc; base_cfg->ibs = res->ibs; base_cfg->obs = res->obs; base_cfg->is_pages = res->is_pages; } static void fill_pin_params(struct skl_audio_data_format *pin_fmt, struct skl_module_fmt *format) { pin_fmt->number_of_channels = format->channels; pin_fmt->s_freq = format->s_freq; pin_fmt->bit_depth = format->bit_depth; pin_fmt->valid_bit_depth = format->valid_bit_depth; pin_fmt->ch_cfg = format->ch_cfg; pin_fmt->sample_type = format->sample_type; pin_fmt->channel_map = format->ch_map; pin_fmt->interleaving = format->interleaving_style; } /* * Any module configuration begins with a base module configuration but * can be followed by a generic extension containing audio format for all * module's pins that are in use. */ static void skl_set_base_ext_module_format(struct skl_dev *skl, struct skl_module_cfg *mconfig, struct skl_base_cfg_ext *base_cfg_ext) { struct skl_module *module = mconfig->module; struct skl_module_pin_resources *pin_res; struct skl_module_iface *fmt = &module->formats[mconfig->fmt_idx]; struct skl_module_res *res = &module->resources[mconfig->res_idx]; struct skl_module_fmt *format; struct skl_pin_format *pin_fmt; char *params; int i; base_cfg_ext->nr_input_pins = res->nr_input_pins; base_cfg_ext->nr_output_pins = res->nr_output_pins; base_cfg_ext->priv_param_length = mconfig->formats_config[SKL_PARAM_INIT].caps_size; for (i = 0; i < res->nr_input_pins; i++) { pin_res = &res->input[i]; pin_fmt = &base_cfg_ext->pins_fmt[i]; pin_fmt->pin_idx = pin_res->pin_index; pin_fmt->buf_size = pin_res->buf_size; format = &fmt->inputs[pin_res->pin_index].fmt; fill_pin_params(&pin_fmt->audio_fmt, format); } for (i = 0; i < res->nr_output_pins; i++) { pin_res = &res->output[i]; pin_fmt = &base_cfg_ext->pins_fmt[res->nr_input_pins + i]; pin_fmt->pin_idx = pin_res->pin_index; pin_fmt->buf_size = pin_res->buf_size; format = &fmt->outputs[pin_res->pin_index].fmt; fill_pin_params(&pin_fmt->audio_fmt, format); } if (!base_cfg_ext->priv_param_length) return; params = (char *)base_cfg_ext + sizeof(struct skl_base_cfg_ext); params += (base_cfg_ext->nr_input_pins + base_cfg_ext->nr_output_pins) * sizeof(struct skl_pin_format); memcpy(params, mconfig->formats_config[SKL_PARAM_INIT].caps, mconfig->formats_config[SKL_PARAM_INIT].caps_size); } /* * Copies copier capabilities into copier module and updates copier module * config size. */ static void skl_copy_copier_caps(struct skl_module_cfg *mconfig, struct skl_cpr_cfg *cpr_mconfig) { if (mconfig->formats_config[SKL_PARAM_INIT].caps_size == 0) return; memcpy(&cpr_mconfig->gtw_cfg.config_data, mconfig->formats_config[SKL_PARAM_INIT].caps, mconfig->formats_config[SKL_PARAM_INIT].caps_size); cpr_mconfig->gtw_cfg.config_length = (mconfig->formats_config[SKL_PARAM_INIT].caps_size) / 4; } #define SKL_NON_GATEWAY_CPR_NODE_ID 0xFFFFFFFF /* * Calculate the gatewat settings required for copier module, type of * gateway and index of gateway to use */ static u32 skl_get_node_id(struct skl_dev *skl, struct skl_module_cfg *mconfig) { union skl_connector_node_id node_id = {0}; union skl_ssp_dma_node ssp_node = {0}; struct skl_pipe_params *params = mconfig->pipe->p_params; switch (mconfig->dev_type) { case SKL_DEVICE_BT: node_id.node.dma_type = (SKL_CONN_SOURCE == mconfig->hw_conn_type) ? SKL_DMA_I2S_LINK_OUTPUT_CLASS : SKL_DMA_I2S_LINK_INPUT_CLASS; node_id.node.vindex = params->host_dma_id + (mconfig->vbus_id << 3); break; case SKL_DEVICE_I2S: node_id.node.dma_type = (SKL_CONN_SOURCE == mconfig->hw_conn_type) ? SKL_DMA_I2S_LINK_OUTPUT_CLASS : SKL_DMA_I2S_LINK_INPUT_CLASS; ssp_node.dma_node.time_slot_index = mconfig->time_slot; ssp_node.dma_node.i2s_instance = mconfig->vbus_id; node_id.node.vindex = ssp_node.val; break; case SKL_DEVICE_DMIC: node_id.node.dma_type = SKL_DMA_DMIC_LINK_INPUT_CLASS; node_id.node.vindex = mconfig->vbus_id + (mconfig->time_slot); break; case SKL_DEVICE_HDALINK: node_id.node.dma_type = (SKL_CONN_SOURCE == mconfig->hw_conn_type) ? SKL_DMA_HDA_LINK_OUTPUT_CLASS : SKL_DMA_HDA_LINK_INPUT_CLASS; node_id.node.vindex = params->link_dma_id; break; case SKL_DEVICE_HDAHOST: node_id.node.dma_type = (SKL_CONN_SOURCE == mconfig->hw_conn_type) ? SKL_DMA_HDA_HOST_OUTPUT_CLASS : SKL_DMA_HDA_HOST_INPUT_CLASS; node_id.node.vindex = params->host_dma_id; break; default: node_id.val = 0xFFFFFFFF; break; } return node_id.val; } static void skl_setup_cpr_gateway_cfg(struct skl_dev *skl, struct skl_module_cfg *mconfig, struct skl_cpr_cfg *cpr_mconfig) { u32 dma_io_buf; struct skl_module_res *res; int res_idx = mconfig->res_idx; cpr_mconfig->gtw_cfg.node_id = skl_get_node_id(skl, mconfig); if (cpr_mconfig->gtw_cfg.node_id == SKL_NON_GATEWAY_CPR_NODE_ID) { cpr_mconfig->cpr_feature_mask = 0; return; } if (skl->nr_modules) { res = &mconfig->module->resources[mconfig->res_idx]; cpr_mconfig->gtw_cfg.dma_buffer_size = res->dma_buffer_size; goto skip_buf_size_calc; } else { res = &mconfig->module->resources[res_idx]; } switch (mconfig->hw_conn_type) { case SKL_CONN_SOURCE: if (mconfig->dev_type == SKL_DEVICE_HDAHOST) dma_io_buf = res->ibs; else dma_io_buf = res->obs; break; case SKL_CONN_SINK: if (mconfig->dev_type == SKL_DEVICE_HDAHOST) dma_io_buf = res->obs; else dma_io_buf = res->ibs; break; default: dev_warn(skl->dev, "wrong connection type: %d\n", mconfig->hw_conn_type); return; } cpr_mconfig->gtw_cfg.dma_buffer_size = mconfig->dma_buffer_size * dma_io_buf; /* fallback to 2ms default value */ if (!cpr_mconfig->gtw_cfg.dma_buffer_size) { if (mconfig->hw_conn_type == SKL_CONN_SOURCE) cpr_mconfig->gtw_cfg.dma_buffer_size = 2 * res->obs; else cpr_mconfig->gtw_cfg.dma_buffer_size = 2 * res->ibs; } skip_buf_size_calc: cpr_mconfig->cpr_feature_mask = 0; cpr_mconfig->gtw_cfg.config_length = 0; skl_copy_copier_caps(mconfig, cpr_mconfig); } #define DMA_CONTROL_ID 5 #define DMA_I2S_BLOB_SIZE 21 int skl_dsp_set_dma_control(struct skl_dev *skl, u32 *caps, u32 caps_size, u32 node_id) { struct skl_dma_control *dma_ctrl; struct skl_ipc_large_config_msg msg = {0}; int err = 0; /* * if blob size zero, then return */ if (caps_size == 0) return 0; msg.large_param_id = DMA_CONTROL_ID; msg.param_data_size = sizeof(struct skl_dma_control) + caps_size; dma_ctrl = kzalloc(msg.param_data_size, GFP_KERNEL); if (dma_ctrl == NULL) return -ENOMEM; dma_ctrl->node_id = node_id; /* * NHLT blob may contain additional configs along with i2s blob. * firmware expects only the i2s blob size as the config_length. * So fix to i2s blob size. * size in dwords. */ dma_ctrl->config_length = DMA_I2S_BLOB_SIZE; memcpy(dma_ctrl->config_data, caps, caps_size); err = skl_ipc_set_large_config(&skl->ipc, &msg, (u32 *)dma_ctrl); kfree(dma_ctrl); return err; } EXPORT_SYMBOL_GPL(skl_dsp_set_dma_control); static void skl_setup_out_format(struct skl_dev *skl, struct skl_module_cfg *mconfig, struct skl_audio_data_format *out_fmt) { struct skl_module *module = mconfig->module; struct skl_module_iface *fmt = &module->formats[mconfig->fmt_idx]; struct skl_module_fmt *format = &fmt->outputs[0].fmt; out_fmt->number_of_channels = (u8)format->channels; out_fmt->s_freq = format->s_freq; out_fmt->bit_depth = format->bit_depth; out_fmt->valid_bit_depth = format->valid_bit_depth; out_fmt->ch_cfg = format->ch_cfg; out_fmt->channel_map = format->ch_map; out_fmt->interleaving = format->interleaving_style; out_fmt->sample_type = format->sample_type; dev_dbg(skl->dev, "copier out format chan=%d fre=%d bitdepth=%d\n", out_fmt->number_of_channels, format->s_freq, format->bit_depth); } /* * DSP needs SRC module for frequency conversion, SRC takes base module * configuration and the target frequency as extra parameter passed as src * config */ static void skl_set_src_format(struct skl_dev *skl, struct skl_module_cfg *mconfig, struct skl_src_module_cfg *src_mconfig) { struct skl_module *module = mconfig->module; struct skl_module_iface *iface = &module->formats[mconfig->fmt_idx]; struct skl_module_fmt *fmt = &iface->outputs[0].fmt; skl_set_base_module_format(skl, mconfig, (struct skl_base_cfg *)src_mconfig); src_mconfig->src_cfg = fmt->s_freq; } /* * DSP needs updown module to do channel conversion. updown module take base * module configuration and channel configuration * It also take coefficients and now we have defaults applied here */ static void skl_set_updown_mixer_format(struct skl_dev *skl, struct skl_module_cfg *mconfig, struct skl_up_down_mixer_cfg *mixer_mconfig) { struct skl_module *module = mconfig->module; struct skl_module_iface *iface = &module->formats[mconfig->fmt_idx]; struct skl_module_fmt *fmt = &iface->outputs[0].fmt; skl_set_base_module_format(skl, mconfig, (struct skl_base_cfg *)mixer_mconfig); mixer_mconfig->out_ch_cfg = fmt->ch_cfg; mixer_mconfig->ch_map = fmt->ch_map; } /* * 'copier' is DSP internal module which copies data from Host DMA (HDA host * dma) or link (hda link, SSP, PDM) * Here we calculate the copier module parameters, like PCM format, output * format, gateway settings * copier_module_config is sent as input buffer with INIT_INSTANCE IPC msg */ static void skl_set_copier_format(struct skl_dev *skl, struct skl_module_cfg *mconfig, struct skl_cpr_cfg *cpr_mconfig) { struct skl_audio_data_format *out_fmt = &cpr_mconfig->out_fmt; struct skl_base_cfg *base_cfg = (struct skl_base_cfg *)cpr_mconfig; skl_set_base_module_format(skl, mconfig, base_cfg); skl_setup_out_format(skl, mconfig, out_fmt); skl_setup_cpr_gateway_cfg(skl, mconfig, cpr_mconfig); } /* * Mic select module allows selecting one or many input channels, thus * acting as a demux. * * Mic select module take base module configuration and out-format * configuration */ static void skl_set_base_outfmt_format(struct skl_dev *skl, struct skl_module_cfg *mconfig, struct skl_base_outfmt_cfg *base_outfmt_mcfg) { struct skl_audio_data_format *out_fmt = &base_outfmt_mcfg->out_fmt; struct skl_base_cfg *base_cfg = (struct skl_base_cfg *)base_outfmt_mcfg; skl_set_base_module_format(skl, mconfig, base_cfg); skl_setup_out_format(skl, mconfig, out_fmt); } static u16 skl_get_module_param_size(struct skl_dev *skl, struct skl_module_cfg *mconfig) { struct skl_module_res *res; struct skl_module *module = mconfig->module; u16 param_size; switch (mconfig->m_type) { case SKL_MODULE_TYPE_COPIER: param_size = sizeof(struct skl_cpr_cfg); param_size += mconfig->formats_config[SKL_PARAM_INIT].caps_size; return param_size; case SKL_MODULE_TYPE_SRCINT: return sizeof(struct skl_src_module_cfg); case SKL_MODULE_TYPE_UPDWMIX: return sizeof(struct skl_up_down_mixer_cfg); case SKL_MODULE_TYPE_BASE_OUTFMT: case SKL_MODULE_TYPE_MIC_SELECT: return sizeof(struct skl_base_outfmt_cfg); case SKL_MODULE_TYPE_MIXER: case SKL_MODULE_TYPE_KPB: return sizeof(struct skl_base_cfg); case SKL_MODULE_TYPE_ALGO: default: res = &module->resources[mconfig->res_idx]; param_size = sizeof(struct skl_base_cfg) + sizeof(struct skl_base_cfg_ext); param_size += (res->nr_input_pins + res->nr_output_pins) * sizeof(struct skl_pin_format); param_size += mconfig->formats_config[SKL_PARAM_INIT].caps_size; return param_size; } return 0; } /* * DSP firmware supports various modules like copier, SRC, updown etc. * These modules required various parameters to be calculated and sent for * the module initialization to DSP. By default a generic module needs only * base module format configuration */ static int skl_set_module_format(struct skl_dev *skl, struct skl_module_cfg *module_config, u16 *module_config_size, void **param_data) { u16 param_size; param_size = skl_get_module_param_size(skl, module_config); *param_data = kzalloc(param_size, GFP_KERNEL); if (NULL == *param_data) return -ENOMEM; *module_config_size = param_size; switch (module_config->m_type) { case SKL_MODULE_TYPE_COPIER: skl_set_copier_format(skl, module_config, *param_data); break; case SKL_MODULE_TYPE_SRCINT: skl_set_src_format(skl, module_config, *param_data); break; case SKL_MODULE_TYPE_UPDWMIX: skl_set_updown_mixer_format(skl, module_config, *param_data); break; case SKL_MODULE_TYPE_BASE_OUTFMT: case SKL_MODULE_TYPE_MIC_SELECT: skl_set_base_outfmt_format(skl, module_config, *param_data); break; case SKL_MODULE_TYPE_MIXER: case SKL_MODULE_TYPE_KPB: skl_set_base_module_format(skl, module_config, *param_data); break; case SKL_MODULE_TYPE_ALGO: default: skl_set_base_module_format(skl, module_config, *param_data); skl_set_base_ext_module_format(skl, module_config, *param_data + sizeof(struct skl_base_cfg)); break; } dev_dbg(skl->dev, "Module type=%d id=%d config size: %d bytes\n", module_config->m_type, module_config->id.module_id, param_size); print_hex_dump_debug("Module params:", DUMP_PREFIX_OFFSET, 8, 4, *param_data, param_size, false); return 0; } static int skl_get_queue_index(struct skl_module_pin *mpin, struct skl_module_inst_id id, int max) { int i; for (i = 0; i < max; i++) { if (mpin[i].id.module_id == id.module_id && mpin[i].id.instance_id == id.instance_id) return i; } return -EINVAL; } /* * Allocates queue for each module. * if dynamic, the pin_index is allocated 0 to max_pin. * In static, the pin_index is fixed based on module_id and instance id */ static int skl_alloc_queue(struct skl_module_pin *mpin, struct skl_module_cfg *tgt_cfg, int max) { int i; struct skl_module_inst_id id = tgt_cfg->id; /* * if pin in dynamic, find first free pin * otherwise find match module and instance id pin as topology will * ensure a unique pin is assigned to this so no need to * allocate/free */ for (i = 0; i < max; i++) { if (mpin[i].is_dynamic) { if (!mpin[i].in_use && mpin[i].pin_state == SKL_PIN_UNBIND) { mpin[i].in_use = true; mpin[i].id.module_id = id.module_id; mpin[i].id.instance_id = id.instance_id; mpin[i].id.pvt_id = id.pvt_id; mpin[i].tgt_mcfg = tgt_cfg; return i; } } else { if (mpin[i].id.module_id == id.module_id && mpin[i].id.instance_id == id.instance_id && mpin[i].pin_state == SKL_PIN_UNBIND) { mpin[i].tgt_mcfg = tgt_cfg; return i; } } } return -EINVAL; } static void skl_free_queue(struct skl_module_pin *mpin, int q_index) { if (mpin[q_index].is_dynamic) { mpin[q_index].in_use = false; mpin[q_index].id.module_id = 0; mpin[q_index].id.instance_id = 0; mpin[q_index].id.pvt_id = 0; } mpin[q_index].pin_state = SKL_PIN_UNBIND; mpin[q_index].tgt_mcfg = NULL; } /* Module state will be set to unint, if all the out pin state is UNBIND */ static void skl_clear_module_state(struct skl_module_pin *mpin, int max, struct skl_module_cfg *mcfg) { int i; bool found = false; for (i = 0; i < max; i++) { if (mpin[i].pin_state == SKL_PIN_UNBIND) continue; found = true; break; } if (!found) mcfg->m_state = SKL_MODULE_INIT_DONE; return; } /* * A module needs to be instanataited in DSP. A mdoule is present in a * collection of module referred as a PIPE. * We first calculate the module format, based on module type and then * invoke the DSP by sending IPC INIT_INSTANCE using ipc helper */ int skl_init_module(struct skl_dev *skl, struct skl_module_cfg *mconfig) { u16 module_config_size = 0; void *param_data = NULL; int ret; struct skl_ipc_init_instance_msg msg; dev_dbg(skl->dev, "%s: module_id = %d instance=%d\n", __func__, mconfig->id.module_id, mconfig->id.pvt_id); if (mconfig->pipe->state != SKL_PIPE_CREATED) { dev_err(skl->dev, "Pipe not created state= %d pipe_id= %d\n", mconfig->pipe->state, mconfig->pipe->ppl_id); return -EIO; } ret = skl_set_module_format(skl, mconfig, &module_config_size, ¶m_data); if (ret < 0) { dev_err(skl->dev, "Failed to set module format ret=%d\n", ret); return ret; } msg.module_id = mconfig->id.module_id; msg.instance_id = mconfig->id.pvt_id; msg.ppl_instance_id = mconfig->pipe->ppl_id; msg.param_data_size = module_config_size; msg.core_id = mconfig->core_id; msg.domain = mconfig->domain; ret = skl_ipc_init_instance(&skl->ipc, &msg, param_data); if (ret < 0) { dev_err(skl->dev, "Failed to init instance ret=%d\n", ret); kfree(param_data); return ret; } mconfig->m_state = SKL_MODULE_INIT_DONE; kfree(param_data); return ret; } static void skl_dump_bind_info(struct skl_dev *skl, struct skl_module_cfg *src_module, struct skl_module_cfg *dst_module) { dev_dbg(skl->dev, "%s: src module_id = %d src_instance=%d\n", __func__, src_module->id.module_id, src_module->id.pvt_id); dev_dbg(skl->dev, "%s: dst_module=%d dst_instance=%d\n", __func__, dst_module->id.module_id, dst_module->id.pvt_id); dev_dbg(skl->dev, "src_module state = %d dst module state = %d\n", src_module->m_state, dst_module->m_state); } /* * On module freeup, we need to unbind the module with modules * it is already bind. * Find the pin allocated and unbind then using bind_unbind IPC */ int skl_unbind_modules(struct skl_dev *skl, struct skl_module_cfg *src_mcfg, struct skl_module_cfg *dst_mcfg) { int ret; struct skl_ipc_bind_unbind_msg msg; struct skl_module_inst_id src_id = src_mcfg->id; struct skl_module_inst_id dst_id = dst_mcfg->id; int in_max = dst_mcfg->module->max_input_pins; int out_max = src_mcfg->module->max_output_pins; int src_index, dst_index, src_pin_state, dst_pin_state; skl_dump_bind_info(skl, src_mcfg, dst_mcfg); /* get src queue index */ src_index = skl_get_queue_index(src_mcfg->m_out_pin, dst_id, out_max); if (src_index < 0) return 0; msg.src_queue = src_index; /* get dst queue index */ dst_index = skl_get_queue_index(dst_mcfg->m_in_pin, src_id, in_max); if (dst_index < 0) return 0; msg.dst_queue = dst_index; src_pin_state = src_mcfg->m_out_pin[src_index].pin_state; dst_pin_state = dst_mcfg->m_in_pin[dst_index].pin_state; if (src_pin_state != SKL_PIN_BIND_DONE || dst_pin_state != SKL_PIN_BIND_DONE) return 0; msg.module_id = src_mcfg->id.module_id; msg.instance_id = src_mcfg->id.pvt_id; msg.dst_module_id = dst_mcfg->id.module_id; msg.dst_instance_id = dst_mcfg->id.pvt_id; msg.bind = false; ret = skl_ipc_bind_unbind(&skl->ipc, &msg); if (!ret) { /* free queue only if unbind is success */ skl_free_queue(src_mcfg->m_out_pin, src_index); skl_free_queue(dst_mcfg->m_in_pin, dst_index); /* * check only if src module bind state, bind is * always from src -> sink */ skl_clear_module_state(src_mcfg->m_out_pin, out_max, src_mcfg); } return ret; } #define CPR_SINK_FMT_PARAM_ID 2 /* * Once a module is instantiated it need to be 'bind' with other modules in * the pipeline. For binding we need to find the module pins which are bind * together * This function finds the pins and then sends bund_unbind IPC message to * DSP using IPC helper */ int skl_bind_modules(struct skl_dev *skl, struct skl_module_cfg *src_mcfg, struct skl_module_cfg *dst_mcfg) { int ret = 0; struct skl_ipc_bind_unbind_msg msg; int in_max = dst_mcfg->module->max_input_pins; int out_max = src_mcfg->module->max_output_pins; int src_index, dst_index; struct skl_module_fmt *format; struct skl_cpr_pin_fmt pin_fmt; struct skl_module *module; struct skl_module_iface *fmt; skl_dump_bind_info(skl, src_mcfg, dst_mcfg); if (src_mcfg->m_state < SKL_MODULE_INIT_DONE || dst_mcfg->m_state < SKL_MODULE_INIT_DONE) return 0; src_index = skl_alloc_queue(src_mcfg->m_out_pin, dst_mcfg, out_max); if (src_index < 0) return -EINVAL; msg.src_queue = src_index; dst_index = skl_alloc_queue(dst_mcfg->m_in_pin, src_mcfg, in_max); if (dst_index < 0) { skl_free_queue(src_mcfg->m_out_pin, src_index); return -EINVAL; } /* * Copier module requires the separate large_config_set_ipc to * configure the pins other than 0 */ if (src_mcfg->m_type == SKL_MODULE_TYPE_COPIER && src_index > 0) { pin_fmt.sink_id = src_index; module = src_mcfg->module; fmt = &module->formats[src_mcfg->fmt_idx]; /* Input fmt is same as that of src module input cfg */ format = &fmt->inputs[0].fmt; fill_pin_params(&(pin_fmt.src_fmt), format); format = &fmt->outputs[src_index].fmt; fill_pin_params(&(pin_fmt.dst_fmt), format); ret = skl_set_module_params(skl, (void *)&pin_fmt, sizeof(struct skl_cpr_pin_fmt), CPR_SINK_FMT_PARAM_ID, src_mcfg); if (ret < 0) goto out; } msg.dst_queue = dst_index; dev_dbg(skl->dev, "src queue = %d dst queue =%d\n", msg.src_queue, msg.dst_queue); msg.module_id = src_mcfg->id.module_id; msg.instance_id = src_mcfg->id.pvt_id; msg.dst_module_id = dst_mcfg->id.module_id; msg.dst_instance_id = dst_mcfg->id.pvt_id; msg.bind = true; ret = skl_ipc_bind_unbind(&skl->ipc, &msg); if (!ret) { src_mcfg->m_state = SKL_MODULE_BIND_DONE; src_mcfg->m_out_pin[src_index].pin_state = SKL_PIN_BIND_DONE; dst_mcfg->m_in_pin[dst_index].pin_state = SKL_PIN_BIND_DONE; return ret; } out: /* error case , if IPC fails, clear the queue index */ skl_free_queue(src_mcfg->m_out_pin, src_index); skl_free_queue(dst_mcfg->m_in_pin, dst_index); return ret; } static int skl_set_pipe_state(struct skl_dev *skl, struct skl_pipe *pipe, enum skl_ipc_pipeline_state state) { dev_dbg(skl->dev, "%s: pipe_state = %d\n", __func__, state); return skl_ipc_set_pipeline_state(&skl->ipc, pipe->ppl_id, state); } /* * A pipeline is a collection of modules. Before a module in instantiated a * pipeline needs to be created for it. * This function creates pipeline, by sending create pipeline IPC messages * to FW */ int skl_create_pipeline(struct skl_dev *skl, struct skl_pipe *pipe) { int ret; dev_dbg(skl->dev, "%s: pipe_id = %d\n", __func__, pipe->ppl_id); ret = skl_ipc_create_pipeline(&skl->ipc, pipe->memory_pages, pipe->pipe_priority, pipe->ppl_id, pipe->lp_mode); if (ret < 0) { dev_err(skl->dev, "Failed to create pipeline\n"); return ret; } pipe->state = SKL_PIPE_CREATED; return 0; } /* * A pipeline needs to be deleted on cleanup. If a pipeline is running, * then pause it first. Before actual deletion, pipeline should enter * reset state. Finish the procedure by sending delete pipeline IPC. * DSP will stop the DMA engines and release resources */ int skl_delete_pipe(struct skl_dev *skl, struct skl_pipe *pipe) { int ret; dev_dbg(skl->dev, "%s: pipe = %d\n", __func__, pipe->ppl_id); /* If pipe was not created in FW, do not try to delete it */ if (pipe->state < SKL_PIPE_CREATED) return 0; /* If pipe is started, do stop the pipe in FW. */ if (pipe->state >= SKL_PIPE_STARTED) { ret = skl_set_pipe_state(skl, pipe, PPL_PAUSED); if (ret < 0) { dev_err(skl->dev, "Failed to stop pipeline\n"); return ret; } pipe->state = SKL_PIPE_PAUSED; } /* reset pipe state before deletion */ ret = skl_set_pipe_state(skl, pipe, PPL_RESET); if (ret < 0) { dev_err(skl->dev, "Failed to reset pipe ret=%d\n", ret); return ret; } pipe->state = SKL_PIPE_RESET; ret = skl_ipc_delete_pipeline(&skl->ipc, pipe->ppl_id); if (ret < 0) { dev_err(skl->dev, "Failed to delete pipeline\n"); return ret; } pipe->state = SKL_PIPE_INVALID; return ret; } /* * A pipeline is also a scheduling entity in DSP which can be run, stopped * For processing data the pipe need to be run by sending IPC set pipe state * to DSP */ int skl_run_pipe(struct skl_dev *skl, struct skl_pipe *pipe) { int ret; dev_dbg(skl->dev, "%s: pipe = %d\n", __func__, pipe->ppl_id); /* If pipe was not created in FW, do not try to pause or delete */ if (pipe->state < SKL_PIPE_CREATED) return 0; /* Pipe has to be paused before it is started */ ret = skl_set_pipe_state(skl, pipe, PPL_PAUSED); if (ret < 0) { dev_err(skl->dev, "Failed to pause pipe\n"); return ret; } pipe->state = SKL_PIPE_PAUSED; ret = skl_set_pipe_state(skl, pipe, PPL_RUNNING); if (ret < 0) { dev_err(skl->dev, "Failed to start pipe\n"); return ret; } pipe->state = SKL_PIPE_STARTED; return 0; } /* * Stop the pipeline by sending set pipe state IPC * DSP doesnt implement stop so we always send pause message */ int skl_stop_pipe(struct skl_dev *skl, struct skl_pipe *pipe) { int ret; dev_dbg(skl->dev, "In %s pipe=%d\n", __func__, pipe->ppl_id); /* If pipe was not created in FW, do not try to pause or delete */ if (pipe->state < SKL_PIPE_PAUSED) return 0; ret = skl_set_pipe_state(skl, pipe, PPL_PAUSED); if (ret < 0) { dev_dbg(skl->dev, "Failed to stop pipe\n"); return ret; } pipe->state = SKL_PIPE_PAUSED; return 0; } /* * Reset the pipeline by sending set pipe state IPC this will reset the DMA * from the DSP side */ int skl_reset_pipe(struct skl_dev *skl, struct skl_pipe *pipe) { int ret; /* If pipe was not created in FW, do not try to pause or delete */ if (pipe->state < SKL_PIPE_PAUSED) return 0; ret = skl_set_pipe_state(skl, pipe, PPL_RESET); if (ret < 0) { dev_dbg(skl->dev, "Failed to reset pipe ret=%d\n", ret); return ret; } pipe->state = SKL_PIPE_RESET; return 0; } /* Algo parameter set helper function */ int skl_set_module_params(struct skl_dev *skl, u32 *params, int size, u32 param_id, struct skl_module_cfg *mcfg) { struct skl_ipc_large_config_msg msg; msg.module_id = mcfg->id.module_id; msg.instance_id = mcfg->id.pvt_id; msg.param_data_size = size; msg.large_param_id = param_id; return skl_ipc_set_large_config(&skl->ipc, &msg, params); } int skl_get_module_params(struct skl_dev *skl, u32 *params, int size, u32 param_id, struct skl_module_cfg *mcfg) { struct skl_ipc_large_config_msg msg; size_t bytes = size; msg.module_id = mcfg->id.module_id; msg.instance_id = mcfg->id.pvt_id; msg.param_data_size = size; msg.large_param_id = param_id; return skl_ipc_get_large_config(&skl->ipc, &msg, ¶ms, &bytes); }
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1