Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Kenneth Westfield | 2136 | 31.10% | 3 | 5.56% |
Srinivasa Rao Mandadapu | 1763 | 25.67% | 7 | 12.96% |
V Sujith Kumar Reddy | 1009 | 14.69% | 4 | 7.41% |
Srinivas Kandagatla | 901 | 13.12% | 15 | 27.78% |
Rohit kumar | 529 | 7.70% | 2 | 3.70% |
Stephan Gerhold | 329 | 4.79% | 1 | 1.85% |
Kuninori Morimoto | 72 | 1.05% | 3 | 5.56% |
Linus Walleij | 20 | 0.29% | 1 | 1.85% |
Rob Herring | 18 | 0.26% | 2 | 3.70% |
Björn Andersson | 17 | 0.25% | 2 | 3.70% |
Bryan O'Donoghue | 17 | 0.25% | 1 | 1.85% |
Stephen Boyd | 11 | 0.16% | 2 | 3.70% |
Yang Yingliang | 10 | 0.15% | 1 | 1.85% |
Brian Norris | 9 | 0.13% | 1 | 1.85% |
Ajit Pandey | 9 | 0.13% | 1 | 1.85% |
Liang He | 5 | 0.07% | 1 | 1.85% |
Charles Keepax | 5 | 0.07% | 1 | 1.85% |
Krzysztof Kozlowski | 4 | 0.06% | 2 | 3.70% |
Thomas Gleixner | 2 | 0.03% | 1 | 1.85% |
Uwe Kleine-König | 1 | 0.01% | 1 | 1.85% |
Axel Lin | 1 | 0.01% | 1 | 1.85% |
Julia Lawall | 1 | 0.01% | 1 | 1.85% |
Total | 6869 | 54 |
// SPDX-License-Identifier: GPL-2.0-only /* * Copyright (c) 2010-2011,2013-2015 The Linux Foundation. All rights reserved. * * lpass-cpu.c -- ALSA SoC CPU DAI driver for QTi LPASS */ #include <dt-bindings/sound/qcom,lpass.h> #include <linux/clk.h> #include <linux/kernel.h> #include <linux/module.h> #include <linux/of.h> #include <linux/platform_device.h> #include <sound/pcm.h> #include <sound/pcm_params.h> #include <linux/regmap.h> #include <sound/soc.h> #include <sound/soc-dai.h> #include "lpass-lpaif-reg.h" #include "lpass.h" #define LPASS_CPU_MAX_MI2S_LINES 4 #define LPASS_CPU_I2S_SD0_MASK BIT(0) #define LPASS_CPU_I2S_SD1_MASK BIT(1) #define LPASS_CPU_I2S_SD2_MASK BIT(2) #define LPASS_CPU_I2S_SD3_MASK BIT(3) #define LPASS_CPU_I2S_SD0_1_MASK GENMASK(1, 0) #define LPASS_CPU_I2S_SD2_3_MASK GENMASK(3, 2) #define LPASS_CPU_I2S_SD0_1_2_MASK GENMASK(2, 0) #define LPASS_CPU_I2S_SD0_1_2_3_MASK GENMASK(3, 0) #define LPASS_REG_READ 1 #define LPASS_REG_WRITE 0 /* * Channel maps for Quad channel playbacks on MI2S Secondary */ static struct snd_pcm_chmap_elem lpass_quad_chmaps[] = { { .channels = 4, .map = { SNDRV_CHMAP_FL, SNDRV_CHMAP_RL, SNDRV_CHMAP_FR, SNDRV_CHMAP_RR } }, { } }; static int lpass_cpu_init_i2sctl_bitfields(struct device *dev, struct lpaif_i2sctl *i2sctl, struct regmap *map) { struct lpass_data *drvdata = dev_get_drvdata(dev); const struct lpass_variant *v = drvdata->variant; i2sctl->loopback = devm_regmap_field_alloc(dev, map, v->loopback); i2sctl->spken = devm_regmap_field_alloc(dev, map, v->spken); i2sctl->spkmode = devm_regmap_field_alloc(dev, map, v->spkmode); i2sctl->spkmono = devm_regmap_field_alloc(dev, map, v->spkmono); i2sctl->micen = devm_regmap_field_alloc(dev, map, v->micen); i2sctl->micmode = devm_regmap_field_alloc(dev, map, v->micmode); i2sctl->micmono = devm_regmap_field_alloc(dev, map, v->micmono); i2sctl->wssrc = devm_regmap_field_alloc(dev, map, v->wssrc); i2sctl->bitwidth = devm_regmap_field_alloc(dev, map, v->bitwidth); if (IS_ERR(i2sctl->loopback) || IS_ERR(i2sctl->spken) || IS_ERR(i2sctl->spkmode) || IS_ERR(i2sctl->spkmono) || IS_ERR(i2sctl->micen) || IS_ERR(i2sctl->micmode) || IS_ERR(i2sctl->micmono) || IS_ERR(i2sctl->wssrc) || IS_ERR(i2sctl->bitwidth)) return -EINVAL; return 0; } static int lpass_cpu_daiops_set_sysclk(struct snd_soc_dai *dai, int clk_id, unsigned int freq, int dir) { struct lpass_data *drvdata = snd_soc_dai_get_drvdata(dai); int ret; ret = clk_set_rate(drvdata->mi2s_osr_clk[dai->driver->id], freq); if (ret) dev_err(dai->dev, "error setting mi2s osrclk to %u: %d\n", freq, ret); return ret; } static int lpass_cpu_daiops_startup(struct snd_pcm_substream *substream, struct snd_soc_dai *dai) { struct lpass_data *drvdata = snd_soc_dai_get_drvdata(dai); int ret; ret = clk_prepare_enable(drvdata->mi2s_osr_clk[dai->driver->id]); if (ret) { dev_err(dai->dev, "error in enabling mi2s osr clk: %d\n", ret); return ret; } ret = clk_prepare(drvdata->mi2s_bit_clk[dai->driver->id]); if (ret) { dev_err(dai->dev, "error in enabling mi2s bit clk: %d\n", ret); clk_disable_unprepare(drvdata->mi2s_osr_clk[dai->driver->id]); return ret; } return 0; } static void lpass_cpu_daiops_shutdown(struct snd_pcm_substream *substream, struct snd_soc_dai *dai) { struct lpass_data *drvdata = snd_soc_dai_get_drvdata(dai); struct lpaif_i2sctl *i2sctl = drvdata->i2sctl; unsigned int id = dai->driver->id; clk_disable_unprepare(drvdata->mi2s_osr_clk[dai->driver->id]); /* * Ensure LRCLK is disabled even in device node validation. * Will not impact if disabled in lpass_cpu_daiops_trigger() * suspend. */ if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK) regmap_fields_write(i2sctl->spken, id, LPAIF_I2SCTL_SPKEN_DISABLE); else regmap_fields_write(i2sctl->micen, id, LPAIF_I2SCTL_MICEN_DISABLE); /* * BCLK may not be enabled if lpass_cpu_daiops_prepare is called before * lpass_cpu_daiops_shutdown. It's paired with the clk_enable in * lpass_cpu_daiops_prepare. */ if (drvdata->mi2s_was_prepared[dai->driver->id]) { drvdata->mi2s_was_prepared[dai->driver->id] = false; clk_disable(drvdata->mi2s_bit_clk[dai->driver->id]); } clk_unprepare(drvdata->mi2s_bit_clk[dai->driver->id]); } static int lpass_cpu_daiops_hw_params(struct snd_pcm_substream *substream, struct snd_pcm_hw_params *params, struct snd_soc_dai *dai) { struct lpass_data *drvdata = snd_soc_dai_get_drvdata(dai); struct lpaif_i2sctl *i2sctl = drvdata->i2sctl; unsigned int id = dai->driver->id; snd_pcm_format_t format = params_format(params); unsigned int channels = params_channels(params); unsigned int rate = params_rate(params); unsigned int mode; unsigned int regval; int bitwidth, ret; bitwidth = snd_pcm_format_width(format); if (bitwidth < 0) { dev_err(dai->dev, "invalid bit width given: %d\n", bitwidth); return bitwidth; } ret = regmap_fields_write(i2sctl->loopback, id, LPAIF_I2SCTL_LOOPBACK_DISABLE); if (ret) { dev_err(dai->dev, "error updating loopback field: %d\n", ret); return ret; } ret = regmap_fields_write(i2sctl->wssrc, id, LPAIF_I2SCTL_WSSRC_INTERNAL); if (ret) { dev_err(dai->dev, "error updating wssrc field: %d\n", ret); return ret; } switch (bitwidth) { case 16: regval = LPAIF_I2SCTL_BITWIDTH_16; break; case 24: regval = LPAIF_I2SCTL_BITWIDTH_24; break; case 32: regval = LPAIF_I2SCTL_BITWIDTH_32; break; default: dev_err(dai->dev, "invalid bitwidth given: %d\n", bitwidth); return -EINVAL; } ret = regmap_fields_write(i2sctl->bitwidth, id, regval); if (ret) { dev_err(dai->dev, "error updating bitwidth field: %d\n", ret); return ret; } if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK) mode = drvdata->mi2s_playback_sd_mode[id]; else mode = drvdata->mi2s_capture_sd_mode[id]; if (!mode) { dev_err(dai->dev, "no line is assigned\n"); return -EINVAL; } switch (channels) { case 1: case 2: switch (mode) { case LPAIF_I2SCTL_MODE_QUAD01: case LPAIF_I2SCTL_MODE_6CH: case LPAIF_I2SCTL_MODE_8CH: mode = LPAIF_I2SCTL_MODE_SD0; break; case LPAIF_I2SCTL_MODE_QUAD23: mode = LPAIF_I2SCTL_MODE_SD2; break; } break; case 4: if (mode < LPAIF_I2SCTL_MODE_QUAD01) { dev_err(dai->dev, "cannot configure 4 channels with mode %d\n", mode); return -EINVAL; } switch (mode) { case LPAIF_I2SCTL_MODE_6CH: case LPAIF_I2SCTL_MODE_8CH: mode = LPAIF_I2SCTL_MODE_QUAD01; break; } break; case 6: if (mode < LPAIF_I2SCTL_MODE_6CH) { dev_err(dai->dev, "cannot configure 6 channels with mode %d\n", mode); return -EINVAL; } switch (mode) { case LPAIF_I2SCTL_MODE_8CH: mode = LPAIF_I2SCTL_MODE_6CH; break; } break; case 8: if (mode < LPAIF_I2SCTL_MODE_8CH) { dev_err(dai->dev, "cannot configure 8 channels with mode %d\n", mode); return -EINVAL; } break; default: dev_err(dai->dev, "invalid channels given: %u\n", channels); return -EINVAL; } if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK) { ret = regmap_fields_write(i2sctl->spkmode, id, LPAIF_I2SCTL_SPKMODE(mode)); if (ret) { dev_err(dai->dev, "error writing to i2sctl spkr mode: %d\n", ret); return ret; } if (channels >= 2) ret = regmap_fields_write(i2sctl->spkmono, id, LPAIF_I2SCTL_SPKMONO_STEREO); else ret = regmap_fields_write(i2sctl->spkmono, id, LPAIF_I2SCTL_SPKMONO_MONO); } else { ret = regmap_fields_write(i2sctl->micmode, id, LPAIF_I2SCTL_MICMODE(mode)); if (ret) { dev_err(dai->dev, "error writing to i2sctl mic mode: %d\n", ret); return ret; } if (channels >= 2) ret = regmap_fields_write(i2sctl->micmono, id, LPAIF_I2SCTL_MICMONO_STEREO); else ret = regmap_fields_write(i2sctl->micmono, id, LPAIF_I2SCTL_MICMONO_MONO); } if (ret) { dev_err(dai->dev, "error writing to i2sctl channels mode: %d\n", ret); return ret; } ret = clk_set_rate(drvdata->mi2s_bit_clk[id], rate * bitwidth * 2); if (ret) { dev_err(dai->dev, "error setting mi2s bitclk to %u: %d\n", rate * bitwidth * 2, ret); return ret; } return 0; } static int lpass_cpu_daiops_trigger(struct snd_pcm_substream *substream, int cmd, struct snd_soc_dai *dai) { struct lpass_data *drvdata = snd_soc_dai_get_drvdata(dai); struct lpaif_i2sctl *i2sctl = drvdata->i2sctl; unsigned int id = dai->driver->id; int ret = -EINVAL; switch (cmd) { case SNDRV_PCM_TRIGGER_START: case SNDRV_PCM_TRIGGER_RESUME: case SNDRV_PCM_TRIGGER_PAUSE_RELEASE: /* * Ensure lpass BCLK/LRCLK is enabled during * device resume as lpass_cpu_daiops_prepare() is not called * after the device resumes. We don't check mi2s_was_prepared before * enable/disable BCLK in trigger events because: * 1. These trigger events are paired, so the BCLK * enable_count is balanced. * 2. the BCLK can be shared (ex: headset and headset mic), * we need to increase the enable_count so that we don't * turn off the shared BCLK while other devices are using * it. */ if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK) { ret = regmap_fields_write(i2sctl->spken, id, LPAIF_I2SCTL_SPKEN_ENABLE); } else { ret = regmap_fields_write(i2sctl->micen, id, LPAIF_I2SCTL_MICEN_ENABLE); } if (ret) dev_err(dai->dev, "error writing to i2sctl reg: %d\n", ret); ret = clk_enable(drvdata->mi2s_bit_clk[id]); if (ret) { dev_err(dai->dev, "error in enabling mi2s bit clk: %d\n", ret); clk_disable(drvdata->mi2s_osr_clk[id]); return ret; } break; case SNDRV_PCM_TRIGGER_STOP: case SNDRV_PCM_TRIGGER_SUSPEND: case SNDRV_PCM_TRIGGER_PAUSE_PUSH: /* * To ensure lpass BCLK/LRCLK is disabled during * device suspend. */ if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK) { ret = regmap_fields_write(i2sctl->spken, id, LPAIF_I2SCTL_SPKEN_DISABLE); } else { ret = regmap_fields_write(i2sctl->micen, id, LPAIF_I2SCTL_MICEN_DISABLE); } if (ret) dev_err(dai->dev, "error writing to i2sctl reg: %d\n", ret); clk_disable(drvdata->mi2s_bit_clk[dai->driver->id]); break; } return ret; } static int lpass_cpu_daiops_prepare(struct snd_pcm_substream *substream, struct snd_soc_dai *dai) { struct lpass_data *drvdata = snd_soc_dai_get_drvdata(dai); struct lpaif_i2sctl *i2sctl = drvdata->i2sctl; unsigned int id = dai->driver->id; int ret; /* * Ensure lpass BCLK/LRCLK is enabled bit before playback/capture * data flow starts. This allows other codec to have some delay before * the data flow. * (ex: to drop start up pop noise before capture starts). */ if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK) ret = regmap_fields_write(i2sctl->spken, id, LPAIF_I2SCTL_SPKEN_ENABLE); else ret = regmap_fields_write(i2sctl->micen, id, LPAIF_I2SCTL_MICEN_ENABLE); if (ret) { dev_err(dai->dev, "error writing to i2sctl reg: %d\n", ret); return ret; } /* * Check mi2s_was_prepared before enabling BCLK as lpass_cpu_daiops_prepare can * be called multiple times. It's paired with the clk_disable in * lpass_cpu_daiops_shutdown. */ if (!drvdata->mi2s_was_prepared[dai->driver->id]) { ret = clk_enable(drvdata->mi2s_bit_clk[id]); if (ret) { dev_err(dai->dev, "error in enabling mi2s bit clk: %d\n", ret); return ret; } drvdata->mi2s_was_prepared[dai->driver->id] = true; } return 0; } static int lpass_cpu_daiops_pcm_new(struct snd_soc_pcm_runtime *rtd, struct snd_soc_dai *dai) { int ret; struct snd_soc_dai_driver *drv = dai->driver; struct lpass_data *drvdata = snd_soc_dai_get_drvdata(dai); if (drvdata->mi2s_playback_sd_mode[dai->id] == LPAIF_I2SCTL_MODE_QUAD01) { ret = snd_pcm_add_chmap_ctls(rtd->pcm, SNDRV_PCM_STREAM_PLAYBACK, lpass_quad_chmaps, drv->playback.channels_max, 0, NULL); if (ret < 0) return ret; } return 0; } static int lpass_cpu_daiops_probe(struct snd_soc_dai *dai) { struct lpass_data *drvdata = snd_soc_dai_get_drvdata(dai); int ret; /* ensure audio hardware is disabled */ ret = regmap_write(drvdata->lpaif_map, LPAIF_I2SCTL_REG(drvdata->variant, dai->driver->id), 0); if (ret) dev_err(dai->dev, "error writing to i2sctl reg: %d\n", ret); return ret; } const struct snd_soc_dai_ops asoc_qcom_lpass_cpu_dai_ops = { .probe = lpass_cpu_daiops_probe, .set_sysclk = lpass_cpu_daiops_set_sysclk, .startup = lpass_cpu_daiops_startup, .shutdown = lpass_cpu_daiops_shutdown, .hw_params = lpass_cpu_daiops_hw_params, .trigger = lpass_cpu_daiops_trigger, .prepare = lpass_cpu_daiops_prepare, }; EXPORT_SYMBOL_GPL(asoc_qcom_lpass_cpu_dai_ops); const struct snd_soc_dai_ops asoc_qcom_lpass_cpu_dai_ops2 = { .pcm_new = lpass_cpu_daiops_pcm_new, .probe = lpass_cpu_daiops_probe, .set_sysclk = lpass_cpu_daiops_set_sysclk, .startup = lpass_cpu_daiops_startup, .shutdown = lpass_cpu_daiops_shutdown, .hw_params = lpass_cpu_daiops_hw_params, .trigger = lpass_cpu_daiops_trigger, .prepare = lpass_cpu_daiops_prepare, }; EXPORT_SYMBOL_GPL(asoc_qcom_lpass_cpu_dai_ops2); static int asoc_qcom_of_xlate_dai_name(struct snd_soc_component *component, const struct of_phandle_args *args, const char **dai_name) { struct lpass_data *drvdata = snd_soc_component_get_drvdata(component); const struct lpass_variant *variant = drvdata->variant; int id = args->args[0]; int ret = -EINVAL; int i; for (i = 0; i < variant->num_dai; i++) { if (variant->dai_driver[i].id == id) { *dai_name = variant->dai_driver[i].name; ret = 0; break; } } return ret; } static const struct snd_soc_component_driver lpass_cpu_comp_driver = { .name = "lpass-cpu", .of_xlate_dai_name = asoc_qcom_of_xlate_dai_name, .legacy_dai_naming = 1, }; static bool lpass_cpu_regmap_writeable(struct device *dev, unsigned int reg) { struct lpass_data *drvdata = dev_get_drvdata(dev); const struct lpass_variant *v = drvdata->variant; int i; for (i = 0; i < v->i2s_ports; ++i) if (reg == LPAIF_I2SCTL_REG(v, i)) return true; for (i = 0; i < v->irq_ports; ++i) { if (reg == LPAIF_IRQEN_REG(v, i)) return true; if (reg == LPAIF_IRQCLEAR_REG(v, i)) return true; } for (i = 0; i < v->rdma_channels; ++i) { if (reg == LPAIF_RDMACTL_REG(v, i)) return true; if (reg == LPAIF_RDMABASE_REG(v, i)) return true; if (reg == LPAIF_RDMABUFF_REG(v, i)) return true; if (reg == LPAIF_RDMAPER_REG(v, i)) return true; } for (i = 0; i < v->wrdma_channels; ++i) { if (reg == LPAIF_WRDMACTL_REG(v, i + v->wrdma_channel_start)) return true; if (reg == LPAIF_WRDMABASE_REG(v, i + v->wrdma_channel_start)) return true; if (reg == LPAIF_WRDMABUFF_REG(v, i + v->wrdma_channel_start)) return true; if (reg == LPAIF_WRDMAPER_REG(v, i + v->wrdma_channel_start)) return true; } return false; } static bool lpass_cpu_regmap_readable(struct device *dev, unsigned int reg) { struct lpass_data *drvdata = dev_get_drvdata(dev); const struct lpass_variant *v = drvdata->variant; int i; for (i = 0; i < v->i2s_ports; ++i) if (reg == LPAIF_I2SCTL_REG(v, i)) return true; for (i = 0; i < v->irq_ports; ++i) { if (reg == LPAIF_IRQCLEAR_REG(v, i)) return true; if (reg == LPAIF_IRQEN_REG(v, i)) return true; if (reg == LPAIF_IRQSTAT_REG(v, i)) return true; } for (i = 0; i < v->rdma_channels; ++i) { if (reg == LPAIF_RDMACTL_REG(v, i)) return true; if (reg == LPAIF_RDMABASE_REG(v, i)) return true; if (reg == LPAIF_RDMABUFF_REG(v, i)) return true; if (reg == LPAIF_RDMACURR_REG(v, i)) return true; if (reg == LPAIF_RDMAPER_REG(v, i)) return true; } for (i = 0; i < v->wrdma_channels; ++i) { if (reg == LPAIF_WRDMACTL_REG(v, i + v->wrdma_channel_start)) return true; if (reg == LPAIF_WRDMABASE_REG(v, i + v->wrdma_channel_start)) return true; if (reg == LPAIF_WRDMABUFF_REG(v, i + v->wrdma_channel_start)) return true; if (reg == LPAIF_WRDMACURR_REG(v, i + v->wrdma_channel_start)) return true; if (reg == LPAIF_WRDMAPER_REG(v, i + v->wrdma_channel_start)) return true; } return false; } static bool lpass_cpu_regmap_volatile(struct device *dev, unsigned int reg) { struct lpass_data *drvdata = dev_get_drvdata(dev); const struct lpass_variant *v = drvdata->variant; int i; for (i = 0; i < v->irq_ports; ++i) { if (reg == LPAIF_IRQCLEAR_REG(v, i)) return true; if (reg == LPAIF_IRQSTAT_REG(v, i)) return true; } for (i = 0; i < v->rdma_channels; ++i) if (reg == LPAIF_RDMACURR_REG(v, i)) return true; for (i = 0; i < v->wrdma_channels; ++i) if (reg == LPAIF_WRDMACURR_REG(v, i + v->wrdma_channel_start)) return true; return false; } static struct regmap_config lpass_cpu_regmap_config = { .name = "lpass_cpu", .reg_bits = 32, .reg_stride = 4, .val_bits = 32, .writeable_reg = lpass_cpu_regmap_writeable, .readable_reg = lpass_cpu_regmap_readable, .volatile_reg = lpass_cpu_regmap_volatile, .cache_type = REGCACHE_FLAT, }; static int lpass_hdmi_init_bitfields(struct device *dev, struct regmap *map) { struct lpass_data *drvdata = dev_get_drvdata(dev); const struct lpass_variant *v = drvdata->variant; unsigned int i; struct lpass_hdmi_tx_ctl *tx_ctl; struct regmap_field *legacy_en; struct lpass_vbit_ctrl *vbit_ctl; struct regmap_field *tx_parity; struct lpass_dp_metadata_ctl *meta_ctl; struct lpass_sstream_ctl *sstream_ctl; struct regmap_field *ch_msb; struct regmap_field *ch_lsb; struct lpass_hdmitx_dmactl *tx_dmactl; int rval; tx_ctl = devm_kzalloc(dev, sizeof(*tx_ctl), GFP_KERNEL); if (!tx_ctl) return -ENOMEM; QCOM_REGMAP_FIELD_ALLOC(dev, map, v->soft_reset, tx_ctl->soft_reset); QCOM_REGMAP_FIELD_ALLOC(dev, map, v->force_reset, tx_ctl->force_reset); drvdata->tx_ctl = tx_ctl; QCOM_REGMAP_FIELD_ALLOC(dev, map, v->legacy_en, legacy_en); drvdata->hdmitx_legacy_en = legacy_en; vbit_ctl = devm_kzalloc(dev, sizeof(*vbit_ctl), GFP_KERNEL); if (!vbit_ctl) return -ENOMEM; QCOM_REGMAP_FIELD_ALLOC(dev, map, v->replace_vbit, vbit_ctl->replace_vbit); QCOM_REGMAP_FIELD_ALLOC(dev, map, v->vbit_stream, vbit_ctl->vbit_stream); drvdata->vbit_ctl = vbit_ctl; QCOM_REGMAP_FIELD_ALLOC(dev, map, v->calc_en, tx_parity); drvdata->hdmitx_parity_calc_en = tx_parity; meta_ctl = devm_kzalloc(dev, sizeof(*meta_ctl), GFP_KERNEL); if (!meta_ctl) return -ENOMEM; rval = devm_regmap_field_bulk_alloc(dev, map, &meta_ctl->mute, &v->mute, 7); if (rval) return rval; drvdata->meta_ctl = meta_ctl; sstream_ctl = devm_kzalloc(dev, sizeof(*sstream_ctl), GFP_KERNEL); if (!sstream_ctl) return -ENOMEM; rval = devm_regmap_field_bulk_alloc(dev, map, &sstream_ctl->sstream_en, &v->sstream_en, 9); if (rval) return rval; drvdata->sstream_ctl = sstream_ctl; for (i = 0; i < LPASS_MAX_HDMI_DMA_CHANNELS; i++) { QCOM_REGMAP_FIELD_ALLOC(dev, map, v->msb_bits, ch_msb); drvdata->hdmitx_ch_msb[i] = ch_msb; QCOM_REGMAP_FIELD_ALLOC(dev, map, v->lsb_bits, ch_lsb); drvdata->hdmitx_ch_lsb[i] = ch_lsb; tx_dmactl = devm_kzalloc(dev, sizeof(*tx_dmactl), GFP_KERNEL); if (!tx_dmactl) return -ENOMEM; QCOM_REGMAP_FIELD_ALLOC(dev, map, v->use_hw_chs, tx_dmactl->use_hw_chs); QCOM_REGMAP_FIELD_ALLOC(dev, map, v->use_hw_usr, tx_dmactl->use_hw_usr); QCOM_REGMAP_FIELD_ALLOC(dev, map, v->hw_chs_sel, tx_dmactl->hw_chs_sel); QCOM_REGMAP_FIELD_ALLOC(dev, map, v->hw_usr_sel, tx_dmactl->hw_usr_sel); drvdata->hdmi_tx_dmactl[i] = tx_dmactl; } return 0; } static bool lpass_hdmi_regmap_writeable(struct device *dev, unsigned int reg) { struct lpass_data *drvdata = dev_get_drvdata(dev); const struct lpass_variant *v = drvdata->variant; int i; if (reg == LPASS_HDMI_TX_CTL_ADDR(v)) return true; if (reg == LPASS_HDMI_TX_LEGACY_ADDR(v)) return true; if (reg == LPASS_HDMI_TX_VBIT_CTL_ADDR(v)) return true; if (reg == LPASS_HDMI_TX_PARITY_ADDR(v)) return true; if (reg == LPASS_HDMI_TX_DP_ADDR(v)) return true; if (reg == LPASS_HDMI_TX_SSTREAM_ADDR(v)) return true; if (reg == LPASS_HDMITX_APP_IRQEN_REG(v)) return true; if (reg == LPASS_HDMITX_APP_IRQCLEAR_REG(v)) return true; for (i = 0; i < v->hdmi_rdma_channels; i++) { if (reg == LPASS_HDMI_TX_CH_LSB_ADDR(v, i)) return true; if (reg == LPASS_HDMI_TX_CH_MSB_ADDR(v, i)) return true; if (reg == LPASS_HDMI_TX_DMA_ADDR(v, i)) return true; } for (i = 0; i < v->hdmi_rdma_channels; ++i) { if (reg == LPAIF_HDMI_RDMACTL_REG(v, i)) return true; if (reg == LPAIF_HDMI_RDMABASE_REG(v, i)) return true; if (reg == LPAIF_HDMI_RDMABUFF_REG(v, i)) return true; if (reg == LPAIF_HDMI_RDMAPER_REG(v, i)) return true; } return false; } static bool lpass_hdmi_regmap_readable(struct device *dev, unsigned int reg) { struct lpass_data *drvdata = dev_get_drvdata(dev); const struct lpass_variant *v = drvdata->variant; int i; if (reg == LPASS_HDMI_TX_CTL_ADDR(v)) return true; if (reg == LPASS_HDMI_TX_LEGACY_ADDR(v)) return true; if (reg == LPASS_HDMI_TX_VBIT_CTL_ADDR(v)) return true; for (i = 0; i < v->hdmi_rdma_channels; i++) { if (reg == LPASS_HDMI_TX_CH_LSB_ADDR(v, i)) return true; if (reg == LPASS_HDMI_TX_CH_MSB_ADDR(v, i)) return true; if (reg == LPASS_HDMI_TX_DMA_ADDR(v, i)) return true; } if (reg == LPASS_HDMI_TX_PARITY_ADDR(v)) return true; if (reg == LPASS_HDMI_TX_DP_ADDR(v)) return true; if (reg == LPASS_HDMI_TX_SSTREAM_ADDR(v)) return true; if (reg == LPASS_HDMITX_APP_IRQEN_REG(v)) return true; if (reg == LPASS_HDMITX_APP_IRQSTAT_REG(v)) return true; for (i = 0; i < v->hdmi_rdma_channels; ++i) { if (reg == LPAIF_HDMI_RDMACTL_REG(v, i)) return true; if (reg == LPAIF_HDMI_RDMABASE_REG(v, i)) return true; if (reg == LPAIF_HDMI_RDMABUFF_REG(v, i)) return true; if (reg == LPAIF_HDMI_RDMAPER_REG(v, i)) return true; if (reg == LPAIF_HDMI_RDMACURR_REG(v, i)) return true; } return false; } static bool lpass_hdmi_regmap_volatile(struct device *dev, unsigned int reg) { struct lpass_data *drvdata = dev_get_drvdata(dev); const struct lpass_variant *v = drvdata->variant; int i; if (reg == LPASS_HDMITX_APP_IRQSTAT_REG(v)) return true; if (reg == LPASS_HDMI_TX_LEGACY_ADDR(v)) return true; if (reg == LPASS_HDMI_TX_VBIT_CTL_ADDR(v)) return true; if (reg == LPASS_HDMI_TX_PARITY_ADDR(v)) return true; for (i = 0; i < v->hdmi_rdma_channels; ++i) { if (reg == LPAIF_HDMI_RDMACURR_REG(v, i)) return true; if (reg == LPASS_HDMI_TX_DMA_ADDR(v, i)) return true; if (reg == LPASS_HDMI_TX_CH_LSB_ADDR(v, i)) return true; if (reg == LPASS_HDMI_TX_CH_MSB_ADDR(v, i)) return true; } return false; } static struct regmap_config lpass_hdmi_regmap_config = { .name = "lpass_hdmi", .reg_bits = 32, .reg_stride = 4, .val_bits = 32, .writeable_reg = lpass_hdmi_regmap_writeable, .readable_reg = lpass_hdmi_regmap_readable, .volatile_reg = lpass_hdmi_regmap_volatile, .cache_type = REGCACHE_FLAT, }; static bool __lpass_rxtx_regmap_accessible(struct device *dev, unsigned int reg, bool rw) { struct lpass_data *drvdata = dev_get_drvdata(dev); const struct lpass_variant *v = drvdata->variant; int i; for (i = 0; i < v->rxtx_irq_ports; ++i) { if (reg == LPAIF_RXTX_IRQCLEAR_REG(v, i)) return true; if (reg == LPAIF_RXTX_IRQEN_REG(v, i)) return true; if (reg == LPAIF_RXTX_IRQSTAT_REG(v, i)) return true; } for (i = 0; i < v->rxtx_rdma_channels; ++i) { if (reg == LPAIF_CDC_RXTX_RDMACTL_REG(v, i, LPASS_CDC_DMA_RX0)) return true; if (reg == LPAIF_CDC_RXTX_RDMABASE_REG(v, i, LPASS_CDC_DMA_RX0)) return true; if (reg == LPAIF_CDC_RXTX_RDMABUFF_REG(v, i, LPASS_CDC_DMA_RX0)) return true; if (rw == LPASS_REG_READ) { if (reg == LPAIF_CDC_RXTX_RDMACURR_REG(v, i, LPASS_CDC_DMA_RX0)) return true; } if (reg == LPAIF_CDC_RXTX_RDMAPER_REG(v, i, LPASS_CDC_DMA_RX0)) return true; if (reg == LPAIF_CDC_RXTX_RDMA_INTF_REG(v, i, LPASS_CDC_DMA_RX0)) return true; } for (i = 0; i < v->rxtx_wrdma_channels; ++i) { if (reg == LPAIF_CDC_RXTX_WRDMACTL_REG(v, i + v->rxtx_wrdma_channel_start, LPASS_CDC_DMA_TX3)) return true; if (reg == LPAIF_CDC_RXTX_WRDMABASE_REG(v, i + v->rxtx_wrdma_channel_start, LPASS_CDC_DMA_TX3)) return true; if (reg == LPAIF_CDC_RXTX_WRDMABUFF_REG(v, i + v->rxtx_wrdma_channel_start, LPASS_CDC_DMA_TX3)) return true; if (rw == LPASS_REG_READ) { if (reg == LPAIF_CDC_RXTX_WRDMACURR_REG(v, i, LPASS_CDC_DMA_RX0)) return true; } if (reg == LPAIF_CDC_RXTX_WRDMAPER_REG(v, i + v->rxtx_wrdma_channel_start, LPASS_CDC_DMA_TX3)) return true; if (reg == LPAIF_CDC_RXTX_WRDMA_INTF_REG(v, i + v->rxtx_wrdma_channel_start, LPASS_CDC_DMA_TX3)) return true; } return false; } static bool lpass_rxtx_regmap_writeable(struct device *dev, unsigned int reg) { return __lpass_rxtx_regmap_accessible(dev, reg, LPASS_REG_WRITE); } static bool lpass_rxtx_regmap_readable(struct device *dev, unsigned int reg) { return __lpass_rxtx_regmap_accessible(dev, reg, LPASS_REG_READ); } static bool lpass_rxtx_regmap_volatile(struct device *dev, unsigned int reg) { struct lpass_data *drvdata = dev_get_drvdata(dev); const struct lpass_variant *v = drvdata->variant; int i; for (i = 0; i < v->rxtx_irq_ports; ++i) { if (reg == LPAIF_RXTX_IRQCLEAR_REG(v, i)) return true; if (reg == LPAIF_RXTX_IRQSTAT_REG(v, i)) return true; } for (i = 0; i < v->rxtx_rdma_channels; ++i) if (reg == LPAIF_CDC_RXTX_RDMACURR_REG(v, i, LPASS_CDC_DMA_RX0)) return true; for (i = 0; i < v->rxtx_wrdma_channels; ++i) if (reg == LPAIF_CDC_RXTX_WRDMACURR_REG(v, i + v->rxtx_wrdma_channel_start, LPASS_CDC_DMA_TX3)) return true; return false; } static bool __lpass_va_regmap_accessible(struct device *dev, unsigned int reg, bool rw) { struct lpass_data *drvdata = dev_get_drvdata(dev); const struct lpass_variant *v = drvdata->variant; int i; for (i = 0; i < v->va_irq_ports; ++i) { if (reg == LPAIF_VA_IRQCLEAR_REG(v, i)) return true; if (reg == LPAIF_VA_IRQEN_REG(v, i)) return true; if (reg == LPAIF_VA_IRQSTAT_REG(v, i)) return true; } for (i = 0; i < v->va_wrdma_channels; ++i) { if (reg == LPAIF_CDC_VA_WRDMACTL_REG(v, i + v->va_wrdma_channel_start, LPASS_CDC_DMA_VA_TX0)) return true; if (reg == LPAIF_CDC_VA_WRDMABASE_REG(v, i + v->va_wrdma_channel_start, LPASS_CDC_DMA_VA_TX0)) return true; if (reg == LPAIF_CDC_VA_WRDMABUFF_REG(v, i + v->va_wrdma_channel_start, LPASS_CDC_DMA_VA_TX0)) return true; if (rw == LPASS_REG_READ) { if (reg == LPAIF_CDC_VA_WRDMACURR_REG(v, i + v->va_wrdma_channel_start, LPASS_CDC_DMA_VA_TX0)) return true; } if (reg == LPAIF_CDC_VA_WRDMAPER_REG(v, i + v->va_wrdma_channel_start, LPASS_CDC_DMA_VA_TX0)) return true; if (reg == LPAIF_CDC_VA_WRDMA_INTF_REG(v, i + v->va_wrdma_channel_start, LPASS_CDC_DMA_VA_TX0)) return true; } return false; } static bool lpass_va_regmap_writeable(struct device *dev, unsigned int reg) { return __lpass_va_regmap_accessible(dev, reg, LPASS_REG_WRITE); } static bool lpass_va_regmap_readable(struct device *dev, unsigned int reg) { return __lpass_va_regmap_accessible(dev, reg, LPASS_REG_READ); } static bool lpass_va_regmap_volatile(struct device *dev, unsigned int reg) { struct lpass_data *drvdata = dev_get_drvdata(dev); const struct lpass_variant *v = drvdata->variant; int i; for (i = 0; i < v->va_irq_ports; ++i) { if (reg == LPAIF_VA_IRQCLEAR_REG(v, i)) return true; if (reg == LPAIF_VA_IRQSTAT_REG(v, i)) return true; } for (i = 0; i < v->va_wrdma_channels; ++i) { if (reg == LPAIF_CDC_VA_WRDMACURR_REG(v, i + v->va_wrdma_channel_start, LPASS_CDC_DMA_VA_TX0)) return true; } return false; } static struct regmap_config lpass_rxtx_regmap_config = { .reg_bits = 32, .reg_stride = 4, .val_bits = 32, .writeable_reg = lpass_rxtx_regmap_writeable, .readable_reg = lpass_rxtx_regmap_readable, .volatile_reg = lpass_rxtx_regmap_volatile, .cache_type = REGCACHE_FLAT, }; static struct regmap_config lpass_va_regmap_config = { .reg_bits = 32, .reg_stride = 4, .val_bits = 32, .writeable_reg = lpass_va_regmap_writeable, .readable_reg = lpass_va_regmap_readable, .volatile_reg = lpass_va_regmap_volatile, .cache_type = REGCACHE_FLAT, }; static unsigned int of_lpass_cpu_parse_sd_lines(struct device *dev, struct device_node *node, const char *name) { unsigned int lines[LPASS_CPU_MAX_MI2S_LINES]; unsigned int sd_line_mask = 0; int num_lines, i; num_lines = of_property_read_variable_u32_array(node, name, lines, 0, LPASS_CPU_MAX_MI2S_LINES); if (num_lines < 0) return LPAIF_I2SCTL_MODE_NONE; for (i = 0; i < num_lines; i++) sd_line_mask |= BIT(lines[i]); switch (sd_line_mask) { case LPASS_CPU_I2S_SD0_MASK: return LPAIF_I2SCTL_MODE_SD0; case LPASS_CPU_I2S_SD1_MASK: return LPAIF_I2SCTL_MODE_SD1; case LPASS_CPU_I2S_SD2_MASK: return LPAIF_I2SCTL_MODE_SD2; case LPASS_CPU_I2S_SD3_MASK: return LPAIF_I2SCTL_MODE_SD3; case LPASS_CPU_I2S_SD0_1_MASK: return LPAIF_I2SCTL_MODE_QUAD01; case LPASS_CPU_I2S_SD2_3_MASK: return LPAIF_I2SCTL_MODE_QUAD23; case LPASS_CPU_I2S_SD0_1_2_MASK: return LPAIF_I2SCTL_MODE_6CH; case LPASS_CPU_I2S_SD0_1_2_3_MASK: return LPAIF_I2SCTL_MODE_8CH; default: dev_err(dev, "Unsupported SD line mask: %#x\n", sd_line_mask); return LPAIF_I2SCTL_MODE_NONE; } } static void of_lpass_cpu_parse_dai_data(struct device *dev, struct lpass_data *data) { struct device_node *node; int ret, i, id; /* Allow all channels by default for backwards compatibility */ for (i = 0; i < data->variant->num_dai; i++) { id = data->variant->dai_driver[i].id; data->mi2s_playback_sd_mode[id] = LPAIF_I2SCTL_MODE_8CH; data->mi2s_capture_sd_mode[id] = LPAIF_I2SCTL_MODE_8CH; } for_each_child_of_node(dev->of_node, node) { ret = of_property_read_u32(node, "reg", &id); if (ret || id < 0) { dev_err(dev, "valid dai id not found: %d\n", ret); continue; } if (id == LPASS_DP_RX) { data->hdmi_port_enable = 1; } else if (is_cdc_dma_port(id)) { data->codec_dma_enable = 1; } else { data->mi2s_playback_sd_mode[id] = of_lpass_cpu_parse_sd_lines(dev, node, "qcom,playback-sd-lines"); data->mi2s_capture_sd_mode[id] = of_lpass_cpu_parse_sd_lines(dev, node, "qcom,capture-sd-lines"); } } } static int of_lpass_cdc_dma_clks_parse(struct device *dev, struct lpass_data *data) { data->codec_mem0 = devm_clk_get(dev, "audio_cc_codec_mem0"); if (IS_ERR(data->codec_mem0)) return PTR_ERR(data->codec_mem0); data->codec_mem1 = devm_clk_get(dev, "audio_cc_codec_mem1"); if (IS_ERR(data->codec_mem1)) return PTR_ERR(data->codec_mem1); data->codec_mem2 = devm_clk_get(dev, "audio_cc_codec_mem2"); if (IS_ERR(data->codec_mem2)) return PTR_ERR(data->codec_mem2); data->va_mem0 = devm_clk_get(dev, "aon_cc_va_mem0"); if (IS_ERR(data->va_mem0)) return PTR_ERR(data->va_mem0); return 0; } int asoc_qcom_lpass_cpu_platform_probe(struct platform_device *pdev) { struct lpass_data *drvdata; struct device_node *dsp_of_node; struct resource *res; const struct lpass_variant *variant; struct device *dev = &pdev->dev; int ret, i, dai_id; dsp_of_node = of_parse_phandle(pdev->dev.of_node, "qcom,adsp", 0); if (dsp_of_node) { dev_err(dev, "DSP exists and holds audio resources\n"); of_node_put(dsp_of_node); return -EBUSY; } drvdata = devm_kzalloc(dev, sizeof(struct lpass_data), GFP_KERNEL); if (!drvdata) return -ENOMEM; platform_set_drvdata(pdev, drvdata); variant = device_get_match_data(dev); if (!variant) return -EINVAL; if (of_device_is_compatible(dev->of_node, "qcom,lpass-cpu-apq8016")) dev_warn(dev, "qcom,lpass-cpu-apq8016 compatible is deprecated\n"); drvdata->variant = variant; of_lpass_cpu_parse_dai_data(dev, drvdata); if (drvdata->codec_dma_enable) { drvdata->rxtx_lpaif = devm_platform_ioremap_resource_byname(pdev, "lpass-rxtx-lpaif"); if (IS_ERR(drvdata->rxtx_lpaif)) return PTR_ERR(drvdata->rxtx_lpaif); drvdata->va_lpaif = devm_platform_ioremap_resource_byname(pdev, "lpass-va-lpaif"); if (IS_ERR(drvdata->va_lpaif)) return PTR_ERR(drvdata->va_lpaif); lpass_rxtx_regmap_config.max_register = LPAIF_CDC_RXTX_WRDMAPER_REG(variant, variant->rxtx_wrdma_channels + variant->rxtx_wrdma_channel_start, LPASS_CDC_DMA_TX3); drvdata->rxtx_lpaif_map = devm_regmap_init_mmio(dev, drvdata->rxtx_lpaif, &lpass_rxtx_regmap_config); if (IS_ERR(drvdata->rxtx_lpaif_map)) return PTR_ERR(drvdata->rxtx_lpaif_map); lpass_va_regmap_config.max_register = LPAIF_CDC_VA_WRDMAPER_REG(variant, variant->va_wrdma_channels + variant->va_wrdma_channel_start, LPASS_CDC_DMA_VA_TX0); drvdata->va_lpaif_map = devm_regmap_init_mmio(dev, drvdata->va_lpaif, &lpass_va_regmap_config); if (IS_ERR(drvdata->va_lpaif_map)) return PTR_ERR(drvdata->va_lpaif_map); ret = of_lpass_cdc_dma_clks_parse(dev, drvdata); if (ret) { dev_err(dev, "failed to get cdc dma clocks %d\n", ret); return ret; } res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "lpass-rxtx-cdc-dma-lpm"); drvdata->rxtx_cdc_dma_lpm_buf = res->start; res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "lpass-va-cdc-dma-lpm"); drvdata->va_cdc_dma_lpm_buf = res->start; } drvdata->lpaif = devm_platform_ioremap_resource_byname(pdev, "lpass-lpaif"); if (IS_ERR(drvdata->lpaif)) return PTR_ERR(drvdata->lpaif); lpass_cpu_regmap_config.max_register = LPAIF_WRDMAPER_REG(variant, variant->wrdma_channels + variant->wrdma_channel_start); drvdata->lpaif_map = devm_regmap_init_mmio(dev, drvdata->lpaif, &lpass_cpu_regmap_config); if (IS_ERR(drvdata->lpaif_map)) { dev_err(dev, "error initializing regmap: %ld\n", PTR_ERR(drvdata->lpaif_map)); return PTR_ERR(drvdata->lpaif_map); } if (drvdata->hdmi_port_enable) { drvdata->hdmiif = devm_platform_ioremap_resource_byname(pdev, "lpass-hdmiif"); if (IS_ERR(drvdata->hdmiif)) return PTR_ERR(drvdata->hdmiif); lpass_hdmi_regmap_config.max_register = LPAIF_HDMI_RDMAPER_REG(variant, variant->hdmi_rdma_channels - 1); drvdata->hdmiif_map = devm_regmap_init_mmio(dev, drvdata->hdmiif, &lpass_hdmi_regmap_config); if (IS_ERR(drvdata->hdmiif_map)) { dev_err(dev, "error initializing regmap: %ld\n", PTR_ERR(drvdata->hdmiif_map)); return PTR_ERR(drvdata->hdmiif_map); } } if (variant->init) { ret = variant->init(pdev); if (ret) { dev_err(dev, "error initializing variant: %d\n", ret); return ret; } } for (i = 0; i < variant->num_dai; i++) { dai_id = variant->dai_driver[i].id; if (dai_id == LPASS_DP_RX || is_cdc_dma_port(dai_id)) continue; drvdata->mi2s_osr_clk[dai_id] = devm_clk_get_optional(dev, variant->dai_osr_clk_names[i]); drvdata->mi2s_bit_clk[dai_id] = devm_clk_get(dev, variant->dai_bit_clk_names[i]); if (IS_ERR(drvdata->mi2s_bit_clk[dai_id])) { dev_err(dev, "error getting %s: %ld\n", variant->dai_bit_clk_names[i], PTR_ERR(drvdata->mi2s_bit_clk[dai_id])); return PTR_ERR(drvdata->mi2s_bit_clk[dai_id]); } if (drvdata->mi2s_playback_sd_mode[dai_id] == LPAIF_I2SCTL_MODE_QUAD01) { variant->dai_driver[dai_id].playback.channels_min = 4; variant->dai_driver[dai_id].playback.channels_max = 4; } } /* Allocation for i2sctl regmap fields */ drvdata->i2sctl = devm_kzalloc(&pdev->dev, sizeof(struct lpaif_i2sctl), GFP_KERNEL); /* Initialize bitfields for dai I2SCTL register */ ret = lpass_cpu_init_i2sctl_bitfields(dev, drvdata->i2sctl, drvdata->lpaif_map); if (ret) { dev_err(dev, "error init i2sctl field: %d\n", ret); return ret; } if (drvdata->hdmi_port_enable) { ret = lpass_hdmi_init_bitfields(dev, drvdata->hdmiif_map); if (ret) { dev_err(dev, "%s error hdmi init failed\n", __func__); return ret; } } ret = devm_snd_soc_register_component(dev, &lpass_cpu_comp_driver, variant->dai_driver, variant->num_dai); if (ret) { dev_err(dev, "error registering cpu driver: %d\n", ret); goto err; } ret = asoc_qcom_lpass_platform_register(pdev); if (ret) { dev_err(dev, "error registering platform driver: %d\n", ret); goto err; } err: return ret; } EXPORT_SYMBOL_GPL(asoc_qcom_lpass_cpu_platform_probe); void asoc_qcom_lpass_cpu_platform_remove(struct platform_device *pdev) { struct lpass_data *drvdata = platform_get_drvdata(pdev); if (drvdata->variant->exit) drvdata->variant->exit(pdev); } EXPORT_SYMBOL_GPL(asoc_qcom_lpass_cpu_platform_remove); void asoc_qcom_lpass_cpu_platform_shutdown(struct platform_device *pdev) { struct lpass_data *drvdata = platform_get_drvdata(pdev); if (drvdata->variant->exit) drvdata->variant->exit(pdev); } EXPORT_SYMBOL_GPL(asoc_qcom_lpass_cpu_platform_shutdown); MODULE_DESCRIPTION("QTi LPASS CPU Driver"); MODULE_LICENSE("GPL v2");
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1