Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Liam Girdwood | 890 | 46.62% | 4 | 7.55% |
Ranjani Sridharan | 379 | 19.85% | 10 | 18.87% |
Peter Ujfalusi | 221 | 11.58% | 9 | 16.98% |
Pierre-Louis Bossart | 150 | 7.86% | 12 | 22.64% |
Keyon Jie | 95 | 4.98% | 1 | 1.89% |
Bard Liao | 52 | 2.72% | 5 | 9.43% |
Pan Xiuli | 50 | 2.62% | 2 | 3.77% |
Zhu Yingjiang | 20 | 1.05% | 2 | 3.77% |
Rander Wang | 17 | 0.89% | 2 | 3.77% |
Kai Vehmanen | 16 | 0.84% | 2 | 3.77% |
Fred Oh | 10 | 0.52% | 1 | 1.89% |
Libin Yang | 5 | 0.26% | 1 | 1.89% |
Daniel Baluta | 3 | 0.16% | 1 | 1.89% |
Randy Dunlap | 1 | 0.05% | 1 | 1.89% |
Total | 1909 | 53 |
// SPDX-License-Identifier: (GPL-2.0-only OR BSD-3-Clause) // // This file is provided under a dual BSD/GPLv2 license. When using or // redistributing this file, you may do so under either license. // // Copyright(c) 2018 Intel Corporation. All rights reserved. // // Authors: Liam Girdwood <liam.r.girdwood@linux.intel.com> // Ranjani Sridharan <ranjani.sridharan@linux.intel.com> // Rander Wang <rander.wang@intel.com> // Keyon Jie <yang.jie@linux.intel.com> // /* * Hardware interface for audio DSP on Cannonlake. */ #include <sound/sof/ext_manifest4.h> #include <sound/sof/ipc4/header.h> #include <trace/events/sof_intel.h> #include "../ipc4-priv.h" #include "../ops.h" #include "hda.h" #include "hda-ipc.h" #include "../sof-audio.h" static const struct snd_sof_debugfs_map cnl_dsp_debugfs[] = { {"hda", HDA_DSP_HDA_BAR, 0, 0x4000, SOF_DEBUGFS_ACCESS_ALWAYS}, {"pp", HDA_DSP_PP_BAR, 0, 0x1000, SOF_DEBUGFS_ACCESS_ALWAYS}, {"dsp", HDA_DSP_BAR, 0, 0x10000, SOF_DEBUGFS_ACCESS_ALWAYS}, }; static void cnl_ipc_host_done(struct snd_sof_dev *sdev); static void cnl_ipc_dsp_done(struct snd_sof_dev *sdev); irqreturn_t cnl_ipc4_irq_thread(int irq, void *context) { struct sof_ipc4_msg notification_data = {{ 0 }}; struct snd_sof_dev *sdev = context; bool ack_received = false; bool ipc_irq = false; u32 hipcida, hipctdr; hipcida = snd_sof_dsp_read(sdev, HDA_DSP_BAR, CNL_DSP_REG_HIPCIDA); hipctdr = snd_sof_dsp_read(sdev, HDA_DSP_BAR, CNL_DSP_REG_HIPCTDR); if (hipcida & CNL_DSP_REG_HIPCIDA_DONE) { /* DSP received the message */ snd_sof_dsp_update_bits(sdev, HDA_DSP_BAR, CNL_DSP_REG_HIPCCTL, CNL_DSP_REG_HIPCCTL_DONE, 0); cnl_ipc_dsp_done(sdev); ipc_irq = true; ack_received = true; } if (hipctdr & CNL_DSP_REG_HIPCTDR_BUSY) { /* Message from DSP (reply or notification) */ u32 hipctdd = snd_sof_dsp_read(sdev, HDA_DSP_BAR, CNL_DSP_REG_HIPCTDD); u32 primary = hipctdr & CNL_DSP_REG_HIPCTDR_MSG_MASK; u32 extension = hipctdd & CNL_DSP_REG_HIPCTDD_MSG_MASK; if (primary & SOF_IPC4_MSG_DIR_MASK) { /* Reply received */ if (likely(sdev->fw_state == SOF_FW_BOOT_COMPLETE)) { struct sof_ipc4_msg *data = sdev->ipc->msg.reply_data; data->primary = primary; data->extension = extension; spin_lock_irq(&sdev->ipc_lock); snd_sof_ipc_get_reply(sdev); cnl_ipc_host_done(sdev); snd_sof_ipc_reply(sdev, data->primary); spin_unlock_irq(&sdev->ipc_lock); } else { dev_dbg_ratelimited(sdev->dev, "IPC reply before FW_READY: %#x|%#x\n", primary, extension); } } else { /* Notification received */ notification_data.primary = primary; notification_data.extension = extension; sdev->ipc->msg.rx_data = ¬ification_data; snd_sof_ipc_msgs_rx(sdev); sdev->ipc->msg.rx_data = NULL; /* Let DSP know that we have finished processing the message */ cnl_ipc_host_done(sdev); } ipc_irq = true; } if (!ipc_irq) /* This interrupt is not shared so no need to return IRQ_NONE. */ dev_dbg_ratelimited(sdev->dev, "nothing to do in IPC IRQ thread\n"); if (ack_received) { struct sof_intel_hda_dev *hdev = sdev->pdata->hw_pdata; if (hdev->delayed_ipc_tx_msg) cnl_ipc4_send_msg(sdev, hdev->delayed_ipc_tx_msg); } return IRQ_HANDLED; } irqreturn_t cnl_ipc_irq_thread(int irq, void *context) { struct snd_sof_dev *sdev = context; u32 hipci; u32 hipcida; u32 hipctdr; u32 hipctdd; u32 msg; u32 msg_ext; bool ipc_irq = false; hipcida = snd_sof_dsp_read(sdev, HDA_DSP_BAR, CNL_DSP_REG_HIPCIDA); hipctdr = snd_sof_dsp_read(sdev, HDA_DSP_BAR, CNL_DSP_REG_HIPCTDR); hipctdd = snd_sof_dsp_read(sdev, HDA_DSP_BAR, CNL_DSP_REG_HIPCTDD); hipci = snd_sof_dsp_read(sdev, HDA_DSP_BAR, CNL_DSP_REG_HIPCIDR); /* reply message from DSP */ if (hipcida & CNL_DSP_REG_HIPCIDA_DONE) { msg_ext = hipci & CNL_DSP_REG_HIPCIDR_MSG_MASK; msg = hipcida & CNL_DSP_REG_HIPCIDA_MSG_MASK; trace_sof_intel_ipc_firmware_response(sdev, msg, msg_ext); /* mask Done interrupt */ snd_sof_dsp_update_bits(sdev, HDA_DSP_BAR, CNL_DSP_REG_HIPCCTL, CNL_DSP_REG_HIPCCTL_DONE, 0); if (likely(sdev->fw_state == SOF_FW_BOOT_COMPLETE)) { spin_lock_irq(&sdev->ipc_lock); /* handle immediate reply from DSP core */ hda_dsp_ipc_get_reply(sdev); snd_sof_ipc_reply(sdev, msg); cnl_ipc_dsp_done(sdev); spin_unlock_irq(&sdev->ipc_lock); } else { dev_dbg_ratelimited(sdev->dev, "IPC reply before FW_READY: %#x\n", msg); } ipc_irq = true; } /* new message from DSP */ if (hipctdr & CNL_DSP_REG_HIPCTDR_BUSY) { msg = hipctdr & CNL_DSP_REG_HIPCTDR_MSG_MASK; msg_ext = hipctdd & CNL_DSP_REG_HIPCTDD_MSG_MASK; trace_sof_intel_ipc_firmware_initiated(sdev, msg, msg_ext); /* handle messages from DSP */ if ((hipctdr & SOF_IPC_PANIC_MAGIC_MASK) == SOF_IPC_PANIC_MAGIC) { struct sof_intel_hda_dev *hda = sdev->pdata->hw_pdata; bool non_recoverable = true; /* * This is a PANIC message! * * If it is arriving during firmware boot and it is not * the last boot attempt then change the non_recoverable * to false as the DSP might be able to boot in the next * iteration(s) */ if (sdev->fw_state == SOF_FW_BOOT_IN_PROGRESS && hda->boot_iteration < HDA_FW_BOOT_ATTEMPTS) non_recoverable = false; snd_sof_dsp_panic(sdev, HDA_DSP_PANIC_OFFSET(msg_ext), non_recoverable); } else { snd_sof_ipc_msgs_rx(sdev); } cnl_ipc_host_done(sdev); ipc_irq = true; } if (!ipc_irq) { /* * This interrupt is not shared so no need to return IRQ_NONE. */ dev_dbg_ratelimited(sdev->dev, "nothing to do in IPC IRQ thread\n"); } return IRQ_HANDLED; } static void cnl_ipc_host_done(struct snd_sof_dev *sdev) { /* * clear busy interrupt to tell dsp controller this * interrupt has been accepted, not trigger it again */ snd_sof_dsp_update_bits_forced(sdev, HDA_DSP_BAR, CNL_DSP_REG_HIPCTDR, CNL_DSP_REG_HIPCTDR_BUSY, CNL_DSP_REG_HIPCTDR_BUSY); /* * set done bit to ack dsp the msg has been * processed and send reply msg to dsp */ snd_sof_dsp_update_bits_forced(sdev, HDA_DSP_BAR, CNL_DSP_REG_HIPCTDA, CNL_DSP_REG_HIPCTDA_DONE, CNL_DSP_REG_HIPCTDA_DONE); } static void cnl_ipc_dsp_done(struct snd_sof_dev *sdev) { /* * set DONE bit - tell DSP we have received the reply msg * from DSP, and processed it, don't send more reply to host */ snd_sof_dsp_update_bits_forced(sdev, HDA_DSP_BAR, CNL_DSP_REG_HIPCIDA, CNL_DSP_REG_HIPCIDA_DONE, CNL_DSP_REG_HIPCIDA_DONE); /* unmask Done interrupt */ snd_sof_dsp_update_bits(sdev, HDA_DSP_BAR, CNL_DSP_REG_HIPCCTL, CNL_DSP_REG_HIPCCTL_DONE, CNL_DSP_REG_HIPCCTL_DONE); } static bool cnl_compact_ipc_compress(struct snd_sof_ipc_msg *msg, u32 *dr, u32 *dd) { struct sof_ipc_pm_gate *pm_gate = msg->msg_data; if (pm_gate->hdr.cmd == (SOF_IPC_GLB_PM_MSG | SOF_IPC_PM_GATE)) { /* send the compact message via the primary register */ *dr = HDA_IPC_MSG_COMPACT | HDA_IPC_PM_GATE; /* send payload via the extended data register */ *dd = pm_gate->flags; return true; } return false; } int cnl_ipc4_send_msg(struct snd_sof_dev *sdev, struct snd_sof_ipc_msg *msg) { struct sof_intel_hda_dev *hdev = sdev->pdata->hw_pdata; struct sof_ipc4_msg *msg_data = msg->msg_data; if (hda_ipc4_tx_is_busy(sdev)) { hdev->delayed_ipc_tx_msg = msg; return 0; } hdev->delayed_ipc_tx_msg = NULL; /* send the message via mailbox */ if (msg_data->data_size) sof_mailbox_write(sdev, sdev->host_box.offset, msg_data->data_ptr, msg_data->data_size); snd_sof_dsp_write(sdev, HDA_DSP_BAR, CNL_DSP_REG_HIPCIDD, msg_data->extension); snd_sof_dsp_write(sdev, HDA_DSP_BAR, CNL_DSP_REG_HIPCIDR, msg_data->primary | CNL_DSP_REG_HIPCIDR_BUSY); hda_dsp_ipc4_schedule_d0i3_work(hdev, msg); return 0; } int cnl_ipc_send_msg(struct snd_sof_dev *sdev, struct snd_sof_ipc_msg *msg) { struct sof_intel_hda_dev *hdev = sdev->pdata->hw_pdata; struct sof_ipc_cmd_hdr *hdr; u32 dr = 0; u32 dd = 0; /* * Currently the only compact IPC supported is the PM_GATE * IPC which is used for transitioning the DSP between the * D0I0 and D0I3 states. And these are sent only during the * set_power_state() op. Therefore, there will never be a case * that a compact IPC results in the DSP exiting D0I3 without * the host and FW being in sync. */ if (cnl_compact_ipc_compress(msg, &dr, &dd)) { /* send the message via IPC registers */ snd_sof_dsp_write(sdev, HDA_DSP_BAR, CNL_DSP_REG_HIPCIDD, dd); snd_sof_dsp_write(sdev, HDA_DSP_BAR, CNL_DSP_REG_HIPCIDR, CNL_DSP_REG_HIPCIDR_BUSY | dr); return 0; } /* send the message via mailbox */ sof_mailbox_write(sdev, sdev->host_box.offset, msg->msg_data, msg->msg_size); snd_sof_dsp_write(sdev, HDA_DSP_BAR, CNL_DSP_REG_HIPCIDR, CNL_DSP_REG_HIPCIDR_BUSY); hdr = msg->msg_data; /* * Use mod_delayed_work() to schedule the delayed work * to avoid scheduling multiple workqueue items when * IPCs are sent at a high-rate. mod_delayed_work() * modifies the timer if the work is pending. * Also, a new delayed work should not be queued after the * CTX_SAVE IPC, which is sent before the DSP enters D3. */ if (hdr->cmd != (SOF_IPC_GLB_PM_MSG | SOF_IPC_PM_CTX_SAVE)) mod_delayed_work(system_wq, &hdev->d0i3_work, msecs_to_jiffies(SOF_HDA_D0I3_WORK_DELAY_MS)); return 0; } void cnl_ipc_dump(struct snd_sof_dev *sdev) { u32 hipcctl; u32 hipcida; u32 hipctdr; hda_ipc_irq_dump(sdev); /* read IPC status */ hipcida = snd_sof_dsp_read(sdev, HDA_DSP_BAR, CNL_DSP_REG_HIPCIDA); hipcctl = snd_sof_dsp_read(sdev, HDA_DSP_BAR, CNL_DSP_REG_HIPCCTL); hipctdr = snd_sof_dsp_read(sdev, HDA_DSP_BAR, CNL_DSP_REG_HIPCTDR); /* dump the IPC regs */ /* TODO: parse the raw msg */ dev_err(sdev->dev, "error: host status 0x%8.8x dsp status 0x%8.8x mask 0x%8.8x\n", hipcida, hipctdr, hipcctl); } void cnl_ipc4_dump(struct snd_sof_dev *sdev) { u32 hipcidr, hipcidd, hipcida, hipctdr, hipctdd, hipctda, hipcctl; hda_ipc_irq_dump(sdev); hipcidr = snd_sof_dsp_read(sdev, HDA_DSP_BAR, CNL_DSP_REG_HIPCIDR); hipcidd = snd_sof_dsp_read(sdev, HDA_DSP_BAR, CNL_DSP_REG_HIPCIDD); hipcida = snd_sof_dsp_read(sdev, HDA_DSP_BAR, CNL_DSP_REG_HIPCIDA); hipctdr = snd_sof_dsp_read(sdev, HDA_DSP_BAR, CNL_DSP_REG_HIPCTDR); hipctdd = snd_sof_dsp_read(sdev, HDA_DSP_BAR, CNL_DSP_REG_HIPCTDD); hipctda = snd_sof_dsp_read(sdev, HDA_DSP_BAR, CNL_DSP_REG_HIPCTDA); hipcctl = snd_sof_dsp_read(sdev, HDA_DSP_BAR, CNL_DSP_REG_HIPCCTL); /* dump the IPC regs */ /* TODO: parse the raw msg */ dev_err(sdev->dev, "Host IPC initiator: %#x|%#x|%#x, target: %#x|%#x|%#x, ctl: %#x\n", hipcidr, hipcidd, hipcida, hipctdr, hipctdd, hipctda, hipcctl); } /* cannonlake ops */ struct snd_sof_dsp_ops sof_cnl_ops; EXPORT_SYMBOL_NS(sof_cnl_ops, SND_SOC_SOF_INTEL_HDA_COMMON); int sof_cnl_ops_init(struct snd_sof_dev *sdev) { /* common defaults */ memcpy(&sof_cnl_ops, &sof_hda_common_ops, sizeof(struct snd_sof_dsp_ops)); /* probe/remove/shutdown */ sof_cnl_ops.shutdown = hda_dsp_shutdown; /* ipc */ if (sdev->pdata->ipc_type == SOF_IPC_TYPE_3) { /* doorbell */ sof_cnl_ops.irq_thread = cnl_ipc_irq_thread; /* ipc */ sof_cnl_ops.send_msg = cnl_ipc_send_msg; /* debug */ sof_cnl_ops.ipc_dump = cnl_ipc_dump; sof_cnl_ops.set_power_state = hda_dsp_set_power_state_ipc3; } if (sdev->pdata->ipc_type == SOF_IPC_TYPE_4) { struct sof_ipc4_fw_data *ipc4_data; sdev->private = devm_kzalloc(sdev->dev, sizeof(*ipc4_data), GFP_KERNEL); if (!sdev->private) return -ENOMEM; ipc4_data = sdev->private; ipc4_data->manifest_fw_hdr_offset = SOF_MAN4_FW_HDR_OFFSET; ipc4_data->mtrace_type = SOF_IPC4_MTRACE_INTEL_CAVS_1_8; /* External library loading support */ ipc4_data->load_library = hda_dsp_ipc4_load_library; /* doorbell */ sof_cnl_ops.irq_thread = cnl_ipc4_irq_thread; /* ipc */ sof_cnl_ops.send_msg = cnl_ipc4_send_msg; /* debug */ sof_cnl_ops.ipc_dump = cnl_ipc4_dump; sof_cnl_ops.set_power_state = hda_dsp_set_power_state_ipc4; } /* set DAI driver ops */ hda_set_dai_drv_ops(sdev, &sof_cnl_ops); /* debug */ sof_cnl_ops.debug_map = cnl_dsp_debugfs; sof_cnl_ops.debug_map_count = ARRAY_SIZE(cnl_dsp_debugfs); /* pre/post fw run */ sof_cnl_ops.post_fw_run = hda_dsp_post_fw_run; /* firmware run */ sof_cnl_ops.run = hda_dsp_cl_boot_firmware; /* dsp core get/put */ sof_cnl_ops.core_get = hda_dsp_core_get; return 0; }; EXPORT_SYMBOL_NS(sof_cnl_ops_init, SND_SOC_SOF_INTEL_HDA_COMMON); const struct sof_intel_dsp_desc cnl_chip_info = { /* Cannonlake */ .cores_num = 4, .init_core_mask = 1, .host_managed_cores_mask = GENMASK(3, 0), .ipc_req = CNL_DSP_REG_HIPCIDR, .ipc_req_mask = CNL_DSP_REG_HIPCIDR_BUSY, .ipc_ack = CNL_DSP_REG_HIPCIDA, .ipc_ack_mask = CNL_DSP_REG_HIPCIDA_DONE, .ipc_ctl = CNL_DSP_REG_HIPCCTL, .rom_status_reg = HDA_DSP_SRAM_REG_ROM_STATUS, .rom_init_timeout = 300, .ssp_count = CNL_SSP_COUNT, .ssp_base_offset = CNL_SSP_BASE_OFFSET, .sdw_shim_base = SDW_SHIM_BASE, .sdw_alh_base = SDW_ALH_BASE, .d0i3_offset = SOF_HDA_VS_D0I3C, .read_sdw_lcount = hda_sdw_check_lcount_common, .enable_sdw_irq = hda_common_enable_sdw_irq, .check_sdw_irq = hda_common_check_sdw_irq, .check_sdw_wakeen_irq = hda_sdw_check_wakeen_irq_common, .check_ipc_irq = hda_dsp_check_ipc_irq, .cl_init = cl_dsp_init, .power_down_dsp = hda_power_down_dsp, .disable_interrupts = hda_dsp_disable_interrupts, .hw_ip_version = SOF_INTEL_CAVS_1_8, }; EXPORT_SYMBOL_NS(cnl_chip_info, SND_SOC_SOF_INTEL_HDA_COMMON); /* * JasperLake is technically derived from IceLake, and should be in * described in icl.c. However since JasperLake was designed with * two cores, it cannot support the IceLake-specific power-up sequences * which rely on core3. To simplify, JasperLake uses the CannonLake ops and * is described in cnl.c */ const struct sof_intel_dsp_desc jsl_chip_info = { /* Jasperlake */ .cores_num = 2, .init_core_mask = 1, .host_managed_cores_mask = GENMASK(1, 0), .ipc_req = CNL_DSP_REG_HIPCIDR, .ipc_req_mask = CNL_DSP_REG_HIPCIDR_BUSY, .ipc_ack = CNL_DSP_REG_HIPCIDA, .ipc_ack_mask = CNL_DSP_REG_HIPCIDA_DONE, .ipc_ctl = CNL_DSP_REG_HIPCCTL, .rom_status_reg = HDA_DSP_SRAM_REG_ROM_STATUS, .rom_init_timeout = 300, .ssp_count = ICL_SSP_COUNT, .ssp_base_offset = CNL_SSP_BASE_OFFSET, .sdw_shim_base = SDW_SHIM_BASE, .sdw_alh_base = SDW_ALH_BASE, .d0i3_offset = SOF_HDA_VS_D0I3C, .read_sdw_lcount = hda_sdw_check_lcount_common, .enable_sdw_irq = hda_common_enable_sdw_irq, .check_sdw_irq = hda_common_check_sdw_irq, .check_sdw_wakeen_irq = hda_sdw_check_wakeen_irq_common, .check_ipc_irq = hda_dsp_check_ipc_irq, .cl_init = cl_dsp_init, .power_down_dsp = hda_power_down_dsp, .disable_interrupts = hda_dsp_disable_interrupts, .hw_ip_version = SOF_INTEL_CAVS_2_0, }; EXPORT_SYMBOL_NS(jsl_chip_info, SND_SOC_SOF_INTEL_HDA_COMMON);
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1