Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Baolin Wang | 3887 | 99.03% | 1 | 16.67% |
Wei Yongjun | 16 | 0.41% | 2 | 33.33% |
Andy Shevchenko | 16 | 0.41% | 1 | 16.67% |
Yang Yingliang | 4 | 0.10% | 1 | 16.67% |
Uwe Kleine-König | 2 | 0.05% | 1 | 16.67% |
Total | 3925 | 6 |
// SPDX-License-Identifier: GPL-2.0 // Copyright (C) 2019 Spreadtrum Communications Inc. #include <linux/errno.h> #include <linux/interrupt.h> #include <linux/io.h> #include <linux/kernel.h> #include <linux/module.h> #include <linux/mutex.h> #include <linux/of.h> #include <linux/platform_device.h> #include <linux/spinlock.h> #include "sprd-mcdt.h" /* MCDT registers definition */ #define MCDT_CH0_TXD 0x0 #define MCDT_CH0_RXD 0x28 #define MCDT_DAC0_WTMK 0x60 #define MCDT_ADC0_WTMK 0x88 #define MCDT_DMA_EN 0xb0 #define MCDT_INT_EN0 0xb4 #define MCDT_INT_EN1 0xb8 #define MCDT_INT_EN2 0xbc #define MCDT_INT_CLR0 0xc0 #define MCDT_INT_CLR1 0xc4 #define MCDT_INT_CLR2 0xc8 #define MCDT_INT_RAW1 0xcc #define MCDT_INT_RAW2 0xd0 #define MCDT_INT_RAW3 0xd4 #define MCDT_INT_MSK1 0xd8 #define MCDT_INT_MSK2 0xdc #define MCDT_INT_MSK3 0xe0 #define MCDT_DAC0_FIFO_ADDR_ST 0xe4 #define MCDT_ADC0_FIFO_ADDR_ST 0xe8 #define MCDT_CH_FIFO_ST0 0x134 #define MCDT_CH_FIFO_ST1 0x138 #define MCDT_CH_FIFO_ST2 0x13c #define MCDT_INT_MSK_CFG0 0x140 #define MCDT_INT_MSK_CFG1 0x144 #define MCDT_DMA_CFG0 0x148 #define MCDT_FIFO_CLR 0x14c #define MCDT_DMA_CFG1 0x150 #define MCDT_DMA_CFG2 0x154 #define MCDT_DMA_CFG3 0x158 #define MCDT_DMA_CFG4 0x15c #define MCDT_DMA_CFG5 0x160 /* Channel water mark definition */ #define MCDT_CH_FIFO_AE_SHIFT 16 #define MCDT_CH_FIFO_AE_MASK GENMASK(24, 16) #define MCDT_CH_FIFO_AF_MASK GENMASK(8, 0) /* DMA channel select definition */ #define MCDT_DMA_CH0_SEL_MASK GENMASK(3, 0) #define MCDT_DMA_CH0_SEL_SHIFT 0 #define MCDT_DMA_CH1_SEL_MASK GENMASK(7, 4) #define MCDT_DMA_CH1_SEL_SHIFT 4 #define MCDT_DMA_CH2_SEL_MASK GENMASK(11, 8) #define MCDT_DMA_CH2_SEL_SHIFT 8 #define MCDT_DMA_CH3_SEL_MASK GENMASK(15, 12) #define MCDT_DMA_CH3_SEL_SHIFT 12 #define MCDT_DMA_CH4_SEL_MASK GENMASK(19, 16) #define MCDT_DMA_CH4_SEL_SHIFT 16 #define MCDT_DAC_DMA_SHIFT 16 /* DMA channel ACK select definition */ #define MCDT_DMA_ACK_SEL_MASK GENMASK(3, 0) /* Channel FIFO definition */ #define MCDT_CH_FIFO_ADDR_SHIFT 16 #define MCDT_CH_FIFO_ADDR_MASK GENMASK(9, 0) #define MCDT_ADC_FIFO_SHIFT 16 #define MCDT_FIFO_LENGTH 512 #define MCDT_ADC_CHANNEL_NUM 10 #define MCDT_DAC_CHANNEL_NUM 10 #define MCDT_CHANNEL_NUM (MCDT_ADC_CHANNEL_NUM + MCDT_DAC_CHANNEL_NUM) enum sprd_mcdt_fifo_int { MCDT_ADC_FIFO_AE_INT, MCDT_ADC_FIFO_AF_INT, MCDT_DAC_FIFO_AE_INT, MCDT_DAC_FIFO_AF_INT, MCDT_ADC_FIFO_OV_INT, MCDT_DAC_FIFO_OV_INT }; enum sprd_mcdt_fifo_sts { MCDT_ADC_FIFO_REAL_FULL, MCDT_ADC_FIFO_REAL_EMPTY, MCDT_ADC_FIFO_AF, MCDT_ADC_FIFO_AE, MCDT_DAC_FIFO_REAL_FULL, MCDT_DAC_FIFO_REAL_EMPTY, MCDT_DAC_FIFO_AF, MCDT_DAC_FIFO_AE }; struct sprd_mcdt_dev { struct device *dev; void __iomem *base; spinlock_t lock; struct sprd_mcdt_chan chan[MCDT_CHANNEL_NUM]; }; static LIST_HEAD(sprd_mcdt_chan_list); static DEFINE_MUTEX(sprd_mcdt_list_mutex); static void sprd_mcdt_update(struct sprd_mcdt_dev *mcdt, u32 reg, u32 val, u32 mask) { u32 orig = readl_relaxed(mcdt->base + reg); u32 tmp; tmp = (orig & ~mask) | val; writel_relaxed(tmp, mcdt->base + reg); } static void sprd_mcdt_dac_set_watermark(struct sprd_mcdt_dev *mcdt, u8 channel, u32 full, u32 empty) { u32 reg = MCDT_DAC0_WTMK + channel * 4; u32 water_mark = (empty << MCDT_CH_FIFO_AE_SHIFT) & MCDT_CH_FIFO_AE_MASK; water_mark |= full & MCDT_CH_FIFO_AF_MASK; sprd_mcdt_update(mcdt, reg, water_mark, MCDT_CH_FIFO_AE_MASK | MCDT_CH_FIFO_AF_MASK); } static void sprd_mcdt_adc_set_watermark(struct sprd_mcdt_dev *mcdt, u8 channel, u32 full, u32 empty) { u32 reg = MCDT_ADC0_WTMK + channel * 4; u32 water_mark = (empty << MCDT_CH_FIFO_AE_SHIFT) & MCDT_CH_FIFO_AE_MASK; water_mark |= full & MCDT_CH_FIFO_AF_MASK; sprd_mcdt_update(mcdt, reg, water_mark, MCDT_CH_FIFO_AE_MASK | MCDT_CH_FIFO_AF_MASK); } static void sprd_mcdt_dac_dma_enable(struct sprd_mcdt_dev *mcdt, u8 channel, bool enable) { u32 shift = MCDT_DAC_DMA_SHIFT + channel; if (enable) sprd_mcdt_update(mcdt, MCDT_DMA_EN, BIT(shift), BIT(shift)); else sprd_mcdt_update(mcdt, MCDT_DMA_EN, 0, BIT(shift)); } static void sprd_mcdt_adc_dma_enable(struct sprd_mcdt_dev *mcdt, u8 channel, bool enable) { if (enable) sprd_mcdt_update(mcdt, MCDT_DMA_EN, BIT(channel), BIT(channel)); else sprd_mcdt_update(mcdt, MCDT_DMA_EN, 0, BIT(channel)); } static void sprd_mcdt_ap_int_enable(struct sprd_mcdt_dev *mcdt, u8 channel, bool enable) { if (enable) sprd_mcdt_update(mcdt, MCDT_INT_MSK_CFG0, BIT(channel), BIT(channel)); else sprd_mcdt_update(mcdt, MCDT_INT_MSK_CFG0, 0, BIT(channel)); } static void sprd_mcdt_dac_write_fifo(struct sprd_mcdt_dev *mcdt, u8 channel, u32 val) { u32 reg = MCDT_CH0_TXD + channel * 4; writel_relaxed(val, mcdt->base + reg); } static void sprd_mcdt_adc_read_fifo(struct sprd_mcdt_dev *mcdt, u8 channel, u32 *val) { u32 reg = MCDT_CH0_RXD + channel * 4; *val = readl_relaxed(mcdt->base + reg); } static void sprd_mcdt_dac_dma_chn_select(struct sprd_mcdt_dev *mcdt, u8 channel, enum sprd_mcdt_dma_chan dma_chan) { switch (dma_chan) { case SPRD_MCDT_DMA_CH0: sprd_mcdt_update(mcdt, MCDT_DMA_CFG0, channel << MCDT_DMA_CH0_SEL_SHIFT, MCDT_DMA_CH0_SEL_MASK); break; case SPRD_MCDT_DMA_CH1: sprd_mcdt_update(mcdt, MCDT_DMA_CFG0, channel << MCDT_DMA_CH1_SEL_SHIFT, MCDT_DMA_CH1_SEL_MASK); break; case SPRD_MCDT_DMA_CH2: sprd_mcdt_update(mcdt, MCDT_DMA_CFG0, channel << MCDT_DMA_CH2_SEL_SHIFT, MCDT_DMA_CH2_SEL_MASK); break; case SPRD_MCDT_DMA_CH3: sprd_mcdt_update(mcdt, MCDT_DMA_CFG0, channel << MCDT_DMA_CH3_SEL_SHIFT, MCDT_DMA_CH3_SEL_MASK); break; case SPRD_MCDT_DMA_CH4: sprd_mcdt_update(mcdt, MCDT_DMA_CFG0, channel << MCDT_DMA_CH4_SEL_SHIFT, MCDT_DMA_CH4_SEL_MASK); break; } } static void sprd_mcdt_adc_dma_chn_select(struct sprd_mcdt_dev *mcdt, u8 channel, enum sprd_mcdt_dma_chan dma_chan) { switch (dma_chan) { case SPRD_MCDT_DMA_CH0: sprd_mcdt_update(mcdt, MCDT_DMA_CFG1, channel << MCDT_DMA_CH0_SEL_SHIFT, MCDT_DMA_CH0_SEL_MASK); break; case SPRD_MCDT_DMA_CH1: sprd_mcdt_update(mcdt, MCDT_DMA_CFG1, channel << MCDT_DMA_CH1_SEL_SHIFT, MCDT_DMA_CH1_SEL_MASK); break; case SPRD_MCDT_DMA_CH2: sprd_mcdt_update(mcdt, MCDT_DMA_CFG1, channel << MCDT_DMA_CH2_SEL_SHIFT, MCDT_DMA_CH2_SEL_MASK); break; case SPRD_MCDT_DMA_CH3: sprd_mcdt_update(mcdt, MCDT_DMA_CFG1, channel << MCDT_DMA_CH3_SEL_SHIFT, MCDT_DMA_CH3_SEL_MASK); break; case SPRD_MCDT_DMA_CH4: sprd_mcdt_update(mcdt, MCDT_DMA_CFG1, channel << MCDT_DMA_CH4_SEL_SHIFT, MCDT_DMA_CH4_SEL_MASK); break; } } static u32 sprd_mcdt_dma_ack_shift(u8 channel) { switch (channel) { default: case 0: case 8: return 0; case 1: case 9: return 4; case 2: return 8; case 3: return 12; case 4: return 16; case 5: return 20; case 6: return 24; case 7: return 28; } } static void sprd_mcdt_dac_dma_ack_select(struct sprd_mcdt_dev *mcdt, u8 channel, enum sprd_mcdt_dma_chan dma_chan) { u32 reg, shift = sprd_mcdt_dma_ack_shift(channel), ack = dma_chan; switch (channel) { case 0 ... 7: reg = MCDT_DMA_CFG2; break; case 8 ... 9: reg = MCDT_DMA_CFG3; break; default: return; } sprd_mcdt_update(mcdt, reg, ack << shift, MCDT_DMA_ACK_SEL_MASK << shift); } static void sprd_mcdt_adc_dma_ack_select(struct sprd_mcdt_dev *mcdt, u8 channel, enum sprd_mcdt_dma_chan dma_chan) { u32 reg, shift = sprd_mcdt_dma_ack_shift(channel), ack = dma_chan; switch (channel) { case 0 ... 7: reg = MCDT_DMA_CFG4; break; case 8 ... 9: reg = MCDT_DMA_CFG5; break; default: return; } sprd_mcdt_update(mcdt, reg, ack << shift, MCDT_DMA_ACK_SEL_MASK << shift); } static bool sprd_mcdt_chan_fifo_sts(struct sprd_mcdt_dev *mcdt, u8 channel, enum sprd_mcdt_fifo_sts fifo_sts) { u32 reg, shift; switch (channel) { case 0 ... 3: reg = MCDT_CH_FIFO_ST0; break; case 4 ... 7: reg = MCDT_CH_FIFO_ST1; break; case 8 ... 9: reg = MCDT_CH_FIFO_ST2; break; default: return false; } switch (channel) { case 0: case 4: case 8: shift = fifo_sts; break; case 1: case 5: case 9: shift = 8 + fifo_sts; break; case 2: case 6: shift = 16 + fifo_sts; break; case 3: case 7: shift = 24 + fifo_sts; break; default: return false; } return !!(readl_relaxed(mcdt->base + reg) & BIT(shift)); } static void sprd_mcdt_dac_fifo_clear(struct sprd_mcdt_dev *mcdt, u8 channel) { sprd_mcdt_update(mcdt, MCDT_FIFO_CLR, BIT(channel), BIT(channel)); } static void sprd_mcdt_adc_fifo_clear(struct sprd_mcdt_dev *mcdt, u8 channel) { u32 shift = MCDT_ADC_FIFO_SHIFT + channel; sprd_mcdt_update(mcdt, MCDT_FIFO_CLR, BIT(shift), BIT(shift)); } static u32 sprd_mcdt_dac_fifo_avail(struct sprd_mcdt_dev *mcdt, u8 channel) { u32 reg = MCDT_DAC0_FIFO_ADDR_ST + channel * 8; u32 r_addr = (readl_relaxed(mcdt->base + reg) >> MCDT_CH_FIFO_ADDR_SHIFT) & MCDT_CH_FIFO_ADDR_MASK; u32 w_addr = readl_relaxed(mcdt->base + reg) & MCDT_CH_FIFO_ADDR_MASK; if (w_addr >= r_addr) return 4 * (MCDT_FIFO_LENGTH - w_addr + r_addr); else return 4 * (r_addr - w_addr); } static u32 sprd_mcdt_adc_fifo_avail(struct sprd_mcdt_dev *mcdt, u8 channel) { u32 reg = MCDT_ADC0_FIFO_ADDR_ST + channel * 8; u32 r_addr = (readl_relaxed(mcdt->base + reg) >> MCDT_CH_FIFO_ADDR_SHIFT) & MCDT_CH_FIFO_ADDR_MASK; u32 w_addr = readl_relaxed(mcdt->base + reg) & MCDT_CH_FIFO_ADDR_MASK; if (w_addr >= r_addr) return 4 * (w_addr - r_addr); else return 4 * (MCDT_FIFO_LENGTH - r_addr + w_addr); } static u32 sprd_mcdt_int_type_shift(u8 channel, enum sprd_mcdt_fifo_int int_type) { switch (channel) { case 0: case 4: case 8: return int_type; case 1: case 5: case 9: return 8 + int_type; case 2: case 6: return 16 + int_type; case 3: case 7: return 24 + int_type; default: return 0; } } static void sprd_mcdt_chan_int_en(struct sprd_mcdt_dev *mcdt, u8 channel, enum sprd_mcdt_fifo_int int_type, bool enable) { u32 reg, shift = sprd_mcdt_int_type_shift(channel, int_type); switch (channel) { case 0 ... 3: reg = MCDT_INT_EN0; break; case 4 ... 7: reg = MCDT_INT_EN1; break; case 8 ... 9: reg = MCDT_INT_EN2; break; default: return; } if (enable) sprd_mcdt_update(mcdt, reg, BIT(shift), BIT(shift)); else sprd_mcdt_update(mcdt, reg, 0, BIT(shift)); } static void sprd_mcdt_chan_int_clear(struct sprd_mcdt_dev *mcdt, u8 channel, enum sprd_mcdt_fifo_int int_type) { u32 reg, shift = sprd_mcdt_int_type_shift(channel, int_type); switch (channel) { case 0 ... 3: reg = MCDT_INT_CLR0; break; case 4 ... 7: reg = MCDT_INT_CLR1; break; case 8 ... 9: reg = MCDT_INT_CLR2; break; default: return; } sprd_mcdt_update(mcdt, reg, BIT(shift), BIT(shift)); } static bool sprd_mcdt_chan_int_sts(struct sprd_mcdt_dev *mcdt, u8 channel, enum sprd_mcdt_fifo_int int_type) { u32 reg, shift = sprd_mcdt_int_type_shift(channel, int_type); switch (channel) { case 0 ... 3: reg = MCDT_INT_MSK1; break; case 4 ... 7: reg = MCDT_INT_MSK2; break; case 8 ... 9: reg = MCDT_INT_MSK3; break; default: return false; } return !!(readl_relaxed(mcdt->base + reg) & BIT(shift)); } static irqreturn_t sprd_mcdt_irq_handler(int irq, void *dev_id) { struct sprd_mcdt_dev *mcdt = (struct sprd_mcdt_dev *)dev_id; int i; spin_lock(&mcdt->lock); for (i = 0; i < MCDT_ADC_CHANNEL_NUM; i++) { if (sprd_mcdt_chan_int_sts(mcdt, i, MCDT_ADC_FIFO_AF_INT)) { struct sprd_mcdt_chan *chan = &mcdt->chan[i]; sprd_mcdt_chan_int_clear(mcdt, i, MCDT_ADC_FIFO_AF_INT); if (chan->cb) chan->cb->notify(chan->cb->data); } } for (i = 0; i < MCDT_DAC_CHANNEL_NUM; i++) { if (sprd_mcdt_chan_int_sts(mcdt, i, MCDT_DAC_FIFO_AE_INT)) { struct sprd_mcdt_chan *chan = &mcdt->chan[i + MCDT_ADC_CHANNEL_NUM]; sprd_mcdt_chan_int_clear(mcdt, i, MCDT_DAC_FIFO_AE_INT); if (chan->cb) chan->cb->notify(chan->cb->data); } } spin_unlock(&mcdt->lock); return IRQ_HANDLED; } /** * sprd_mcdt_chan_write - write data to the MCDT channel's fifo * @chan: the MCDT channel * @tx_buf: send buffer * @size: data size * * Note: We can not write data to the channel fifo when enabling the DMA mode, * otherwise the channel fifo data will be invalid. * * If there are not enough space of the channel fifo, it will return errors * to users. * * Returns 0 on success, or an appropriate error code on failure. */ int sprd_mcdt_chan_write(struct sprd_mcdt_chan *chan, char *tx_buf, u32 size) { struct sprd_mcdt_dev *mcdt = chan->mcdt; unsigned long flags; int avail, i = 0, words = size / 4; u32 *buf = (u32 *)tx_buf; spin_lock_irqsave(&mcdt->lock, flags); if (chan->dma_enable) { dev_err(mcdt->dev, "Can not write data when DMA mode enabled\n"); spin_unlock_irqrestore(&mcdt->lock, flags); return -EINVAL; } if (sprd_mcdt_chan_fifo_sts(mcdt, chan->id, MCDT_DAC_FIFO_REAL_FULL)) { dev_err(mcdt->dev, "Channel fifo is full now\n"); spin_unlock_irqrestore(&mcdt->lock, flags); return -EBUSY; } avail = sprd_mcdt_dac_fifo_avail(mcdt, chan->id); if (size > avail) { dev_err(mcdt->dev, "Data size is larger than the available fifo size\n"); spin_unlock_irqrestore(&mcdt->lock, flags); return -EBUSY; } while (i++ < words) sprd_mcdt_dac_write_fifo(mcdt, chan->id, *buf++); spin_unlock_irqrestore(&mcdt->lock, flags); return 0; } EXPORT_SYMBOL_GPL(sprd_mcdt_chan_write); /** * sprd_mcdt_chan_read - read data from the MCDT channel's fifo * @chan: the MCDT channel * @rx_buf: receive buffer * @size: data size * * Note: We can not read data from the channel fifo when enabling the DMA mode, * otherwise the reading data will be invalid. * * Usually user need start to read data once receiving the fifo full interrupt. * * Returns data size of reading successfully, or an error code on failure. */ int sprd_mcdt_chan_read(struct sprd_mcdt_chan *chan, char *rx_buf, u32 size) { struct sprd_mcdt_dev *mcdt = chan->mcdt; unsigned long flags; int i = 0, avail, words = size / 4; u32 *buf = (u32 *)rx_buf; spin_lock_irqsave(&mcdt->lock, flags); if (chan->dma_enable) { dev_err(mcdt->dev, "Can not read data when DMA mode enabled\n"); spin_unlock_irqrestore(&mcdt->lock, flags); return -EINVAL; } if (sprd_mcdt_chan_fifo_sts(mcdt, chan->id, MCDT_ADC_FIFO_REAL_EMPTY)) { dev_err(mcdt->dev, "Channel fifo is empty\n"); spin_unlock_irqrestore(&mcdt->lock, flags); return -EBUSY; } avail = sprd_mcdt_adc_fifo_avail(mcdt, chan->id); if (size > avail) words = avail / 4; while (i++ < words) sprd_mcdt_adc_read_fifo(mcdt, chan->id, buf++); spin_unlock_irqrestore(&mcdt->lock, flags); return words * 4; } EXPORT_SYMBOL_GPL(sprd_mcdt_chan_read); /** * sprd_mcdt_chan_int_enable - enable the interrupt mode for the MCDT channel * @chan: the MCDT channel * @water_mark: water mark to trigger a interrupt * @cb: callback when a interrupt happened * * Now it only can enable fifo almost full interrupt for ADC channel and fifo * almost empty interrupt for DAC channel. Morevoer for interrupt mode, user * should use sprd_mcdt_chan_read() or sprd_mcdt_chan_write() to read or write * data manually. * * For ADC channel, user can start to read data once receiving one fifo full * interrupt. For DAC channel, user can start to write data once receiving one * fifo empty interrupt or just call sprd_mcdt_chan_write() to write data * directly. * * Returns 0 on success, or an error code on failure. */ int sprd_mcdt_chan_int_enable(struct sprd_mcdt_chan *chan, u32 water_mark, struct sprd_mcdt_chan_callback *cb) { struct sprd_mcdt_dev *mcdt = chan->mcdt; unsigned long flags; int ret = 0; spin_lock_irqsave(&mcdt->lock, flags); if (chan->dma_enable || chan->int_enable) { dev_err(mcdt->dev, "Failed to set interrupt mode.\n"); spin_unlock_irqrestore(&mcdt->lock, flags); return -EINVAL; } switch (chan->type) { case SPRD_MCDT_ADC_CHAN: sprd_mcdt_adc_fifo_clear(mcdt, chan->id); sprd_mcdt_adc_set_watermark(mcdt, chan->id, water_mark, MCDT_FIFO_LENGTH - 1); sprd_mcdt_chan_int_en(mcdt, chan->id, MCDT_ADC_FIFO_AF_INT, true); sprd_mcdt_ap_int_enable(mcdt, chan->id, true); break; case SPRD_MCDT_DAC_CHAN: sprd_mcdt_dac_fifo_clear(mcdt, chan->id); sprd_mcdt_dac_set_watermark(mcdt, chan->id, MCDT_FIFO_LENGTH - 1, water_mark); sprd_mcdt_chan_int_en(mcdt, chan->id, MCDT_DAC_FIFO_AE_INT, true); sprd_mcdt_ap_int_enable(mcdt, chan->id, true); break; default: dev_err(mcdt->dev, "Unsupported channel type\n"); ret = -EINVAL; } if (!ret) { chan->cb = cb; chan->int_enable = true; } spin_unlock_irqrestore(&mcdt->lock, flags); return ret; } EXPORT_SYMBOL_GPL(sprd_mcdt_chan_int_enable); /** * sprd_mcdt_chan_int_disable - disable the interrupt mode for the MCDT channel * @chan: the MCDT channel */ void sprd_mcdt_chan_int_disable(struct sprd_mcdt_chan *chan) { struct sprd_mcdt_dev *mcdt = chan->mcdt; unsigned long flags; spin_lock_irqsave(&mcdt->lock, flags); if (!chan->int_enable) { spin_unlock_irqrestore(&mcdt->lock, flags); return; } switch (chan->type) { case SPRD_MCDT_ADC_CHAN: sprd_mcdt_chan_int_en(mcdt, chan->id, MCDT_ADC_FIFO_AF_INT, false); sprd_mcdt_chan_int_clear(mcdt, chan->id, MCDT_ADC_FIFO_AF_INT); sprd_mcdt_ap_int_enable(mcdt, chan->id, false); break; case SPRD_MCDT_DAC_CHAN: sprd_mcdt_chan_int_en(mcdt, chan->id, MCDT_DAC_FIFO_AE_INT, false); sprd_mcdt_chan_int_clear(mcdt, chan->id, MCDT_DAC_FIFO_AE_INT); sprd_mcdt_ap_int_enable(mcdt, chan->id, false); break; default: break; } chan->int_enable = false; spin_unlock_irqrestore(&mcdt->lock, flags); } EXPORT_SYMBOL_GPL(sprd_mcdt_chan_int_disable); /** * sprd_mcdt_chan_dma_enable - enable the DMA mode for the MCDT channel * @chan: the MCDT channel * @dma_chan: specify which DMA channel will be used for this MCDT channel * @water_mark: water mark to trigger a DMA request * * Enable the DMA mode for the MCDT channel, that means we can use DMA to * transfer data to the channel fifo and do not need reading/writing data * manually. * * Returns 0 on success, or an error code on failure. */ int sprd_mcdt_chan_dma_enable(struct sprd_mcdt_chan *chan, enum sprd_mcdt_dma_chan dma_chan, u32 water_mark) { struct sprd_mcdt_dev *mcdt = chan->mcdt; unsigned long flags; int ret = 0; spin_lock_irqsave(&mcdt->lock, flags); if (chan->dma_enable || chan->int_enable || dma_chan > SPRD_MCDT_DMA_CH4) { dev_err(mcdt->dev, "Failed to set DMA mode\n"); spin_unlock_irqrestore(&mcdt->lock, flags); return -EINVAL; } switch (chan->type) { case SPRD_MCDT_ADC_CHAN: sprd_mcdt_adc_fifo_clear(mcdt, chan->id); sprd_mcdt_adc_set_watermark(mcdt, chan->id, water_mark, MCDT_FIFO_LENGTH - 1); sprd_mcdt_adc_dma_enable(mcdt, chan->id, true); sprd_mcdt_adc_dma_chn_select(mcdt, chan->id, dma_chan); sprd_mcdt_adc_dma_ack_select(mcdt, chan->id, dma_chan); break; case SPRD_MCDT_DAC_CHAN: sprd_mcdt_dac_fifo_clear(mcdt, chan->id); sprd_mcdt_dac_set_watermark(mcdt, chan->id, MCDT_FIFO_LENGTH - 1, water_mark); sprd_mcdt_dac_dma_enable(mcdt, chan->id, true); sprd_mcdt_dac_dma_chn_select(mcdt, chan->id, dma_chan); sprd_mcdt_dac_dma_ack_select(mcdt, chan->id, dma_chan); break; default: dev_err(mcdt->dev, "Unsupported channel type\n"); ret = -EINVAL; } if (!ret) chan->dma_enable = true; spin_unlock_irqrestore(&mcdt->lock, flags); return ret; } EXPORT_SYMBOL_GPL(sprd_mcdt_chan_dma_enable); /** * sprd_mcdt_chan_dma_disable - disable the DMA mode for the MCDT channel * @chan: the MCDT channel */ void sprd_mcdt_chan_dma_disable(struct sprd_mcdt_chan *chan) { struct sprd_mcdt_dev *mcdt = chan->mcdt; unsigned long flags; spin_lock_irqsave(&mcdt->lock, flags); if (!chan->dma_enable) { spin_unlock_irqrestore(&mcdt->lock, flags); return; } switch (chan->type) { case SPRD_MCDT_ADC_CHAN: sprd_mcdt_adc_dma_enable(mcdt, chan->id, false); sprd_mcdt_adc_fifo_clear(mcdt, chan->id); break; case SPRD_MCDT_DAC_CHAN: sprd_mcdt_dac_dma_enable(mcdt, chan->id, false); sprd_mcdt_dac_fifo_clear(mcdt, chan->id); break; default: break; } chan->dma_enable = false; spin_unlock_irqrestore(&mcdt->lock, flags); } EXPORT_SYMBOL_GPL(sprd_mcdt_chan_dma_disable); /** * sprd_mcdt_request_chan - request one MCDT channel * @channel: channel id * @type: channel type, it can be one ADC channel or DAC channel * * Rreturn NULL if no available channel. */ struct sprd_mcdt_chan *sprd_mcdt_request_chan(u8 channel, enum sprd_mcdt_channel_type type) { struct sprd_mcdt_chan *temp; mutex_lock(&sprd_mcdt_list_mutex); list_for_each_entry(temp, &sprd_mcdt_chan_list, list) { if (temp->type == type && temp->id == channel) { list_del_init(&temp->list); break; } } if (list_entry_is_head(temp, &sprd_mcdt_chan_list, list)) temp = NULL; mutex_unlock(&sprd_mcdt_list_mutex); return temp; } EXPORT_SYMBOL_GPL(sprd_mcdt_request_chan); /** * sprd_mcdt_free_chan - free one MCDT channel * @chan: the channel to be freed */ void sprd_mcdt_free_chan(struct sprd_mcdt_chan *chan) { struct sprd_mcdt_chan *temp; sprd_mcdt_chan_dma_disable(chan); sprd_mcdt_chan_int_disable(chan); mutex_lock(&sprd_mcdt_list_mutex); list_for_each_entry(temp, &sprd_mcdt_chan_list, list) { if (temp == chan) { mutex_unlock(&sprd_mcdt_list_mutex); return; } } list_add_tail(&chan->list, &sprd_mcdt_chan_list); mutex_unlock(&sprd_mcdt_list_mutex); } EXPORT_SYMBOL_GPL(sprd_mcdt_free_chan); static void sprd_mcdt_init_chans(struct sprd_mcdt_dev *mcdt, struct resource *res) { int i; for (i = 0; i < MCDT_CHANNEL_NUM; i++) { struct sprd_mcdt_chan *chan = &mcdt->chan[i]; if (i < MCDT_ADC_CHANNEL_NUM) { chan->id = i; chan->type = SPRD_MCDT_ADC_CHAN; chan->fifo_phys = res->start + MCDT_CH0_RXD + i * 4; } else { chan->id = i - MCDT_ADC_CHANNEL_NUM; chan->type = SPRD_MCDT_DAC_CHAN; chan->fifo_phys = res->start + MCDT_CH0_TXD + (i - MCDT_ADC_CHANNEL_NUM) * 4; } chan->mcdt = mcdt; INIT_LIST_HEAD(&chan->list); mutex_lock(&sprd_mcdt_list_mutex); list_add_tail(&chan->list, &sprd_mcdt_chan_list); mutex_unlock(&sprd_mcdt_list_mutex); } } static int sprd_mcdt_probe(struct platform_device *pdev) { struct sprd_mcdt_dev *mcdt; struct resource *res; int ret, irq; mcdt = devm_kzalloc(&pdev->dev, sizeof(*mcdt), GFP_KERNEL); if (!mcdt) return -ENOMEM; mcdt->base = devm_platform_get_and_ioremap_resource(pdev, 0, &res); if (IS_ERR(mcdt->base)) return PTR_ERR(mcdt->base); mcdt->dev = &pdev->dev; spin_lock_init(&mcdt->lock); platform_set_drvdata(pdev, mcdt); irq = platform_get_irq(pdev, 0); if (irq < 0) return irq; ret = devm_request_irq(&pdev->dev, irq, sprd_mcdt_irq_handler, 0, "sprd-mcdt", mcdt); if (ret) { dev_err(&pdev->dev, "Failed to request MCDT IRQ\n"); return ret; } sprd_mcdt_init_chans(mcdt, res); return 0; } static void sprd_mcdt_remove(struct platform_device *pdev) { struct sprd_mcdt_chan *chan, *temp; mutex_lock(&sprd_mcdt_list_mutex); list_for_each_entry_safe(chan, temp, &sprd_mcdt_chan_list, list) list_del(&chan->list); mutex_unlock(&sprd_mcdt_list_mutex); } static const struct of_device_id sprd_mcdt_of_match[] = { { .compatible = "sprd,sc9860-mcdt", }, { } }; MODULE_DEVICE_TABLE(of, sprd_mcdt_of_match); static struct platform_driver sprd_mcdt_driver = { .probe = sprd_mcdt_probe, .remove_new = sprd_mcdt_remove, .driver = { .name = "sprd-mcdt", .of_match_table = sprd_mcdt_of_match, }, }; module_platform_driver(sprd_mcdt_driver); MODULE_DESCRIPTION("Spreadtrum Multi-Channel Data Transfer Driver"); MODULE_LICENSE("GPL v2");
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1