Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Peter Ujfalusi | 5882 | 52.19% | 96 | 50.26% |
Jyri Sarha | 1762 | 15.63% | 17 | 8.90% |
Chaithrika U S | 1700 | 15.08% | 7 | 3.66% |
Misael Lopez Cruz | 617 | 5.47% | 5 | 2.62% |
Daniel Mack | 562 | 4.99% | 11 | 5.76% |
Hebbar Gururaja | 300 | 2.66% | 4 | 2.09% |
Kuninori Morimoto | 95 | 0.84% | 8 | 4.19% |
Michal Bachraty | 83 | 0.74% | 3 | 1.57% |
Christophe Jaillet | 43 | 0.38% | 2 | 1.05% |
Min-Hua Chen | 27 | 0.24% | 1 | 0.52% |
Liam Girdwood | 25 | 0.22% | 1 | 0.52% |
Arvind Yadav | 22 | 0.20% | 1 | 0.52% |
Ben Gardiner | 13 | 0.12% | 4 | 2.09% |
Jayesh Choudhary | 12 | 0.11% | 1 | 0.52% |
Axel Lin | 12 | 0.11% | 2 | 1.05% |
Shang XiaoJing | 12 | 0.11% | 1 | 0.52% |
Chris Paulson-Ellis | 11 | 0.10% | 1 | 0.52% |
Takashi Iwai | 10 | 0.09% | 2 | 1.05% |
Charles Keepax | 10 | 0.09% | 2 | 1.05% |
Rob Herring | 9 | 0.08% | 1 | 0.52% |
Vaibhav Bedia | 8 | 0.07% | 2 | 1.05% |
Xiyu Yang | 7 | 0.06% | 1 | 0.52% |
Kees Cook | 6 | 0.05% | 1 | 0.52% |
Marek Belisko | 5 | 0.04% | 2 | 1.05% |
Arnd Bergmann | 5 | 0.04% | 1 | 0.52% |
Andy Shevchenko | 5 | 0.04% | 1 | 0.52% |
Yegor Yefremov | 5 | 0.04% | 1 | 0.52% |
Janusz Krzysztofik | 3 | 0.03% | 1 | 0.52% |
Miguel Aguilar | 3 | 0.03% | 1 | 0.52% |
Gustavo A. R. Silva | 2 | 0.02% | 1 | 0.52% |
Linus Torvalds (pre-git) | 2 | 0.02% | 1 | 0.52% |
Julia Lawall | 2 | 0.02% | 1 | 0.52% |
Uwe Kleine-König | 2 | 0.02% | 1 | 0.52% |
Andreas Dannenberg | 2 | 0.02% | 1 | 0.52% |
Thomas Gleixner | 2 | 0.02% | 1 | 0.52% |
Lars-Peter Clausen | 1 | 0.01% | 1 | 0.52% |
Randy Dunlap | 1 | 0.01% | 1 | 0.52% |
Linus Torvalds | 1 | 0.01% | 1 | 0.52% |
Pierre-Louis Bossart | 1 | 0.01% | 1 | 0.52% |
Total | 11270 | 191 |
// SPDX-License-Identifier: GPL-2.0-only /* * ALSA SoC McASP Audio Layer for TI DAVINCI processor * * Multi-channel Audio Serial Port Driver * * Author: Nirmal Pandey <n-pandey@ti.com>, * Suresh Rajashekara <suresh.r@ti.com> * Steve Chen <schen@.mvista.com> * * Copyright: (C) 2009 MontaVista Software, Inc., <source@mvista.com> * Copyright: (C) 2009 Texas Instruments, India */ #include <linux/init.h> #include <linux/module.h> #include <linux/device.h> #include <linux/slab.h> #include <linux/delay.h> #include <linux/io.h> #include <linux/clk.h> #include <linux/pm_runtime.h> #include <linux/of.h> #include <linux/platform_data/davinci_asp.h> #include <linux/math64.h> #include <linux/bitmap.h> #include <linux/gpio/driver.h> #include <sound/asoundef.h> #include <sound/core.h> #include <sound/pcm.h> #include <sound/pcm_params.h> #include <sound/initval.h> #include <sound/soc.h> #include <sound/dmaengine_pcm.h> #include "edma-pcm.h" #include "sdma-pcm.h" #include "udma-pcm.h" #include "davinci-mcasp.h" #define MCASP_MAX_AFIFO_DEPTH 64 #ifdef CONFIG_PM static u32 context_regs[] = { DAVINCI_MCASP_TXFMCTL_REG, DAVINCI_MCASP_RXFMCTL_REG, DAVINCI_MCASP_TXFMT_REG, DAVINCI_MCASP_RXFMT_REG, DAVINCI_MCASP_ACLKXCTL_REG, DAVINCI_MCASP_ACLKRCTL_REG, DAVINCI_MCASP_AHCLKXCTL_REG, DAVINCI_MCASP_AHCLKRCTL_REG, DAVINCI_MCASP_PDIR_REG, DAVINCI_MCASP_PFUNC_REG, DAVINCI_MCASP_RXMASK_REG, DAVINCI_MCASP_TXMASK_REG, DAVINCI_MCASP_RXTDM_REG, DAVINCI_MCASP_TXTDM_REG, }; struct davinci_mcasp_context { u32 config_regs[ARRAY_SIZE(context_regs)]; u32 afifo_regs[2]; /* for read/write fifo control registers */ u32 *xrsr_regs; /* for serializer configuration */ bool pm_state; }; #endif struct davinci_mcasp_ruledata { struct davinci_mcasp *mcasp; int serializers; }; struct davinci_mcasp { struct snd_dmaengine_dai_dma_data dma_data[2]; struct davinci_mcasp_pdata *pdata; void __iomem *base; u32 fifo_base; struct device *dev; struct snd_pcm_substream *substreams[2]; unsigned int dai_fmt; u32 iec958_status; /* Audio can not be enabled due to missing parameter(s) */ bool missing_audio_param; /* McASP specific data */ int tdm_slots; u32 tdm_mask[2]; int slot_width; u8 op_mode; u8 dismod; u8 num_serializer; u8 *serial_dir; u8 version; u8 bclk_div; int streams; u32 irq_request[2]; int sysclk_freq; bool bclk_master; u32 auxclk_fs_ratio; unsigned long pdir; /* Pin direction bitfield */ /* McASP FIFO related */ u8 txnumevt; u8 rxnumevt; bool dat_port; /* Used for comstraint setting on the second stream */ u32 channels; int max_format_width; u8 active_serializers[2]; #ifdef CONFIG_GPIOLIB struct gpio_chip gpio_chip; #endif #ifdef CONFIG_PM struct davinci_mcasp_context context; #endif struct davinci_mcasp_ruledata ruledata[2]; struct snd_pcm_hw_constraint_list chconstr[2]; }; static inline void mcasp_set_bits(struct davinci_mcasp *mcasp, u32 offset, u32 val) { void __iomem *reg = mcasp->base + offset; __raw_writel(__raw_readl(reg) | val, reg); } static inline void mcasp_clr_bits(struct davinci_mcasp *mcasp, u32 offset, u32 val) { void __iomem *reg = mcasp->base + offset; __raw_writel((__raw_readl(reg) & ~(val)), reg); } static inline void mcasp_mod_bits(struct davinci_mcasp *mcasp, u32 offset, u32 val, u32 mask) { void __iomem *reg = mcasp->base + offset; __raw_writel((__raw_readl(reg) & ~mask) | val, reg); } static inline void mcasp_set_reg(struct davinci_mcasp *mcasp, u32 offset, u32 val) { __raw_writel(val, mcasp->base + offset); } static inline u32 mcasp_get_reg(struct davinci_mcasp *mcasp, u32 offset) { return (u32)__raw_readl(mcasp->base + offset); } static void mcasp_set_ctl_reg(struct davinci_mcasp *mcasp, u32 ctl_reg, u32 val) { int i = 0; mcasp_set_bits(mcasp, ctl_reg, val); /* programming GBLCTL needs to read back from GBLCTL and verfiy */ /* loop count is to avoid the lock-up */ for (i = 0; i < 1000; i++) { if ((mcasp_get_reg(mcasp, ctl_reg) & val) == val) break; } if (i == 1000 && ((mcasp_get_reg(mcasp, ctl_reg) & val) != val)) printk(KERN_ERR "GBLCTL write error\n"); } static bool mcasp_is_synchronous(struct davinci_mcasp *mcasp) { u32 rxfmctl = mcasp_get_reg(mcasp, DAVINCI_MCASP_RXFMCTL_REG); u32 aclkxctl = mcasp_get_reg(mcasp, DAVINCI_MCASP_ACLKXCTL_REG); return !(aclkxctl & TX_ASYNC) && rxfmctl & AFSRE; } static inline void mcasp_set_clk_pdir(struct davinci_mcasp *mcasp, bool enable) { u32 bit = PIN_BIT_AMUTE; for_each_set_bit_from(bit, &mcasp->pdir, PIN_BIT_AFSR + 1) { if (enable) mcasp_set_bits(mcasp, DAVINCI_MCASP_PDIR_REG, BIT(bit)); else mcasp_clr_bits(mcasp, DAVINCI_MCASP_PDIR_REG, BIT(bit)); } } static inline void mcasp_set_axr_pdir(struct davinci_mcasp *mcasp, bool enable) { u32 bit; for_each_set_bit(bit, &mcasp->pdir, PIN_BIT_AMUTE) { if (enable) mcasp_set_bits(mcasp, DAVINCI_MCASP_PDIR_REG, BIT(bit)); else mcasp_clr_bits(mcasp, DAVINCI_MCASP_PDIR_REG, BIT(bit)); } } static void mcasp_start_rx(struct davinci_mcasp *mcasp) { if (mcasp->rxnumevt) { /* enable FIFO */ u32 reg = mcasp->fifo_base + MCASP_RFIFOCTL_OFFSET; mcasp_clr_bits(mcasp, reg, FIFO_ENABLE); mcasp_set_bits(mcasp, reg, FIFO_ENABLE); } /* Start clocks */ mcasp_set_ctl_reg(mcasp, DAVINCI_MCASP_GBLCTLR_REG, RXHCLKRST); mcasp_set_ctl_reg(mcasp, DAVINCI_MCASP_GBLCTLR_REG, RXCLKRST); /* * When ASYNC == 0 the transmit and receive sections operate * synchronously from the transmit clock and frame sync. We need to make * sure that the TX signlas are enabled when starting reception. */ if (mcasp_is_synchronous(mcasp)) { mcasp_set_ctl_reg(mcasp, DAVINCI_MCASP_GBLCTLX_REG, TXHCLKRST); mcasp_set_ctl_reg(mcasp, DAVINCI_MCASP_GBLCTLX_REG, TXCLKRST); mcasp_set_clk_pdir(mcasp, true); } /* Activate serializer(s) */ mcasp_set_reg(mcasp, DAVINCI_MCASP_RXSTAT_REG, 0xFFFFFFFF); mcasp_set_ctl_reg(mcasp, DAVINCI_MCASP_GBLCTLR_REG, RXSERCLR); /* Release RX state machine */ mcasp_set_ctl_reg(mcasp, DAVINCI_MCASP_GBLCTLR_REG, RXSMRST); /* Release Frame Sync generator */ mcasp_set_ctl_reg(mcasp, DAVINCI_MCASP_GBLCTLR_REG, RXFSRST); if (mcasp_is_synchronous(mcasp)) mcasp_set_ctl_reg(mcasp, DAVINCI_MCASP_GBLCTLX_REG, TXFSRST); /* enable receive IRQs */ mcasp_set_bits(mcasp, DAVINCI_MCASP_EVTCTLR_REG, mcasp->irq_request[SNDRV_PCM_STREAM_CAPTURE]); } static void mcasp_start_tx(struct davinci_mcasp *mcasp) { u32 cnt; if (mcasp->txnumevt) { /* enable FIFO */ u32 reg = mcasp->fifo_base + MCASP_WFIFOCTL_OFFSET; mcasp_clr_bits(mcasp, reg, FIFO_ENABLE); mcasp_set_bits(mcasp, reg, FIFO_ENABLE); } /* Start clocks */ mcasp_set_ctl_reg(mcasp, DAVINCI_MCASP_GBLCTLX_REG, TXHCLKRST); mcasp_set_ctl_reg(mcasp, DAVINCI_MCASP_GBLCTLX_REG, TXCLKRST); mcasp_set_clk_pdir(mcasp, true); /* Activate serializer(s) */ mcasp_set_reg(mcasp, DAVINCI_MCASP_TXSTAT_REG, 0xFFFFFFFF); mcasp_set_ctl_reg(mcasp, DAVINCI_MCASP_GBLCTLX_REG, TXSERCLR); /* wait for XDATA to be cleared */ cnt = 0; while ((mcasp_get_reg(mcasp, DAVINCI_MCASP_TXSTAT_REG) & XRDATA) && (cnt < 100000)) cnt++; mcasp_set_axr_pdir(mcasp, true); /* Release TX state machine */ mcasp_set_ctl_reg(mcasp, DAVINCI_MCASP_GBLCTLX_REG, TXSMRST); /* Release Frame Sync generator */ mcasp_set_ctl_reg(mcasp, DAVINCI_MCASP_GBLCTLX_REG, TXFSRST); /* enable transmit IRQs */ mcasp_set_bits(mcasp, DAVINCI_MCASP_EVTCTLX_REG, mcasp->irq_request[SNDRV_PCM_STREAM_PLAYBACK]); } static void davinci_mcasp_start(struct davinci_mcasp *mcasp, int stream) { mcasp->streams++; if (stream == SNDRV_PCM_STREAM_PLAYBACK) mcasp_start_tx(mcasp); else mcasp_start_rx(mcasp); } static void mcasp_stop_rx(struct davinci_mcasp *mcasp) { /* disable IRQ sources */ mcasp_clr_bits(mcasp, DAVINCI_MCASP_EVTCTLR_REG, mcasp->irq_request[SNDRV_PCM_STREAM_CAPTURE]); /* * In synchronous mode stop the TX clocks if no other stream is * running */ if (mcasp_is_synchronous(mcasp) && !mcasp->streams) { mcasp_set_clk_pdir(mcasp, false); mcasp_set_reg(mcasp, DAVINCI_MCASP_GBLCTLX_REG, 0); } mcasp_set_reg(mcasp, DAVINCI_MCASP_GBLCTLR_REG, 0); mcasp_set_reg(mcasp, DAVINCI_MCASP_RXSTAT_REG, 0xFFFFFFFF); if (mcasp->rxnumevt) { /* disable FIFO */ u32 reg = mcasp->fifo_base + MCASP_RFIFOCTL_OFFSET; mcasp_clr_bits(mcasp, reg, FIFO_ENABLE); } } static void mcasp_stop_tx(struct davinci_mcasp *mcasp) { u32 val = 0; /* disable IRQ sources */ mcasp_clr_bits(mcasp, DAVINCI_MCASP_EVTCTLX_REG, mcasp->irq_request[SNDRV_PCM_STREAM_PLAYBACK]); /* * In synchronous mode keep TX clocks running if the capture stream is * still running. */ if (mcasp_is_synchronous(mcasp) && mcasp->streams) val = TXHCLKRST | TXCLKRST | TXFSRST; else mcasp_set_clk_pdir(mcasp, false); mcasp_set_reg(mcasp, DAVINCI_MCASP_GBLCTLX_REG, val); mcasp_set_reg(mcasp, DAVINCI_MCASP_TXSTAT_REG, 0xFFFFFFFF); if (mcasp->txnumevt) { /* disable FIFO */ u32 reg = mcasp->fifo_base + MCASP_WFIFOCTL_OFFSET; mcasp_clr_bits(mcasp, reg, FIFO_ENABLE); } mcasp_set_axr_pdir(mcasp, false); } static void davinci_mcasp_stop(struct davinci_mcasp *mcasp, int stream) { mcasp->streams--; if (stream == SNDRV_PCM_STREAM_PLAYBACK) mcasp_stop_tx(mcasp); else mcasp_stop_rx(mcasp); } static irqreturn_t davinci_mcasp_tx_irq_handler(int irq, void *data) { struct davinci_mcasp *mcasp = (struct davinci_mcasp *)data; struct snd_pcm_substream *substream; u32 irq_mask = mcasp->irq_request[SNDRV_PCM_STREAM_PLAYBACK]; u32 handled_mask = 0; u32 stat; stat = mcasp_get_reg(mcasp, DAVINCI_MCASP_TXSTAT_REG); if (stat & XUNDRN & irq_mask) { dev_warn(mcasp->dev, "Transmit buffer underflow\n"); handled_mask |= XUNDRN; substream = mcasp->substreams[SNDRV_PCM_STREAM_PLAYBACK]; if (substream) snd_pcm_stop_xrun(substream); } if (!handled_mask) dev_warn(mcasp->dev, "unhandled tx event. txstat: 0x%08x\n", stat); if (stat & XRERR) handled_mask |= XRERR; /* Ack the handled event only */ mcasp_set_reg(mcasp, DAVINCI_MCASP_TXSTAT_REG, handled_mask); return IRQ_RETVAL(handled_mask); } static irqreturn_t davinci_mcasp_rx_irq_handler(int irq, void *data) { struct davinci_mcasp *mcasp = (struct davinci_mcasp *)data; struct snd_pcm_substream *substream; u32 irq_mask = mcasp->irq_request[SNDRV_PCM_STREAM_CAPTURE]; u32 handled_mask = 0; u32 stat; stat = mcasp_get_reg(mcasp, DAVINCI_MCASP_RXSTAT_REG); if (stat & ROVRN & irq_mask) { dev_warn(mcasp->dev, "Receive buffer overflow\n"); handled_mask |= ROVRN; substream = mcasp->substreams[SNDRV_PCM_STREAM_CAPTURE]; if (substream) snd_pcm_stop_xrun(substream); } if (!handled_mask) dev_warn(mcasp->dev, "unhandled rx event. rxstat: 0x%08x\n", stat); if (stat & XRERR) handled_mask |= XRERR; /* Ack the handled event only */ mcasp_set_reg(mcasp, DAVINCI_MCASP_RXSTAT_REG, handled_mask); return IRQ_RETVAL(handled_mask); } static irqreturn_t davinci_mcasp_common_irq_handler(int irq, void *data) { struct davinci_mcasp *mcasp = (struct davinci_mcasp *)data; irqreturn_t ret = IRQ_NONE; if (mcasp->substreams[SNDRV_PCM_STREAM_PLAYBACK]) ret = davinci_mcasp_tx_irq_handler(irq, data); if (mcasp->substreams[SNDRV_PCM_STREAM_CAPTURE]) ret |= davinci_mcasp_rx_irq_handler(irq, data); return ret; } static int davinci_mcasp_set_dai_fmt(struct snd_soc_dai *cpu_dai, unsigned int fmt) { struct davinci_mcasp *mcasp = snd_soc_dai_get_drvdata(cpu_dai); int ret = 0; u32 data_delay; bool fs_pol_rising; bool inv_fs = false; if (!fmt) return 0; pm_runtime_get_sync(mcasp->dev); switch (fmt & SND_SOC_DAIFMT_FORMAT_MASK) { case SND_SOC_DAIFMT_DSP_A: mcasp_clr_bits(mcasp, DAVINCI_MCASP_TXFMCTL_REG, FSXDUR); mcasp_clr_bits(mcasp, DAVINCI_MCASP_RXFMCTL_REG, FSRDUR); /* 1st data bit occur one ACLK cycle after the frame sync */ data_delay = 1; break; case SND_SOC_DAIFMT_DSP_B: case SND_SOC_DAIFMT_AC97: mcasp_clr_bits(mcasp, DAVINCI_MCASP_TXFMCTL_REG, FSXDUR); mcasp_clr_bits(mcasp, DAVINCI_MCASP_RXFMCTL_REG, FSRDUR); /* No delay after FS */ data_delay = 0; break; case SND_SOC_DAIFMT_I2S: /* configure a full-word SYNC pulse (LRCLK) */ mcasp_set_bits(mcasp, DAVINCI_MCASP_TXFMCTL_REG, FSXDUR); mcasp_set_bits(mcasp, DAVINCI_MCASP_RXFMCTL_REG, FSRDUR); /* 1st data bit occur one ACLK cycle after the frame sync */ data_delay = 1; /* FS need to be inverted */ inv_fs = true; break; case SND_SOC_DAIFMT_RIGHT_J: case SND_SOC_DAIFMT_LEFT_J: /* configure a full-word SYNC pulse (LRCLK) */ mcasp_set_bits(mcasp, DAVINCI_MCASP_TXFMCTL_REG, FSXDUR); mcasp_set_bits(mcasp, DAVINCI_MCASP_RXFMCTL_REG, FSRDUR); /* No delay after FS */ data_delay = 0; break; default: ret = -EINVAL; goto out; } mcasp_mod_bits(mcasp, DAVINCI_MCASP_TXFMT_REG, FSXDLY(data_delay), FSXDLY(3)); mcasp_mod_bits(mcasp, DAVINCI_MCASP_RXFMT_REG, FSRDLY(data_delay), FSRDLY(3)); switch (fmt & SND_SOC_DAIFMT_CLOCK_PROVIDER_MASK) { case SND_SOC_DAIFMT_BP_FP: /* codec is clock and frame slave */ mcasp_set_bits(mcasp, DAVINCI_MCASP_ACLKXCTL_REG, ACLKXE); mcasp_set_bits(mcasp, DAVINCI_MCASP_TXFMCTL_REG, AFSXE); mcasp_set_bits(mcasp, DAVINCI_MCASP_ACLKRCTL_REG, ACLKRE); mcasp_set_bits(mcasp, DAVINCI_MCASP_RXFMCTL_REG, AFSRE); /* BCLK */ set_bit(PIN_BIT_ACLKX, &mcasp->pdir); set_bit(PIN_BIT_ACLKR, &mcasp->pdir); /* Frame Sync */ set_bit(PIN_BIT_AFSX, &mcasp->pdir); set_bit(PIN_BIT_AFSR, &mcasp->pdir); mcasp->bclk_master = 1; break; case SND_SOC_DAIFMT_BP_FC: /* codec is clock slave and frame master */ mcasp_set_bits(mcasp, DAVINCI_MCASP_ACLKXCTL_REG, ACLKXE); mcasp_clr_bits(mcasp, DAVINCI_MCASP_TXFMCTL_REG, AFSXE); mcasp_set_bits(mcasp, DAVINCI_MCASP_ACLKRCTL_REG, ACLKRE); mcasp_clr_bits(mcasp, DAVINCI_MCASP_RXFMCTL_REG, AFSRE); /* BCLK */ set_bit(PIN_BIT_ACLKX, &mcasp->pdir); set_bit(PIN_BIT_ACLKR, &mcasp->pdir); /* Frame Sync */ clear_bit(PIN_BIT_AFSX, &mcasp->pdir); clear_bit(PIN_BIT_AFSR, &mcasp->pdir); mcasp->bclk_master = 1; break; case SND_SOC_DAIFMT_BC_FP: /* codec is clock master and frame slave */ mcasp_clr_bits(mcasp, DAVINCI_MCASP_ACLKXCTL_REG, ACLKXE); mcasp_set_bits(mcasp, DAVINCI_MCASP_TXFMCTL_REG, AFSXE); mcasp_clr_bits(mcasp, DAVINCI_MCASP_ACLKRCTL_REG, ACLKRE); mcasp_set_bits(mcasp, DAVINCI_MCASP_RXFMCTL_REG, AFSRE); /* BCLK */ clear_bit(PIN_BIT_ACLKX, &mcasp->pdir); clear_bit(PIN_BIT_ACLKR, &mcasp->pdir); /* Frame Sync */ set_bit(PIN_BIT_AFSX, &mcasp->pdir); set_bit(PIN_BIT_AFSR, &mcasp->pdir); mcasp->bclk_master = 0; break; case SND_SOC_DAIFMT_BC_FC: /* codec is clock and frame master */ mcasp_clr_bits(mcasp, DAVINCI_MCASP_ACLKXCTL_REG, ACLKXE); mcasp_clr_bits(mcasp, DAVINCI_MCASP_TXFMCTL_REG, AFSXE); mcasp_clr_bits(mcasp, DAVINCI_MCASP_ACLKRCTL_REG, ACLKRE); mcasp_clr_bits(mcasp, DAVINCI_MCASP_RXFMCTL_REG, AFSRE); /* BCLK */ clear_bit(PIN_BIT_ACLKX, &mcasp->pdir); clear_bit(PIN_BIT_ACLKR, &mcasp->pdir); /* Frame Sync */ clear_bit(PIN_BIT_AFSX, &mcasp->pdir); clear_bit(PIN_BIT_AFSR, &mcasp->pdir); mcasp->bclk_master = 0; break; default: ret = -EINVAL; goto out; } switch (fmt & SND_SOC_DAIFMT_INV_MASK) { case SND_SOC_DAIFMT_IB_NF: mcasp_clr_bits(mcasp, DAVINCI_MCASP_ACLKXCTL_REG, ACLKXPOL); mcasp_clr_bits(mcasp, DAVINCI_MCASP_ACLKRCTL_REG, ACLKRPOL); fs_pol_rising = true; break; case SND_SOC_DAIFMT_NB_IF: mcasp_set_bits(mcasp, DAVINCI_MCASP_ACLKXCTL_REG, ACLKXPOL); mcasp_set_bits(mcasp, DAVINCI_MCASP_ACLKRCTL_REG, ACLKRPOL); fs_pol_rising = false; break; case SND_SOC_DAIFMT_IB_IF: mcasp_clr_bits(mcasp, DAVINCI_MCASP_ACLKXCTL_REG, ACLKXPOL); mcasp_clr_bits(mcasp, DAVINCI_MCASP_ACLKRCTL_REG, ACLKRPOL); fs_pol_rising = false; break; case SND_SOC_DAIFMT_NB_NF: mcasp_set_bits(mcasp, DAVINCI_MCASP_ACLKXCTL_REG, ACLKXPOL); mcasp_set_bits(mcasp, DAVINCI_MCASP_ACLKRCTL_REG, ACLKRPOL); fs_pol_rising = true; break; default: ret = -EINVAL; goto out; } if (inv_fs) fs_pol_rising = !fs_pol_rising; if (fs_pol_rising) { mcasp_clr_bits(mcasp, DAVINCI_MCASP_TXFMCTL_REG, FSXPOL); mcasp_clr_bits(mcasp, DAVINCI_MCASP_RXFMCTL_REG, FSRPOL); } else { mcasp_set_bits(mcasp, DAVINCI_MCASP_TXFMCTL_REG, FSXPOL); mcasp_set_bits(mcasp, DAVINCI_MCASP_RXFMCTL_REG, FSRPOL); } mcasp->dai_fmt = fmt; out: pm_runtime_put(mcasp->dev); return ret; } static int __davinci_mcasp_set_clkdiv(struct davinci_mcasp *mcasp, int div_id, int div, bool explicit) { pm_runtime_get_sync(mcasp->dev); switch (div_id) { case MCASP_CLKDIV_AUXCLK: /* MCLK divider */ mcasp_mod_bits(mcasp, DAVINCI_MCASP_AHCLKXCTL_REG, AHCLKXDIV(div - 1), AHCLKXDIV_MASK); mcasp_mod_bits(mcasp, DAVINCI_MCASP_AHCLKRCTL_REG, AHCLKRDIV(div - 1), AHCLKRDIV_MASK); break; case MCASP_CLKDIV_BCLK: /* BCLK divider */ mcasp_mod_bits(mcasp, DAVINCI_MCASP_ACLKXCTL_REG, ACLKXDIV(div - 1), ACLKXDIV_MASK); mcasp_mod_bits(mcasp, DAVINCI_MCASP_ACLKRCTL_REG, ACLKRDIV(div - 1), ACLKRDIV_MASK); if (explicit) mcasp->bclk_div = div; break; case MCASP_CLKDIV_BCLK_FS_RATIO: /* * BCLK/LRCLK ratio descries how many bit-clock cycles * fit into one frame. The clock ratio is given for a * full period of data (for I2S format both left and * right channels), so it has to be divided by number * of tdm-slots (for I2S - divided by 2). * Instead of storing this ratio, we calculate a new * tdm_slot width by dividing the ratio by the * number of configured tdm slots. */ mcasp->slot_width = div / mcasp->tdm_slots; if (div % mcasp->tdm_slots) dev_warn(mcasp->dev, "%s(): BCLK/LRCLK %d is not divisible by %d tdm slots", __func__, div, mcasp->tdm_slots); break; default: return -EINVAL; } pm_runtime_put(mcasp->dev); return 0; } static int davinci_mcasp_set_clkdiv(struct snd_soc_dai *dai, int div_id, int div) { struct davinci_mcasp *mcasp = snd_soc_dai_get_drvdata(dai); return __davinci_mcasp_set_clkdiv(mcasp, div_id, div, 1); } static int davinci_mcasp_set_sysclk(struct snd_soc_dai *dai, int clk_id, unsigned int freq, int dir) { struct davinci_mcasp *mcasp = snd_soc_dai_get_drvdata(dai); pm_runtime_get_sync(mcasp->dev); if (dir == SND_SOC_CLOCK_IN) { switch (clk_id) { case MCASP_CLK_HCLK_AHCLK: mcasp_clr_bits(mcasp, DAVINCI_MCASP_AHCLKXCTL_REG, AHCLKXE); mcasp_clr_bits(mcasp, DAVINCI_MCASP_AHCLKRCTL_REG, AHCLKRE); clear_bit(PIN_BIT_AHCLKX, &mcasp->pdir); break; case MCASP_CLK_HCLK_AUXCLK: mcasp_set_bits(mcasp, DAVINCI_MCASP_AHCLKXCTL_REG, AHCLKXE); mcasp_set_bits(mcasp, DAVINCI_MCASP_AHCLKRCTL_REG, AHCLKRE); set_bit(PIN_BIT_AHCLKX, &mcasp->pdir); break; default: dev_err(mcasp->dev, "Invalid clk id: %d\n", clk_id); goto out; } } else { /* Select AUXCLK as HCLK */ mcasp_set_bits(mcasp, DAVINCI_MCASP_AHCLKXCTL_REG, AHCLKXE); mcasp_set_bits(mcasp, DAVINCI_MCASP_AHCLKRCTL_REG, AHCLKRE); set_bit(PIN_BIT_AHCLKX, &mcasp->pdir); } /* * When AHCLK X/R is selected to be output it means that the HCLK is * the same clock - coming via AUXCLK. */ mcasp->sysclk_freq = freq; out: pm_runtime_put(mcasp->dev); return 0; } /* All serializers must have equal number of channels */ static int davinci_mcasp_ch_constraint(struct davinci_mcasp *mcasp, int stream, int serializers) { struct snd_pcm_hw_constraint_list *cl = &mcasp->chconstr[stream]; unsigned int *list = (unsigned int *) cl->list; int slots = mcasp->tdm_slots; int i, count = 0; if (mcasp->tdm_mask[stream]) slots = hweight32(mcasp->tdm_mask[stream]); for (i = 1; i <= slots; i++) list[count++] = i; for (i = 2; i <= serializers; i++) list[count++] = i*slots; cl->count = count; return 0; } static int davinci_mcasp_set_ch_constraints(struct davinci_mcasp *mcasp) { int rx_serializers = 0, tx_serializers = 0, ret, i; for (i = 0; i < mcasp->num_serializer; i++) if (mcasp->serial_dir[i] == TX_MODE) tx_serializers++; else if (mcasp->serial_dir[i] == RX_MODE) rx_serializers++; ret = davinci_mcasp_ch_constraint(mcasp, SNDRV_PCM_STREAM_PLAYBACK, tx_serializers); if (ret) return ret; ret = davinci_mcasp_ch_constraint(mcasp, SNDRV_PCM_STREAM_CAPTURE, rx_serializers); return ret; } static int davinci_mcasp_set_tdm_slot(struct snd_soc_dai *dai, unsigned int tx_mask, unsigned int rx_mask, int slots, int slot_width) { struct davinci_mcasp *mcasp = snd_soc_dai_get_drvdata(dai); if (mcasp->op_mode == DAVINCI_MCASP_DIT_MODE) return 0; dev_dbg(mcasp->dev, "%s() tx_mask 0x%08x rx_mask 0x%08x slots %d width %d\n", __func__, tx_mask, rx_mask, slots, slot_width); if (tx_mask >= (1<<slots) || rx_mask >= (1<<slots)) { dev_err(mcasp->dev, "Bad tdm mask tx: 0x%08x rx: 0x%08x slots %d\n", tx_mask, rx_mask, slots); return -EINVAL; } if (slot_width && (slot_width < 8 || slot_width > 32 || slot_width % 4 != 0)) { dev_err(mcasp->dev, "%s: Unsupported slot_width %d\n", __func__, slot_width); return -EINVAL; } mcasp->tdm_slots = slots; mcasp->tdm_mask[SNDRV_PCM_STREAM_PLAYBACK] = tx_mask; mcasp->tdm_mask[SNDRV_PCM_STREAM_CAPTURE] = rx_mask; mcasp->slot_width = slot_width; return davinci_mcasp_set_ch_constraints(mcasp); } static int davinci_config_channel_size(struct davinci_mcasp *mcasp, int sample_width) { u32 fmt; u32 tx_rotate, rx_rotate, slot_width; u32 mask = (1ULL << sample_width) - 1; if (mcasp->slot_width) slot_width = mcasp->slot_width; else if (mcasp->max_format_width) slot_width = mcasp->max_format_width; else slot_width = sample_width; /* * TX rotation: * right aligned formats: rotate w/ slot_width * left aligned formats: rotate w/ sample_width * * RX rotation: * right aligned formats: no rotation needed * left aligned formats: rotate w/ (slot_width - sample_width) */ if ((mcasp->dai_fmt & SND_SOC_DAIFMT_FORMAT_MASK) == SND_SOC_DAIFMT_RIGHT_J) { tx_rotate = (slot_width / 4) & 0x7; rx_rotate = 0; } else { tx_rotate = (sample_width / 4) & 0x7; rx_rotate = (slot_width - sample_width) / 4; } /* mapping of the XSSZ bit-field as described in the datasheet */ fmt = (slot_width >> 1) - 1; if (mcasp->op_mode != DAVINCI_MCASP_DIT_MODE) { mcasp_mod_bits(mcasp, DAVINCI_MCASP_RXFMT_REG, RXSSZ(fmt), RXSSZ(0x0F)); mcasp_mod_bits(mcasp, DAVINCI_MCASP_TXFMT_REG, TXSSZ(fmt), TXSSZ(0x0F)); mcasp_mod_bits(mcasp, DAVINCI_MCASP_TXFMT_REG, TXROT(tx_rotate), TXROT(7)); mcasp_mod_bits(mcasp, DAVINCI_MCASP_RXFMT_REG, RXROT(rx_rotate), RXROT(7)); mcasp_set_reg(mcasp, DAVINCI_MCASP_RXMASK_REG, mask); } else { /* * according to the TRM it should be TXROT=0, this one works: * 16 bit to 23-8 (TXROT=6, rotate 24 bits) * 24 bit to 23-0 (TXROT=0, rotate 0 bits) * * TXROT = 0 only works with 24bit samples */ tx_rotate = (sample_width / 4 + 2) & 0x7; mcasp_mod_bits(mcasp, DAVINCI_MCASP_TXFMT_REG, TXROT(tx_rotate), TXROT(7)); mcasp_mod_bits(mcasp, DAVINCI_MCASP_TXFMT_REG, TXSSZ(15), TXSSZ(0x0F)); } mcasp_set_reg(mcasp, DAVINCI_MCASP_TXMASK_REG, mask); return 0; } static int mcasp_common_hw_param(struct davinci_mcasp *mcasp, int stream, int period_words, int channels) { struct snd_dmaengine_dai_dma_data *dma_data = &mcasp->dma_data[stream]; int i; u8 tx_ser = 0; u8 rx_ser = 0; u8 slots = mcasp->tdm_slots; u8 max_active_serializers, max_rx_serializers, max_tx_serializers; int active_serializers, numevt; u32 reg; /* In DIT mode we only allow maximum of one serializers for now */ if (mcasp->op_mode == DAVINCI_MCASP_DIT_MODE) max_active_serializers = 1; else max_active_serializers = DIV_ROUND_UP(channels, slots); /* Default configuration */ if (mcasp->version < MCASP_VERSION_3) mcasp_set_bits(mcasp, DAVINCI_MCASP_PWREMUMGT_REG, MCASP_SOFT); if (stream == SNDRV_PCM_STREAM_PLAYBACK) { mcasp_set_reg(mcasp, DAVINCI_MCASP_TXSTAT_REG, 0xFFFFFFFF); mcasp_clr_bits(mcasp, DAVINCI_MCASP_XEVTCTL_REG, TXDATADMADIS); max_tx_serializers = max_active_serializers; max_rx_serializers = mcasp->active_serializers[SNDRV_PCM_STREAM_CAPTURE]; } else { mcasp_set_reg(mcasp, DAVINCI_MCASP_RXSTAT_REG, 0xFFFFFFFF); mcasp_clr_bits(mcasp, DAVINCI_MCASP_REVTCTL_REG, RXDATADMADIS); max_tx_serializers = mcasp->active_serializers[SNDRV_PCM_STREAM_PLAYBACK]; max_rx_serializers = max_active_serializers; } for (i = 0; i < mcasp->num_serializer; i++) { mcasp_set_bits(mcasp, DAVINCI_MCASP_XRSRCTL_REG(i), mcasp->serial_dir[i]); if (mcasp->serial_dir[i] == TX_MODE && tx_ser < max_tx_serializers) { mcasp_mod_bits(mcasp, DAVINCI_MCASP_XRSRCTL_REG(i), mcasp->dismod, DISMOD_MASK); set_bit(PIN_BIT_AXR(i), &mcasp->pdir); tx_ser++; } else if (mcasp->serial_dir[i] == RX_MODE && rx_ser < max_rx_serializers) { clear_bit(PIN_BIT_AXR(i), &mcasp->pdir); rx_ser++; } else { /* Inactive or unused pin, set it to inactive */ mcasp_mod_bits(mcasp, DAVINCI_MCASP_XRSRCTL_REG(i), SRMOD_INACTIVE, SRMOD_MASK); /* If unused, set DISMOD for the pin */ if (mcasp->serial_dir[i] != INACTIVE_MODE) mcasp_mod_bits(mcasp, DAVINCI_MCASP_XRSRCTL_REG(i), mcasp->dismod, DISMOD_MASK); clear_bit(PIN_BIT_AXR(i), &mcasp->pdir); } } if (stream == SNDRV_PCM_STREAM_PLAYBACK) { active_serializers = tx_ser; numevt = mcasp->txnumevt; reg = mcasp->fifo_base + MCASP_WFIFOCTL_OFFSET; } else { active_serializers = rx_ser; numevt = mcasp->rxnumevt; reg = mcasp->fifo_base + MCASP_RFIFOCTL_OFFSET; } if (active_serializers < max_active_serializers) { dev_warn(mcasp->dev, "stream has more channels (%d) than are " "enabled in mcasp (%d)\n", channels, active_serializers * slots); return -EINVAL; } /* AFIFO is not in use */ if (!numevt) { /* Configure the burst size for platform drivers */ if (active_serializers > 1) { /* * If more than one serializers are in use we have one * DMA request to provide data for all serializers. * For example if three serializers are enabled the DMA * need to transfer three words per DMA request. */ dma_data->maxburst = active_serializers; } else { dma_data->maxburst = 0; } goto out; } if (period_words % active_serializers) { dev_err(mcasp->dev, "Invalid combination of period words and " "active serializers: %d, %d\n", period_words, active_serializers); return -EINVAL; } /* * Calculate the optimal AFIFO depth for platform side: * The number of words for numevt need to be in steps of active * serializers. */ numevt = (numevt / active_serializers) * active_serializers; while (period_words % numevt && numevt > 0) numevt -= active_serializers; if (numevt <= 0) numevt = active_serializers; mcasp_mod_bits(mcasp, reg, active_serializers, NUMDMA_MASK); mcasp_mod_bits(mcasp, reg, NUMEVT(numevt), NUMEVT_MASK); /* Configure the burst size for platform drivers */ if (numevt == 1) numevt = 0; dma_data->maxburst = numevt; out: mcasp->active_serializers[stream] = active_serializers; return 0; } static int mcasp_i2s_hw_param(struct davinci_mcasp *mcasp, int stream, int channels) { int i, active_slots; int total_slots; int active_serializers; u32 mask = 0; u32 busel = 0; total_slots = mcasp->tdm_slots; /* * If more than one serializer is needed, then use them with * all the specified tdm_slots. Otherwise, one serializer can * cope with the transaction using just as many slots as there * are channels in the stream. */ if (mcasp->tdm_mask[stream]) { active_slots = hweight32(mcasp->tdm_mask[stream]); active_serializers = DIV_ROUND_UP(channels, active_slots); if (active_serializers == 1) active_slots = channels; for (i = 0; i < total_slots; i++) { if ((1 << i) & mcasp->tdm_mask[stream]) { mask |= (1 << i); if (--active_slots <= 0) break; } } } else { active_serializers = DIV_ROUND_UP(channels, total_slots); if (active_serializers == 1) active_slots = channels; else active_slots = total_slots; for (i = 0; i < active_slots; i++) mask |= (1 << i); } mcasp_clr_bits(mcasp, DAVINCI_MCASP_ACLKXCTL_REG, TX_ASYNC); if (!mcasp->dat_port) busel = TXSEL; if (stream == SNDRV_PCM_STREAM_PLAYBACK) { mcasp_set_reg(mcasp, DAVINCI_MCASP_TXTDM_REG, mask); mcasp_set_bits(mcasp, DAVINCI_MCASP_TXFMT_REG, busel | TXORD); mcasp_mod_bits(mcasp, DAVINCI_MCASP_TXFMCTL_REG, FSXMOD(total_slots), FSXMOD(0x1FF)); } else if (stream == SNDRV_PCM_STREAM_CAPTURE) { mcasp_set_reg(mcasp, DAVINCI_MCASP_RXTDM_REG, mask); mcasp_set_bits(mcasp, DAVINCI_MCASP_RXFMT_REG, busel | RXORD); mcasp_mod_bits(mcasp, DAVINCI_MCASP_RXFMCTL_REG, FSRMOD(total_slots), FSRMOD(0x1FF)); /* * If McASP is set to be TX/RX synchronous and the playback is * not running already we need to configure the TX slots in * order to have correct FSX on the bus */ if (mcasp_is_synchronous(mcasp) && !mcasp->channels) mcasp_mod_bits(mcasp, DAVINCI_MCASP_TXFMCTL_REG, FSXMOD(total_slots), FSXMOD(0x1FF)); } return 0; } /* S/PDIF */ static int mcasp_dit_hw_param(struct davinci_mcasp *mcasp, unsigned int rate) { u8 *cs_bytes = (u8 *)&mcasp->iec958_status; if (!mcasp->dat_port) mcasp_set_bits(mcasp, DAVINCI_MCASP_TXFMT_REG, TXSEL); else mcasp_clr_bits(mcasp, DAVINCI_MCASP_TXFMT_REG, TXSEL); /* Set TX frame synch : DIT Mode, 1 bit width, internal, rising edge */ mcasp_set_reg(mcasp, DAVINCI_MCASP_TXFMCTL_REG, AFSXE | FSXMOD(0x180)); mcasp_set_reg(mcasp, DAVINCI_MCASP_TXMASK_REG, 0xFFFF); /* Set the TX tdm : for all the slots */ mcasp_set_reg(mcasp, DAVINCI_MCASP_TXTDM_REG, 0xFFFFFFFF); /* Set the TX clock controls : div = 1 and internal */ mcasp_set_bits(mcasp, DAVINCI_MCASP_ACLKXCTL_REG, ACLKXE | TX_ASYNC); mcasp_clr_bits(mcasp, DAVINCI_MCASP_XEVTCTL_REG, TXDATADMADIS); /* Set S/PDIF channel status bits */ cs_bytes[3] &= ~IEC958_AES3_CON_FS; switch (rate) { case 22050: cs_bytes[3] |= IEC958_AES3_CON_FS_22050; break; case 24000: cs_bytes[3] |= IEC958_AES3_CON_FS_24000; break; case 32000: cs_bytes[3] |= IEC958_AES3_CON_FS_32000; break; case 44100: cs_bytes[3] |= IEC958_AES3_CON_FS_44100; break; case 48000: cs_bytes[3] |= IEC958_AES3_CON_FS_48000; break; case 88200: cs_bytes[3] |= IEC958_AES3_CON_FS_88200; break; case 96000: cs_bytes[3] |= IEC958_AES3_CON_FS_96000; break; case 176400: cs_bytes[3] |= IEC958_AES3_CON_FS_176400; break; case 192000: cs_bytes[3] |= IEC958_AES3_CON_FS_192000; break; default: dev_err(mcasp->dev, "unsupported sampling rate: %d\n", rate); return -EINVAL; } mcasp_set_reg(mcasp, DAVINCI_MCASP_DITCSRA_REG, mcasp->iec958_status); mcasp_set_reg(mcasp, DAVINCI_MCASP_DITCSRB_REG, mcasp->iec958_status); /* Enable the DIT */ mcasp_set_bits(mcasp, DAVINCI_MCASP_TXDITCTL_REG, DITEN); return 0; } static int davinci_mcasp_calc_clk_div(struct davinci_mcasp *mcasp, unsigned int sysclk_freq, unsigned int bclk_freq, bool set) { u32 reg = mcasp_get_reg(mcasp, DAVINCI_MCASP_AHCLKXCTL_REG); int div = sysclk_freq / bclk_freq; int rem = sysclk_freq % bclk_freq; int error_ppm; int aux_div = 1; if (div > (ACLKXDIV_MASK + 1)) { if (reg & AHCLKXE) { aux_div = div / (ACLKXDIV_MASK + 1); if (div % (ACLKXDIV_MASK + 1)) aux_div++; sysclk_freq /= aux_div; div = sysclk_freq / bclk_freq; rem = sysclk_freq % bclk_freq; } else if (set) { dev_warn(mcasp->dev, "Too fast reference clock (%u)\n", sysclk_freq); } } if (rem != 0) { if (div == 0 || ((sysclk_freq / div) - bclk_freq) > (bclk_freq - (sysclk_freq / (div+1)))) { div++; rem = rem - bclk_freq; } } error_ppm = (div*1000000 + (int)div64_long(1000000LL*rem, (int)bclk_freq)) / div - 1000000; if (set) { if (error_ppm) dev_info(mcasp->dev, "Sample-rate is off by %d PPM\n", error_ppm); __davinci_mcasp_set_clkdiv(mcasp, MCASP_CLKDIV_BCLK, div, 0); if (reg & AHCLKXE) __davinci_mcasp_set_clkdiv(mcasp, MCASP_CLKDIV_AUXCLK, aux_div, 0); } return error_ppm; } static inline u32 davinci_mcasp_tx_delay(struct davinci_mcasp *mcasp) { if (!mcasp->txnumevt) return 0; return mcasp_get_reg(mcasp, mcasp->fifo_base + MCASP_WFIFOSTS_OFFSET); } static inline u32 davinci_mcasp_rx_delay(struct davinci_mcasp *mcasp) { if (!mcasp->rxnumevt) return 0; return mcasp_get_reg(mcasp, mcasp->fifo_base + MCASP_RFIFOSTS_OFFSET); } static snd_pcm_sframes_t davinci_mcasp_delay( struct snd_pcm_substream *substream, struct snd_soc_dai *cpu_dai) { struct davinci_mcasp *mcasp = snd_soc_dai_get_drvdata(cpu_dai); u32 fifo_use; if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK) fifo_use = davinci_mcasp_tx_delay(mcasp); else fifo_use = davinci_mcasp_rx_delay(mcasp); /* * Divide the used locations with the channel count to get the * FIFO usage in samples (don't care about partial samples in the * buffer). */ return fifo_use / substream->runtime->channels; } static int davinci_mcasp_hw_params(struct snd_pcm_substream *substream, struct snd_pcm_hw_params *params, struct snd_soc_dai *cpu_dai) { struct davinci_mcasp *mcasp = snd_soc_dai_get_drvdata(cpu_dai); int word_length; int channels = params_channels(params); int period_size = params_period_size(params); int ret; switch (params_format(params)) { case SNDRV_PCM_FORMAT_U8: case SNDRV_PCM_FORMAT_S8: word_length = 8; break; case SNDRV_PCM_FORMAT_U16_LE: case SNDRV_PCM_FORMAT_S16_LE: word_length = 16; break; case SNDRV_PCM_FORMAT_U24_3LE: case SNDRV_PCM_FORMAT_S24_3LE: word_length = 24; break; case SNDRV_PCM_FORMAT_U24_LE: case SNDRV_PCM_FORMAT_S24_LE: word_length = 24; break; case SNDRV_PCM_FORMAT_U32_LE: case SNDRV_PCM_FORMAT_S32_LE: word_length = 32; break; default: printk(KERN_WARNING "davinci-mcasp: unsupported PCM format"); return -EINVAL; } ret = davinci_mcasp_set_dai_fmt(cpu_dai, mcasp->dai_fmt); if (ret) return ret; /* * If mcasp is BCLK master, and a BCLK divider was not provided by * the machine driver, we need to calculate the ratio. */ if (mcasp->bclk_master && mcasp->bclk_div == 0 && mcasp->sysclk_freq) { int slots = mcasp->tdm_slots; int rate = params_rate(params); int sbits = params_width(params); unsigned int bclk_target; if (mcasp->slot_width) sbits = mcasp->slot_width; if (mcasp->op_mode == DAVINCI_MCASP_IIS_MODE) bclk_target = rate * sbits * slots; else bclk_target = rate * 128; davinci_mcasp_calc_clk_div(mcasp, mcasp->sysclk_freq, bclk_target, true); } ret = mcasp_common_hw_param(mcasp, substream->stream, period_size * channels, channels); if (ret) return ret; if (mcasp->op_mode == DAVINCI_MCASP_DIT_MODE) ret = mcasp_dit_hw_param(mcasp, params_rate(params)); else ret = mcasp_i2s_hw_param(mcasp, substream->stream, channels); if (ret) return ret; davinci_config_channel_size(mcasp, word_length); if (mcasp->op_mode == DAVINCI_MCASP_IIS_MODE) { mcasp->channels = channels; if (!mcasp->max_format_width) mcasp->max_format_width = word_length; } return 0; } static int davinci_mcasp_trigger(struct snd_pcm_substream *substream, int cmd, struct snd_soc_dai *cpu_dai) { struct davinci_mcasp *mcasp = snd_soc_dai_get_drvdata(cpu_dai); int ret = 0; switch (cmd) { case SNDRV_PCM_TRIGGER_RESUME: case SNDRV_PCM_TRIGGER_START: case SNDRV_PCM_TRIGGER_PAUSE_RELEASE: davinci_mcasp_start(mcasp, substream->stream); break; case SNDRV_PCM_TRIGGER_SUSPEND: case SNDRV_PCM_TRIGGER_STOP: case SNDRV_PCM_TRIGGER_PAUSE_PUSH: davinci_mcasp_stop(mcasp, substream->stream); break; default: ret = -EINVAL; } return ret; } static int davinci_mcasp_hw_rule_slot_width(struct snd_pcm_hw_params *params, struct snd_pcm_hw_rule *rule) { struct davinci_mcasp_ruledata *rd = rule->private; struct snd_mask *fmt = hw_param_mask(params, SNDRV_PCM_HW_PARAM_FORMAT); struct snd_mask nfmt; int slot_width; snd_pcm_format_t i; snd_mask_none(&nfmt); slot_width = rd->mcasp->slot_width; pcm_for_each_format(i) { if (snd_mask_test_format(fmt, i)) { if (snd_pcm_format_width(i) <= slot_width) { snd_mask_set_format(&nfmt, i); } } } return snd_mask_refine(fmt, &nfmt); } static int davinci_mcasp_hw_rule_format_width(struct snd_pcm_hw_params *params, struct snd_pcm_hw_rule *rule) { struct davinci_mcasp_ruledata *rd = rule->private; struct snd_mask *fmt = hw_param_mask(params, SNDRV_PCM_HW_PARAM_FORMAT); struct snd_mask nfmt; int format_width; snd_pcm_format_t i; snd_mask_none(&nfmt); format_width = rd->mcasp->max_format_width; pcm_for_each_format(i) { if (snd_mask_test_format(fmt, i)) { if (snd_pcm_format_width(i) == format_width) { snd_mask_set_format(&nfmt, i); } } } return snd_mask_refine(fmt, &nfmt); } static const unsigned int davinci_mcasp_dai_rates[] = { 8000, 11025, 16000, 22050, 32000, 44100, 48000, 64000, 88200, 96000, 176400, 192000, }; #define DAVINCI_MAX_RATE_ERROR_PPM 1000 static int davinci_mcasp_hw_rule_rate(struct snd_pcm_hw_params *params, struct snd_pcm_hw_rule *rule) { struct davinci_mcasp_ruledata *rd = rule->private; struct snd_interval *ri = hw_param_interval(params, SNDRV_PCM_HW_PARAM_RATE); int sbits = params_width(params); int slots = rd->mcasp->tdm_slots; struct snd_interval range; int i; if (rd->mcasp->slot_width) sbits = rd->mcasp->slot_width; snd_interval_any(&range); range.empty = 1; for (i = 0; i < ARRAY_SIZE(davinci_mcasp_dai_rates); i++) { if (snd_interval_test(ri, davinci_mcasp_dai_rates[i])) { uint bclk_freq = sbits * slots * davinci_mcasp_dai_rates[i]; unsigned int sysclk_freq; int ppm; if (rd->mcasp->auxclk_fs_ratio) sysclk_freq = davinci_mcasp_dai_rates[i] * rd->mcasp->auxclk_fs_ratio; else sysclk_freq = rd->mcasp->sysclk_freq; ppm = davinci_mcasp_calc_clk_div(rd->mcasp, sysclk_freq, bclk_freq, false); if (abs(ppm) < DAVINCI_MAX_RATE_ERROR_PPM) { if (range.empty) { range.min = davinci_mcasp_dai_rates[i]; range.empty = 0; } range.max = davinci_mcasp_dai_rates[i]; } } } dev_dbg(rd->mcasp->dev, "Frequencies %d-%d -> %d-%d for %d sbits and %d tdm slots\n", ri->min, ri->max, range.min, range.max, sbits, slots); return snd_interval_refine(hw_param_interval(params, rule->var), &range); } static int davinci_mcasp_hw_rule_format(struct snd_pcm_hw_params *params, struct snd_pcm_hw_rule *rule) { struct davinci_mcasp_ruledata *rd = rule->private; struct snd_mask *fmt = hw_param_mask(params, SNDRV_PCM_HW_PARAM_FORMAT); struct snd_mask nfmt; int rate = params_rate(params); int slots = rd->mcasp->tdm_slots; int count = 0; snd_pcm_format_t i; snd_mask_none(&nfmt); pcm_for_each_format(i) { if (snd_mask_test_format(fmt, i)) { uint sbits = snd_pcm_format_width(i); unsigned int sysclk_freq; int ppm; if (rd->mcasp->auxclk_fs_ratio) sysclk_freq = rate * rd->mcasp->auxclk_fs_ratio; else sysclk_freq = rd->mcasp->sysclk_freq; if (rd->mcasp->slot_width) sbits = rd->mcasp->slot_width; ppm = davinci_mcasp_calc_clk_div(rd->mcasp, sysclk_freq, sbits * slots * rate, false); if (abs(ppm) < DAVINCI_MAX_RATE_ERROR_PPM) { snd_mask_set_format(&nfmt, i); count++; } } } dev_dbg(rd->mcasp->dev, "%d possible sample format for %d Hz and %d tdm slots\n", count, rate, slots); return snd_mask_refine(fmt, &nfmt); } static int davinci_mcasp_hw_rule_min_periodsize( struct snd_pcm_hw_params *params, struct snd_pcm_hw_rule *rule) { struct snd_interval *period_size = hw_param_interval(params, SNDRV_PCM_HW_PARAM_PERIOD_SIZE); struct snd_interval frames; snd_interval_any(&frames); frames.min = 64; frames.integer = 1; return snd_interval_refine(period_size, &frames); } static int davinci_mcasp_startup(struct snd_pcm_substream *substream, struct snd_soc_dai *cpu_dai) { struct davinci_mcasp *mcasp = snd_soc_dai_get_drvdata(cpu_dai); struct davinci_mcasp_ruledata *ruledata = &mcasp->ruledata[substream->stream]; u32 max_channels = 0; int i, dir, ret; int tdm_slots = mcasp->tdm_slots; /* Do not allow more then one stream per direction */ if (mcasp->substreams[substream->stream]) return -EBUSY; mcasp->substreams[substream->stream] = substream; if (mcasp->tdm_mask[substream->stream]) tdm_slots = hweight32(mcasp->tdm_mask[substream->stream]); if (mcasp->op_mode == DAVINCI_MCASP_DIT_MODE) return 0; /* * Limit the maximum allowed channels for the first stream: * number of serializers for the direction * tdm slots per serializer */ if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK) dir = TX_MODE; else dir = RX_MODE; for (i = 0; i < mcasp->num_serializer; i++) { if (mcasp->serial_dir[i] == dir) max_channels++; } ruledata->serializers = max_channels; ruledata->mcasp = mcasp; max_channels *= tdm_slots; /* * If the already active stream has less channels than the calculated * limit based on the seirializers * tdm_slots, and only one serializer * is in use we need to use that as a constraint for the second stream. * Otherwise (first stream or less allowed channels or more than one * serializer in use) we use the calculated constraint. */ if (mcasp->channels && mcasp->channels < max_channels && ruledata->serializers == 1) max_channels = mcasp->channels; /* * But we can always allow channels upto the amount of * the available tdm_slots. */ if (max_channels < tdm_slots) max_channels = tdm_slots; snd_pcm_hw_constraint_minmax(substream->runtime, SNDRV_PCM_HW_PARAM_CHANNELS, 0, max_channels); snd_pcm_hw_constraint_list(substream->runtime, 0, SNDRV_PCM_HW_PARAM_CHANNELS, &mcasp->chconstr[substream->stream]); if (mcasp->max_format_width) { /* * Only allow formats which require same amount of bits on the * bus as the currently running stream */ ret = snd_pcm_hw_rule_add(substream->runtime, 0, SNDRV_PCM_HW_PARAM_FORMAT, davinci_mcasp_hw_rule_format_width, ruledata, SNDRV_PCM_HW_PARAM_FORMAT, -1); if (ret) return ret; } else if (mcasp->slot_width) { /* Only allow formats require <= slot_width bits on the bus */ ret = snd_pcm_hw_rule_add(substream->runtime, 0, SNDRV_PCM_HW_PARAM_FORMAT, davinci_mcasp_hw_rule_slot_width, ruledata, SNDRV_PCM_HW_PARAM_FORMAT, -1); if (ret) return ret; } /* * If we rely on implicit BCLK divider setting we should * set constraints based on what we can provide. */ if (mcasp->bclk_master && mcasp->bclk_div == 0 && mcasp->sysclk_freq) { ret = snd_pcm_hw_rule_add(substream->runtime, 0, SNDRV_PCM_HW_PARAM_RATE, davinci_mcasp_hw_rule_rate, ruledata, SNDRV_PCM_HW_PARAM_FORMAT, -1); if (ret) return ret; ret = snd_pcm_hw_rule_add(substream->runtime, 0, SNDRV_PCM_HW_PARAM_FORMAT, davinci_mcasp_hw_rule_format, ruledata, SNDRV_PCM_HW_PARAM_RATE, -1); if (ret) return ret; } snd_pcm_hw_rule_add(substream->runtime, 0, SNDRV_PCM_HW_PARAM_PERIOD_SIZE, davinci_mcasp_hw_rule_min_periodsize, NULL, SNDRV_PCM_HW_PARAM_PERIOD_SIZE, -1); return 0; } static void davinci_mcasp_shutdown(struct snd_pcm_substream *substream, struct snd_soc_dai *cpu_dai) { struct davinci_mcasp *mcasp = snd_soc_dai_get_drvdata(cpu_dai); mcasp->substreams[substream->stream] = NULL; mcasp->active_serializers[substream->stream] = 0; if (mcasp->op_mode == DAVINCI_MCASP_DIT_MODE) return; if (!snd_soc_dai_active(cpu_dai)) { mcasp->channels = 0; mcasp->max_format_width = 0; } } static int davinci_mcasp_iec958_info(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_info *uinfo) { uinfo->type = SNDRV_CTL_ELEM_TYPE_IEC958; uinfo->count = 1; return 0; } static int davinci_mcasp_iec958_get(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *uctl) { struct snd_soc_dai *cpu_dai = snd_kcontrol_chip(kcontrol); struct davinci_mcasp *mcasp = snd_soc_dai_get_drvdata(cpu_dai); memcpy(uctl->value.iec958.status, &mcasp->iec958_status, sizeof(mcasp->iec958_status)); return 0; } static int davinci_mcasp_iec958_put(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *uctl) { struct snd_soc_dai *cpu_dai = snd_kcontrol_chip(kcontrol); struct davinci_mcasp *mcasp = snd_soc_dai_get_drvdata(cpu_dai); memcpy(&mcasp->iec958_status, uctl->value.iec958.status, sizeof(mcasp->iec958_status)); return 0; } static int davinci_mcasp_iec958_con_mask_get(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) { struct snd_soc_dai *cpu_dai = snd_kcontrol_chip(kcontrol); struct davinci_mcasp *mcasp = snd_soc_dai_get_drvdata(cpu_dai); memset(ucontrol->value.iec958.status, 0xff, sizeof(mcasp->iec958_status)); return 0; } static const struct snd_kcontrol_new davinci_mcasp_iec958_ctls[] = { { .access = (SNDRV_CTL_ELEM_ACCESS_READWRITE | SNDRV_CTL_ELEM_ACCESS_VOLATILE), .iface = SNDRV_CTL_ELEM_IFACE_PCM, .name = SNDRV_CTL_NAME_IEC958("", PLAYBACK, DEFAULT), .info = davinci_mcasp_iec958_info, .get = davinci_mcasp_iec958_get, .put = davinci_mcasp_iec958_put, }, { .access = SNDRV_CTL_ELEM_ACCESS_READ, .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = SNDRV_CTL_NAME_IEC958("", PLAYBACK, CON_MASK), .info = davinci_mcasp_iec958_info, .get = davinci_mcasp_iec958_con_mask_get, }, }; static void davinci_mcasp_init_iec958_status(struct davinci_mcasp *mcasp) { unsigned char *cs = (u8 *)&mcasp->iec958_status; cs[0] = IEC958_AES0_CON_NOT_COPYRIGHT | IEC958_AES0_CON_EMPHASIS_NONE; cs[1] = IEC958_AES1_CON_PCM_CODER; cs[2] = IEC958_AES2_CON_SOURCE_UNSPEC | IEC958_AES2_CON_CHANNEL_UNSPEC; cs[3] = IEC958_AES3_CON_CLOCK_1000PPM; } static int davinci_mcasp_dai_probe(struct snd_soc_dai *dai) { struct davinci_mcasp *mcasp = snd_soc_dai_get_drvdata(dai); int stream; for_each_pcm_streams(stream) snd_soc_dai_dma_data_set(dai, stream, &mcasp->dma_data[stream]); if (mcasp->op_mode == DAVINCI_MCASP_DIT_MODE) { davinci_mcasp_init_iec958_status(mcasp); snd_soc_add_dai_controls(dai, davinci_mcasp_iec958_ctls, ARRAY_SIZE(davinci_mcasp_iec958_ctls)); } return 0; } static const struct snd_soc_dai_ops davinci_mcasp_dai_ops = { .probe = davinci_mcasp_dai_probe, .startup = davinci_mcasp_startup, .shutdown = davinci_mcasp_shutdown, .trigger = davinci_mcasp_trigger, .delay = davinci_mcasp_delay, .hw_params = davinci_mcasp_hw_params, .set_fmt = davinci_mcasp_set_dai_fmt, .set_clkdiv = davinci_mcasp_set_clkdiv, .set_sysclk = davinci_mcasp_set_sysclk, .set_tdm_slot = davinci_mcasp_set_tdm_slot, }; #define DAVINCI_MCASP_RATES SNDRV_PCM_RATE_8000_192000 #define DAVINCI_MCASP_PCM_FMTS (SNDRV_PCM_FMTBIT_S8 | \ SNDRV_PCM_FMTBIT_U8 | \ SNDRV_PCM_FMTBIT_S16_LE | \ SNDRV_PCM_FMTBIT_U16_LE | \ SNDRV_PCM_FMTBIT_S24_LE | \ SNDRV_PCM_FMTBIT_U24_LE | \ SNDRV_PCM_FMTBIT_S24_3LE | \ SNDRV_PCM_FMTBIT_U24_3LE | \ SNDRV_PCM_FMTBIT_S32_LE | \ SNDRV_PCM_FMTBIT_U32_LE) static struct snd_soc_dai_driver davinci_mcasp_dai[] = { { .name = "davinci-mcasp.0", .playback = { .stream_name = "IIS Playback", .channels_min = 1, .channels_max = 32 * 16, .rates = DAVINCI_MCASP_RATES, .formats = DAVINCI_MCASP_PCM_FMTS, }, .capture = { .stream_name = "IIS Capture", .channels_min = 1, .channels_max = 32 * 16, .rates = DAVINCI_MCASP_RATES, .formats = DAVINCI_MCASP_PCM_FMTS, }, .ops = &davinci_mcasp_dai_ops, .symmetric_rate = 1, }, { .name = "davinci-mcasp.1", .playback = { .stream_name = "DIT Playback", .channels_min = 1, .channels_max = 384, .rates = DAVINCI_MCASP_RATES, .formats = SNDRV_PCM_FMTBIT_S16_LE | SNDRV_PCM_FMTBIT_S24_LE, }, .ops = &davinci_mcasp_dai_ops, }, }; static const struct snd_soc_component_driver davinci_mcasp_component = { .name = "davinci-mcasp", .legacy_dai_naming = 1, }; /* Some HW specific values and defaults. The rest is filled in from DT. */ static struct davinci_mcasp_pdata dm646x_mcasp_pdata = { .tx_dma_offset = 0x400, .rx_dma_offset = 0x400, .version = MCASP_VERSION_1, }; static struct davinci_mcasp_pdata da830_mcasp_pdata = { .tx_dma_offset = 0x2000, .rx_dma_offset = 0x2000, .version = MCASP_VERSION_2, }; static struct davinci_mcasp_pdata am33xx_mcasp_pdata = { .tx_dma_offset = 0, .rx_dma_offset = 0, .version = MCASP_VERSION_3, }; static struct davinci_mcasp_pdata dra7_mcasp_pdata = { /* The CFG port offset will be calculated if it is needed */ .tx_dma_offset = 0, .rx_dma_offset = 0, .version = MCASP_VERSION_4, }; static struct davinci_mcasp_pdata omap_mcasp_pdata = { .tx_dma_offset = 0x200, .rx_dma_offset = 0, .version = MCASP_VERSION_OMAP, }; static const struct of_device_id mcasp_dt_ids[] = { { .compatible = "ti,dm646x-mcasp-audio", .data = &dm646x_mcasp_pdata, }, { .compatible = "ti,da830-mcasp-audio", .data = &da830_mcasp_pdata, }, { .compatible = "ti,am33xx-mcasp-audio", .data = &am33xx_mcasp_pdata, }, { .compatible = "ti,dra7-mcasp-audio", .data = &dra7_mcasp_pdata, }, { .compatible = "ti,omap4-mcasp-audio", .data = &omap_mcasp_pdata, }, { /* sentinel */ } }; MODULE_DEVICE_TABLE(of, mcasp_dt_ids); static int mcasp_reparent_fck(struct platform_device *pdev) { struct device_node *node = pdev->dev.of_node; struct clk *gfclk, *parent_clk; const char *parent_name; int ret; if (!node) return 0; parent_name = of_get_property(node, "fck_parent", NULL); if (!parent_name) return 0; dev_warn(&pdev->dev, "Update the bindings to use assigned-clocks!\n"); gfclk = clk_get(&pdev->dev, "fck"); if (IS_ERR(gfclk)) { dev_err(&pdev->dev, "failed to get fck\n"); return PTR_ERR(gfclk); } parent_clk = clk_get(NULL, parent_name); if (IS_ERR(parent_clk)) { dev_err(&pdev->dev, "failed to get parent clock\n"); ret = PTR_ERR(parent_clk); goto err1; } ret = clk_set_parent(gfclk, parent_clk); if (ret) { dev_err(&pdev->dev, "failed to reparent fck\n"); goto err2; } err2: clk_put(parent_clk); err1: clk_put(gfclk); return ret; } static bool davinci_mcasp_have_gpiochip(struct davinci_mcasp *mcasp) { #ifdef CONFIG_OF_GPIO return of_property_read_bool(mcasp->dev->of_node, "gpio-controller"); #else return false; #endif } static int davinci_mcasp_get_config(struct davinci_mcasp *mcasp, struct platform_device *pdev) { struct device_node *np = pdev->dev.of_node; struct davinci_mcasp_pdata *pdata = NULL; const struct davinci_mcasp_pdata *match_pdata = device_get_match_data(&pdev->dev); const u32 *of_serial_dir32; u32 val; int i; if (pdev->dev.platform_data) { pdata = pdev->dev.platform_data; pdata->dismod = DISMOD_LOW; goto out; } else if (match_pdata) { pdata = devm_kmemdup(&pdev->dev, match_pdata, sizeof(*pdata), GFP_KERNEL); if (!pdata) return -ENOMEM; } else { dev_err(&pdev->dev, "No compatible match found\n"); return -EINVAL; } if (of_property_read_u32(np, "op-mode", &val) == 0) { pdata->op_mode = val; } else { mcasp->missing_audio_param = true; goto out; } if (of_property_read_u32(np, "tdm-slots", &val) == 0) { if (val < 2 || val > 32) { dev_err(&pdev->dev, "tdm-slots must be in rage [2-32]\n"); return -EINVAL; } pdata->tdm_slots = val; } else if (pdata->op_mode == DAVINCI_MCASP_IIS_MODE) { mcasp->missing_audio_param = true; goto out; } of_serial_dir32 = of_get_property(np, "serial-dir", &val); val /= sizeof(u32); if (of_serial_dir32) { u8 *of_serial_dir = devm_kzalloc(&pdev->dev, (sizeof(*of_serial_dir) * val), GFP_KERNEL); if (!of_serial_dir) return -ENOMEM; for (i = 0; i < val; i++) of_serial_dir[i] = be32_to_cpup(&of_serial_dir32[i]); pdata->num_serializer = val; pdata->serial_dir = of_serial_dir; } else { mcasp->missing_audio_param = true; goto out; } if (of_property_read_u32(np, "tx-num-evt", &val) == 0) pdata->txnumevt = val; if (of_property_read_u32(np, "rx-num-evt", &val) == 0) pdata->rxnumevt = val; if (of_property_read_u32(np, "auxclk-fs-ratio", &val) == 0) mcasp->auxclk_fs_ratio = val; if (of_property_read_u32(np, "dismod", &val) == 0) { if (val == 0 || val == 2 || val == 3) { pdata->dismod = DISMOD_VAL(val); } else { dev_warn(&pdev->dev, "Invalid dismod value: %u\n", val); pdata->dismod = DISMOD_LOW; } } else { pdata->dismod = DISMOD_LOW; } out: mcasp->pdata = pdata; if (mcasp->missing_audio_param) { if (davinci_mcasp_have_gpiochip(mcasp)) { dev_dbg(&pdev->dev, "Missing DT parameter(s) for audio\n"); return 0; } dev_err(&pdev->dev, "Insufficient DT parameter(s)\n"); return -ENODEV; } mcasp->op_mode = pdata->op_mode; /* sanity check for tdm slots parameter */ if (mcasp->op_mode == DAVINCI_MCASP_IIS_MODE) { if (pdata->tdm_slots < 2) { dev_warn(&pdev->dev, "invalid tdm slots: %d\n", pdata->tdm_slots); mcasp->tdm_slots = 2; } else if (pdata->tdm_slots > 32) { dev_warn(&pdev->dev, "invalid tdm slots: %d\n", pdata->tdm_slots); mcasp->tdm_slots = 32; } else { mcasp->tdm_slots = pdata->tdm_slots; } } else { mcasp->tdm_slots = 32; } mcasp->num_serializer = pdata->num_serializer; #ifdef CONFIG_PM mcasp->context.xrsr_regs = devm_kcalloc(&pdev->dev, mcasp->num_serializer, sizeof(u32), GFP_KERNEL); if (!mcasp->context.xrsr_regs) return -ENOMEM; #endif mcasp->serial_dir = pdata->serial_dir; mcasp->version = pdata->version; mcasp->txnumevt = pdata->txnumevt; mcasp->rxnumevt = pdata->rxnumevt; mcasp->dismod = pdata->dismod; return 0; } enum { PCM_EDMA, PCM_SDMA, PCM_UDMA, }; static const char *sdma_prefix = "ti,omap"; static int davinci_mcasp_get_dma_type(struct davinci_mcasp *mcasp) { struct dma_chan *chan; const char *tmp; int ret = PCM_EDMA; if (!mcasp->dev->of_node) return PCM_EDMA; tmp = mcasp->dma_data[SNDRV_PCM_STREAM_PLAYBACK].filter_data; chan = dma_request_chan(mcasp->dev, tmp); if (IS_ERR(chan)) return dev_err_probe(mcasp->dev, PTR_ERR(chan), "Can't verify DMA configuration\n"); if (WARN_ON(!chan->device || !chan->device->dev)) { dma_release_channel(chan); return -EINVAL; } if (chan->device->dev->of_node) ret = of_property_read_string(chan->device->dev->of_node, "compatible", &tmp); else dev_dbg(mcasp->dev, "DMA controller has no of-node\n"); dma_release_channel(chan); if (ret) return ret; dev_dbg(mcasp->dev, "DMA controller compatible = \"%s\"\n", tmp); if (!strncmp(tmp, sdma_prefix, strlen(sdma_prefix))) return PCM_SDMA; else if (strstr(tmp, "udmap")) return PCM_UDMA; else if (strstr(tmp, "bcdma")) return PCM_UDMA; return PCM_EDMA; } static u32 davinci_mcasp_txdma_offset(struct davinci_mcasp_pdata *pdata) { int i; u32 offset = 0; if (pdata->version != MCASP_VERSION_4) return pdata->tx_dma_offset; for (i = 0; i < pdata->num_serializer; i++) { if (pdata->serial_dir[i] == TX_MODE) { if (!offset) { offset = DAVINCI_MCASP_TXBUF_REG(i); } else { pr_err("%s: Only one serializer allowed!\n", __func__); break; } } } return offset; } static u32 davinci_mcasp_rxdma_offset(struct davinci_mcasp_pdata *pdata) { int i; u32 offset = 0; if (pdata->version != MCASP_VERSION_4) return pdata->rx_dma_offset; for (i = 0; i < pdata->num_serializer; i++) { if (pdata->serial_dir[i] == RX_MODE) { if (!offset) { offset = DAVINCI_MCASP_RXBUF_REG(i); } else { pr_err("%s: Only one serializer allowed!\n", __func__); break; } } } return offset; } #ifdef CONFIG_GPIOLIB static int davinci_mcasp_gpio_request(struct gpio_chip *chip, unsigned offset) { struct davinci_mcasp *mcasp = gpiochip_get_data(chip); if (mcasp->num_serializer && offset < mcasp->num_serializer && mcasp->serial_dir[offset] != INACTIVE_MODE) { dev_err(mcasp->dev, "AXR%u pin is used for audio\n", offset); return -EBUSY; } /* Do not change the PIN yet */ return pm_runtime_resume_and_get(mcasp->dev); } static void davinci_mcasp_gpio_free(struct gpio_chip *chip, unsigned offset) { struct davinci_mcasp *mcasp = gpiochip_get_data(chip); /* Set the direction to input */ mcasp_clr_bits(mcasp, DAVINCI_MCASP_PDIR_REG, BIT(offset)); /* Set the pin as McASP pin */ mcasp_clr_bits(mcasp, DAVINCI_MCASP_PFUNC_REG, BIT(offset)); pm_runtime_put_sync(mcasp->dev); } static int davinci_mcasp_gpio_direction_out(struct gpio_chip *chip, unsigned offset, int value) { struct davinci_mcasp *mcasp = gpiochip_get_data(chip); u32 val; if (value) mcasp_set_bits(mcasp, DAVINCI_MCASP_PDOUT_REG, BIT(offset)); else mcasp_clr_bits(mcasp, DAVINCI_MCASP_PDOUT_REG, BIT(offset)); val = mcasp_get_reg(mcasp, DAVINCI_MCASP_PFUNC_REG); if (!(val & BIT(offset))) { /* Set the pin as GPIO pin */ mcasp_set_bits(mcasp, DAVINCI_MCASP_PFUNC_REG, BIT(offset)); /* Set the direction to output */ mcasp_set_bits(mcasp, DAVINCI_MCASP_PDIR_REG, BIT(offset)); } return 0; } static void davinci_mcasp_gpio_set(struct gpio_chip *chip, unsigned offset, int value) { struct davinci_mcasp *mcasp = gpiochip_get_data(chip); if (value) mcasp_set_bits(mcasp, DAVINCI_MCASP_PDOUT_REG, BIT(offset)); else mcasp_clr_bits(mcasp, DAVINCI_MCASP_PDOUT_REG, BIT(offset)); } static int davinci_mcasp_gpio_direction_in(struct gpio_chip *chip, unsigned offset) { struct davinci_mcasp *mcasp = gpiochip_get_data(chip); u32 val; val = mcasp_get_reg(mcasp, DAVINCI_MCASP_PFUNC_REG); if (!(val & BIT(offset))) { /* Set the direction to input */ mcasp_clr_bits(mcasp, DAVINCI_MCASP_PDIR_REG, BIT(offset)); /* Set the pin as GPIO pin */ mcasp_set_bits(mcasp, DAVINCI_MCASP_PFUNC_REG, BIT(offset)); } return 0; } static int davinci_mcasp_gpio_get(struct gpio_chip *chip, unsigned offset) { struct davinci_mcasp *mcasp = gpiochip_get_data(chip); u32 val; val = mcasp_get_reg(mcasp, DAVINCI_MCASP_PDSET_REG); if (val & BIT(offset)) return 1; return 0; } static int davinci_mcasp_gpio_get_direction(struct gpio_chip *chip, unsigned offset) { struct davinci_mcasp *mcasp = gpiochip_get_data(chip); u32 val; val = mcasp_get_reg(mcasp, DAVINCI_MCASP_PDIR_REG); if (val & BIT(offset)) return 0; return 1; } static const struct gpio_chip davinci_mcasp_template_chip = { .owner = THIS_MODULE, .request = davinci_mcasp_gpio_request, .free = davinci_mcasp_gpio_free, .direction_output = davinci_mcasp_gpio_direction_out, .set = davinci_mcasp_gpio_set, .direction_input = davinci_mcasp_gpio_direction_in, .get = davinci_mcasp_gpio_get, .get_direction = davinci_mcasp_gpio_get_direction, .base = -1, .ngpio = 32, }; static int davinci_mcasp_init_gpiochip(struct davinci_mcasp *mcasp) { if (!davinci_mcasp_have_gpiochip(mcasp)) return 0; mcasp->gpio_chip = davinci_mcasp_template_chip; mcasp->gpio_chip.label = dev_name(mcasp->dev); mcasp->gpio_chip.parent = mcasp->dev; return devm_gpiochip_add_data(mcasp->dev, &mcasp->gpio_chip, mcasp); } #else /* CONFIG_GPIOLIB */ static inline int davinci_mcasp_init_gpiochip(struct davinci_mcasp *mcasp) { return 0; } #endif /* CONFIG_GPIOLIB */ static int davinci_mcasp_probe(struct platform_device *pdev) { struct snd_dmaengine_dai_dma_data *dma_data; struct resource *mem, *dat; struct davinci_mcasp *mcasp; char *irq_name; int irq; int ret; if (!pdev->dev.platform_data && !pdev->dev.of_node) { dev_err(&pdev->dev, "No platform data supplied\n"); return -EINVAL; } mcasp = devm_kzalloc(&pdev->dev, sizeof(struct davinci_mcasp), GFP_KERNEL); if (!mcasp) return -ENOMEM; mem = platform_get_resource_byname(pdev, IORESOURCE_MEM, "mpu"); if (!mem) { dev_warn(&pdev->dev, "\"mpu\" mem resource not found, using index 0\n"); mem = platform_get_resource(pdev, IORESOURCE_MEM, 0); if (!mem) { dev_err(&pdev->dev, "no mem resource?\n"); return -ENODEV; } } mcasp->base = devm_ioremap_resource(&pdev->dev, mem); if (IS_ERR(mcasp->base)) return PTR_ERR(mcasp->base); dev_set_drvdata(&pdev->dev, mcasp); pm_runtime_enable(&pdev->dev); mcasp->dev = &pdev->dev; ret = davinci_mcasp_get_config(mcasp, pdev); if (ret) goto err; /* All PINS as McASP */ pm_runtime_get_sync(mcasp->dev); mcasp_set_reg(mcasp, DAVINCI_MCASP_PFUNC_REG, 0x00000000); pm_runtime_put(mcasp->dev); /* Skip audio related setup code if the configuration is not adequat */ if (mcasp->missing_audio_param) goto no_audio; irq = platform_get_irq_byname_optional(pdev, "common"); if (irq > 0) { irq_name = devm_kasprintf(&pdev->dev, GFP_KERNEL, "%s_common", dev_name(&pdev->dev)); if (!irq_name) { ret = -ENOMEM; goto err; } ret = devm_request_threaded_irq(&pdev->dev, irq, NULL, davinci_mcasp_common_irq_handler, IRQF_ONESHOT | IRQF_SHARED, irq_name, mcasp); if (ret) { dev_err(&pdev->dev, "common IRQ request failed\n"); goto err; } mcasp->irq_request[SNDRV_PCM_STREAM_PLAYBACK] = XUNDRN; mcasp->irq_request[SNDRV_PCM_STREAM_CAPTURE] = ROVRN; } irq = platform_get_irq_byname_optional(pdev, "rx"); if (irq > 0) { irq_name = devm_kasprintf(&pdev->dev, GFP_KERNEL, "%s_rx", dev_name(&pdev->dev)); if (!irq_name) { ret = -ENOMEM; goto err; } ret = devm_request_threaded_irq(&pdev->dev, irq, NULL, davinci_mcasp_rx_irq_handler, IRQF_ONESHOT, irq_name, mcasp); if (ret) { dev_err(&pdev->dev, "RX IRQ request failed\n"); goto err; } mcasp->irq_request[SNDRV_PCM_STREAM_CAPTURE] = ROVRN; } irq = platform_get_irq_byname_optional(pdev, "tx"); if (irq > 0) { irq_name = devm_kasprintf(&pdev->dev, GFP_KERNEL, "%s_tx", dev_name(&pdev->dev)); if (!irq_name) { ret = -ENOMEM; goto err; } ret = devm_request_threaded_irq(&pdev->dev, irq, NULL, davinci_mcasp_tx_irq_handler, IRQF_ONESHOT, irq_name, mcasp); if (ret) { dev_err(&pdev->dev, "TX IRQ request failed\n"); goto err; } mcasp->irq_request[SNDRV_PCM_STREAM_PLAYBACK] = XUNDRN; } dat = platform_get_resource_byname(pdev, IORESOURCE_MEM, "dat"); if (dat) mcasp->dat_port = true; dma_data = &mcasp->dma_data[SNDRV_PCM_STREAM_PLAYBACK]; dma_data->filter_data = "tx"; if (dat) { dma_data->addr = dat->start; /* * According to the TRM there should be 0x200 offset added to * the DAT port address */ if (mcasp->version == MCASP_VERSION_OMAP) dma_data->addr += davinci_mcasp_txdma_offset(mcasp->pdata); } else { dma_data->addr = mem->start + davinci_mcasp_txdma_offset(mcasp->pdata); } /* RX is not valid in DIT mode */ if (mcasp->op_mode != DAVINCI_MCASP_DIT_MODE) { dma_data = &mcasp->dma_data[SNDRV_PCM_STREAM_CAPTURE]; dma_data->filter_data = "rx"; if (dat) dma_data->addr = dat->start; else dma_data->addr = mem->start + davinci_mcasp_rxdma_offset(mcasp->pdata); } if (mcasp->version < MCASP_VERSION_3) { mcasp->fifo_base = DAVINCI_MCASP_V2_AFIFO_BASE; /* dma_params->dma_addr is pointing to the data port address */ mcasp->dat_port = true; } else { mcasp->fifo_base = DAVINCI_MCASP_V3_AFIFO_BASE; } /* Allocate memory for long enough list for all possible * scenarios. Maximum number tdm slots is 32 and there cannot * be more serializers than given in the configuration. The * serializer directions could be taken into account, but it * would make code much more complex and save only couple of * bytes. */ mcasp->chconstr[SNDRV_PCM_STREAM_PLAYBACK].list = devm_kcalloc(mcasp->dev, 32 + mcasp->num_serializer - 1, sizeof(unsigned int), GFP_KERNEL); mcasp->chconstr[SNDRV_PCM_STREAM_CAPTURE].list = devm_kcalloc(mcasp->dev, 32 + mcasp->num_serializer - 1, sizeof(unsigned int), GFP_KERNEL); if (!mcasp->chconstr[SNDRV_PCM_STREAM_PLAYBACK].list || !mcasp->chconstr[SNDRV_PCM_STREAM_CAPTURE].list) { ret = -ENOMEM; goto err; } ret = davinci_mcasp_set_ch_constraints(mcasp); if (ret) goto err; mcasp_reparent_fck(pdev); ret = devm_snd_soc_register_component(&pdev->dev, &davinci_mcasp_component, &davinci_mcasp_dai[mcasp->op_mode], 1); if (ret != 0) goto err; ret = davinci_mcasp_get_dma_type(mcasp); switch (ret) { case PCM_EDMA: ret = edma_pcm_platform_register(&pdev->dev); break; case PCM_SDMA: if (mcasp->op_mode == DAVINCI_MCASP_IIS_MODE) ret = sdma_pcm_platform_register(&pdev->dev, "tx", "rx"); else ret = sdma_pcm_platform_register(&pdev->dev, "tx", NULL); break; case PCM_UDMA: ret = udma_pcm_platform_register(&pdev->dev); break; default: dev_err(&pdev->dev, "No DMA controller found (%d)\n", ret); fallthrough; case -EPROBE_DEFER: goto err; } if (ret) { dev_err(&pdev->dev, "register PCM failed: %d\n", ret); goto err; } no_audio: ret = davinci_mcasp_init_gpiochip(mcasp); if (ret) { dev_err(&pdev->dev, "gpiochip registration failed: %d\n", ret); goto err; } return 0; err: pm_runtime_disable(&pdev->dev); return ret; } static void davinci_mcasp_remove(struct platform_device *pdev) { pm_runtime_disable(&pdev->dev); } #ifdef CONFIG_PM static int davinci_mcasp_runtime_suspend(struct device *dev) { struct davinci_mcasp *mcasp = dev_get_drvdata(dev); struct davinci_mcasp_context *context = &mcasp->context; u32 reg; int i; for (i = 0; i < ARRAY_SIZE(context_regs); i++) context->config_regs[i] = mcasp_get_reg(mcasp, context_regs[i]); if (mcasp->txnumevt) { reg = mcasp->fifo_base + MCASP_WFIFOCTL_OFFSET; context->afifo_regs[0] = mcasp_get_reg(mcasp, reg); } if (mcasp->rxnumevt) { reg = mcasp->fifo_base + MCASP_RFIFOCTL_OFFSET; context->afifo_regs[1] = mcasp_get_reg(mcasp, reg); } for (i = 0; i < mcasp->num_serializer; i++) context->xrsr_regs[i] = mcasp_get_reg(mcasp, DAVINCI_MCASP_XRSRCTL_REG(i)); return 0; } static int davinci_mcasp_runtime_resume(struct device *dev) { struct davinci_mcasp *mcasp = dev_get_drvdata(dev); struct davinci_mcasp_context *context = &mcasp->context; u32 reg; int i; for (i = 0; i < ARRAY_SIZE(context_regs); i++) mcasp_set_reg(mcasp, context_regs[i], context->config_regs[i]); if (mcasp->txnumevt) { reg = mcasp->fifo_base + MCASP_WFIFOCTL_OFFSET; mcasp_set_reg(mcasp, reg, context->afifo_regs[0]); } if (mcasp->rxnumevt) { reg = mcasp->fifo_base + MCASP_RFIFOCTL_OFFSET; mcasp_set_reg(mcasp, reg, context->afifo_regs[1]); } for (i = 0; i < mcasp->num_serializer; i++) mcasp_set_reg(mcasp, DAVINCI_MCASP_XRSRCTL_REG(i), context->xrsr_regs[i]); return 0; } #endif static const struct dev_pm_ops davinci_mcasp_pm_ops = { SET_RUNTIME_PM_OPS(davinci_mcasp_runtime_suspend, davinci_mcasp_runtime_resume, NULL) }; static struct platform_driver davinci_mcasp_driver = { .probe = davinci_mcasp_probe, .remove_new = davinci_mcasp_remove, .driver = { .name = "davinci-mcasp", .pm = &davinci_mcasp_pm_ops, .of_match_table = mcasp_dt_ids, }, }; module_platform_driver(davinci_mcasp_driver); MODULE_AUTHOR("Steve Chen"); MODULE_DESCRIPTION("TI DAVINCI McASP SoC Interface"); MODULE_LICENSE("GPL");
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1