Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Oleksandr Andrushchenko | 2167 | 98.72% | 4 | 80.00% |
Juergen Gross | 28 | 1.28% | 1 | 20.00% |
Total | 2195 | 5 |
// SPDX-License-Identifier: GPL-2.0 OR MIT /* * Xen para-virtual sound device * * Copyright (C) 2016-2018 EPAM Systems Inc. * * Author: Oleksandr Andrushchenko <oleksandr_andrushchenko@epam.com> */ #include <xen/events.h> #include <xen/grant_table.h> #include <xen/xen.h> #include <xen/xenbus.h> #include "xen_snd_front.h" #include "xen_snd_front_alsa.h" #include "xen_snd_front_cfg.h" #include "xen_snd_front_evtchnl.h" static irqreturn_t evtchnl_interrupt_req(int irq, void *dev_id) { struct xen_snd_front_evtchnl *channel = dev_id; struct xen_snd_front_info *front_info = channel->front_info; struct xensnd_resp *resp; RING_IDX i, rp; if (unlikely(channel->state != EVTCHNL_STATE_CONNECTED)) return IRQ_HANDLED; mutex_lock(&channel->ring_io_lock); again: rp = channel->u.req.ring.sring->rsp_prod; /* Ensure we see queued responses up to rp. */ rmb(); /* * Assume that the backend is trusted to always write sane values * to the ring counters, so no overflow checks on frontend side * are required. */ for (i = channel->u.req.ring.rsp_cons; i != rp; i++) { resp = RING_GET_RESPONSE(&channel->u.req.ring, i); if (resp->id != channel->evt_id) continue; switch (resp->operation) { case XENSND_OP_OPEN: case XENSND_OP_CLOSE: case XENSND_OP_READ: case XENSND_OP_WRITE: case XENSND_OP_TRIGGER: channel->u.req.resp_status = resp->status; complete(&channel->u.req.completion); break; case XENSND_OP_HW_PARAM_QUERY: channel->u.req.resp_status = resp->status; channel->u.req.resp.hw_param = resp->resp.hw_param; complete(&channel->u.req.completion); break; default: dev_err(&front_info->xb_dev->dev, "Operation %d is not supported\n", resp->operation); break; } } channel->u.req.ring.rsp_cons = i; if (i != channel->u.req.ring.req_prod_pvt) { int more_to_do; RING_FINAL_CHECK_FOR_RESPONSES(&channel->u.req.ring, more_to_do); if (more_to_do) goto again; } else { channel->u.req.ring.sring->rsp_event = i + 1; } mutex_unlock(&channel->ring_io_lock); return IRQ_HANDLED; } static irqreturn_t evtchnl_interrupt_evt(int irq, void *dev_id) { struct xen_snd_front_evtchnl *channel = dev_id; struct xensnd_event_page *page = channel->u.evt.page; u32 cons, prod; if (unlikely(channel->state != EVTCHNL_STATE_CONNECTED)) return IRQ_HANDLED; mutex_lock(&channel->ring_io_lock); prod = page->in_prod; /* Ensure we see ring contents up to prod. */ virt_rmb(); if (prod == page->in_cons) goto out; /* * Assume that the backend is trusted to always write sane values * to the ring counters, so no overflow checks on frontend side * are required. */ for (cons = page->in_cons; cons != prod; cons++) { struct xensnd_evt *event; event = &XENSND_IN_RING_REF(page, cons); if (unlikely(event->id != channel->evt_id++)) continue; switch (event->type) { case XENSND_EVT_CUR_POS: xen_snd_front_alsa_handle_cur_pos(channel, event->op.cur_pos.position); break; } } page->in_cons = cons; /* Ensure ring contents. */ virt_wmb(); out: mutex_unlock(&channel->ring_io_lock); return IRQ_HANDLED; } void xen_snd_front_evtchnl_flush(struct xen_snd_front_evtchnl *channel) { int notify; channel->u.req.ring.req_prod_pvt++; RING_PUSH_REQUESTS_AND_CHECK_NOTIFY(&channel->u.req.ring, notify); if (notify) notify_remote_via_irq(channel->irq); } static void evtchnl_free(struct xen_snd_front_info *front_info, struct xen_snd_front_evtchnl *channel) { void *page = NULL; if (channel->type == EVTCHNL_TYPE_REQ) page = channel->u.req.ring.sring; else if (channel->type == EVTCHNL_TYPE_EVT) page = channel->u.evt.page; if (!page) return; channel->state = EVTCHNL_STATE_DISCONNECTED; if (channel->type == EVTCHNL_TYPE_REQ) { /* Release all who still waits for response if any. */ channel->u.req.resp_status = -EIO; complete_all(&channel->u.req.completion); } if (channel->irq) unbind_from_irqhandler(channel->irq, channel); if (channel->port) xenbus_free_evtchn(front_info->xb_dev, channel->port); /* End access and free the page. */ xenbus_teardown_ring(&page, 1, &channel->gref); memset(channel, 0, sizeof(*channel)); } void xen_snd_front_evtchnl_free_all(struct xen_snd_front_info *front_info) { int i; if (!front_info->evt_pairs) return; for (i = 0; i < front_info->num_evt_pairs; i++) { evtchnl_free(front_info, &front_info->evt_pairs[i].req); evtchnl_free(front_info, &front_info->evt_pairs[i].evt); } kfree(front_info->evt_pairs); front_info->evt_pairs = NULL; } static int evtchnl_alloc(struct xen_snd_front_info *front_info, int index, struct xen_snd_front_evtchnl *channel, enum xen_snd_front_evtchnl_type type) { struct xenbus_device *xb_dev = front_info->xb_dev; void *page; irq_handler_t handler; char *handler_name = NULL; int ret; memset(channel, 0, sizeof(*channel)); channel->type = type; channel->index = index; channel->front_info = front_info; channel->state = EVTCHNL_STATE_DISCONNECTED; ret = xenbus_setup_ring(xb_dev, GFP_KERNEL, &page, 1, &channel->gref); if (ret) goto fail; handler_name = kasprintf(GFP_KERNEL, "%s-%s", XENSND_DRIVER_NAME, type == EVTCHNL_TYPE_REQ ? XENSND_FIELD_RING_REF : XENSND_FIELD_EVT_RING_REF); if (!handler_name) { ret = -ENOMEM; goto fail; } mutex_init(&channel->ring_io_lock); if (type == EVTCHNL_TYPE_REQ) { struct xen_sndif_sring *sring = page; init_completion(&channel->u.req.completion); mutex_init(&channel->u.req.req_io_lock); XEN_FRONT_RING_INIT(&channel->u.req.ring, sring, XEN_PAGE_SIZE); handler = evtchnl_interrupt_req; } else { channel->u.evt.page = page; handler = evtchnl_interrupt_evt; } ret = xenbus_alloc_evtchn(xb_dev, &channel->port); if (ret < 0) goto fail; ret = bind_evtchn_to_irq(channel->port); if (ret < 0) { dev_err(&xb_dev->dev, "Failed to bind IRQ for domid %d port %d: %d\n", front_info->xb_dev->otherend_id, channel->port, ret); goto fail; } channel->irq = ret; ret = request_threaded_irq(channel->irq, NULL, handler, IRQF_ONESHOT, handler_name, channel); if (ret < 0) { dev_err(&xb_dev->dev, "Failed to request IRQ %d: %d\n", channel->irq, ret); goto fail; } kfree(handler_name); return 0; fail: kfree(handler_name); dev_err(&xb_dev->dev, "Failed to allocate ring: %d\n", ret); return ret; } int xen_snd_front_evtchnl_create_all(struct xen_snd_front_info *front_info, int num_streams) { struct xen_front_cfg_card *cfg = &front_info->cfg; struct device *dev = &front_info->xb_dev->dev; int d, ret = 0; front_info->evt_pairs = kcalloc(num_streams, sizeof(struct xen_snd_front_evtchnl_pair), GFP_KERNEL); if (!front_info->evt_pairs) return -ENOMEM; /* Iterate over devices and their streams and create event channels. */ for (d = 0; d < cfg->num_pcm_instances; d++) { struct xen_front_cfg_pcm_instance *pcm_instance; int s, index; pcm_instance = &cfg->pcm_instances[d]; for (s = 0; s < pcm_instance->num_streams_pb; s++) { index = pcm_instance->streams_pb[s].index; ret = evtchnl_alloc(front_info, index, &front_info->evt_pairs[index].req, EVTCHNL_TYPE_REQ); if (ret < 0) { dev_err(dev, "Error allocating control channel\n"); goto fail; } ret = evtchnl_alloc(front_info, index, &front_info->evt_pairs[index].evt, EVTCHNL_TYPE_EVT); if (ret < 0) { dev_err(dev, "Error allocating in-event channel\n"); goto fail; } } for (s = 0; s < pcm_instance->num_streams_cap; s++) { index = pcm_instance->streams_cap[s].index; ret = evtchnl_alloc(front_info, index, &front_info->evt_pairs[index].req, EVTCHNL_TYPE_REQ); if (ret < 0) { dev_err(dev, "Error allocating control channel\n"); goto fail; } ret = evtchnl_alloc(front_info, index, &front_info->evt_pairs[index].evt, EVTCHNL_TYPE_EVT); if (ret < 0) { dev_err(dev, "Error allocating in-event channel\n"); goto fail; } } } front_info->num_evt_pairs = num_streams; return 0; fail: xen_snd_front_evtchnl_free_all(front_info); return ret; } static int evtchnl_publish(struct xenbus_transaction xbt, struct xen_snd_front_evtchnl *channel, const char *path, const char *node_ring, const char *node_chnl) { struct xenbus_device *xb_dev = channel->front_info->xb_dev; int ret; /* Write control channel ring reference. */ ret = xenbus_printf(xbt, path, node_ring, "%u", channel->gref); if (ret < 0) { dev_err(&xb_dev->dev, "Error writing ring-ref: %d\n", ret); return ret; } /* Write event channel ring reference. */ ret = xenbus_printf(xbt, path, node_chnl, "%u", channel->port); if (ret < 0) { dev_err(&xb_dev->dev, "Error writing event channel: %d\n", ret); return ret; } return 0; } int xen_snd_front_evtchnl_publish_all(struct xen_snd_front_info *front_info) { struct xen_front_cfg_card *cfg = &front_info->cfg; struct xenbus_transaction xbt; int ret, d; again: ret = xenbus_transaction_start(&xbt); if (ret < 0) { xenbus_dev_fatal(front_info->xb_dev, ret, "starting transaction"); return ret; } for (d = 0; d < cfg->num_pcm_instances; d++) { struct xen_front_cfg_pcm_instance *pcm_instance; int s, index; pcm_instance = &cfg->pcm_instances[d]; for (s = 0; s < pcm_instance->num_streams_pb; s++) { index = pcm_instance->streams_pb[s].index; ret = evtchnl_publish(xbt, &front_info->evt_pairs[index].req, pcm_instance->streams_pb[s].xenstore_path, XENSND_FIELD_RING_REF, XENSND_FIELD_EVT_CHNL); if (ret < 0) goto fail; ret = evtchnl_publish(xbt, &front_info->evt_pairs[index].evt, pcm_instance->streams_pb[s].xenstore_path, XENSND_FIELD_EVT_RING_REF, XENSND_FIELD_EVT_EVT_CHNL); if (ret < 0) goto fail; } for (s = 0; s < pcm_instance->num_streams_cap; s++) { index = pcm_instance->streams_cap[s].index; ret = evtchnl_publish(xbt, &front_info->evt_pairs[index].req, pcm_instance->streams_cap[s].xenstore_path, XENSND_FIELD_RING_REF, XENSND_FIELD_EVT_CHNL); if (ret < 0) goto fail; ret = evtchnl_publish(xbt, &front_info->evt_pairs[index].evt, pcm_instance->streams_cap[s].xenstore_path, XENSND_FIELD_EVT_RING_REF, XENSND_FIELD_EVT_EVT_CHNL); if (ret < 0) goto fail; } } ret = xenbus_transaction_end(xbt, 0); if (ret < 0) { if (ret == -EAGAIN) goto again; xenbus_dev_fatal(front_info->xb_dev, ret, "completing transaction"); goto fail_to_end; } return 0; fail: xenbus_transaction_end(xbt, 1); fail_to_end: xenbus_dev_fatal(front_info->xb_dev, ret, "writing XenStore"); return ret; } void xen_snd_front_evtchnl_pair_set_connected(struct xen_snd_front_evtchnl_pair *evt_pair, bool is_connected) { enum xen_snd_front_evtchnl_state state; if (is_connected) state = EVTCHNL_STATE_CONNECTED; else state = EVTCHNL_STATE_DISCONNECTED; mutex_lock(&evt_pair->req.ring_io_lock); evt_pair->req.state = state; mutex_unlock(&evt_pair->req.ring_io_lock); mutex_lock(&evt_pair->evt.ring_io_lock); evt_pair->evt.state = state; mutex_unlock(&evt_pair->evt.ring_io_lock); } void xen_snd_front_evtchnl_pair_clear(struct xen_snd_front_evtchnl_pair *evt_pair) { mutex_lock(&evt_pair->req.ring_io_lock); evt_pair->req.evt_next_id = 0; mutex_unlock(&evt_pair->req.ring_io_lock); mutex_lock(&evt_pair->evt.ring_io_lock); evt_pair->evt.evt_next_id = 0; mutex_unlock(&evt_pair->evt.ring_io_lock); }
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1