Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
David S. Miller | 1787 | 53.92% | 2 | 13.33% |
Edward Cree | 874 | 26.37% | 4 | 26.67% |
Andrii Nakryiko | 477 | 14.39% | 4 | 26.67% |
Christy Lee | 124 | 3.74% | 2 | 13.33% |
Alexei Starovoitov | 34 | 1.03% | 1 | 6.67% |
Stanislav Fomichev | 17 | 0.51% | 1 | 6.67% |
Daniel Borkmann | 1 | 0.03% | 1 | 6.67% |
Total | 3314 | 15 |
// SPDX-License-Identifier: GPL-2.0 #include <test_progs.h> #define MAX_INSNS 512 #define MAX_MATCHES 24 struct bpf_reg_match { unsigned int line; const char *reg; const char *match; }; struct bpf_align_test { const char *descr; struct bpf_insn insns[MAX_INSNS]; enum { UNDEF, ACCEPT, REJECT } result; enum bpf_prog_type prog_type; /* Matches must be in order of increasing line */ struct bpf_reg_match matches[MAX_MATCHES]; }; static struct bpf_align_test tests[] = { /* Four tests of known constants. These aren't staggeringly * interesting since we track exact values now. */ { .descr = "mov", .insns = { BPF_MOV64_IMM(BPF_REG_3, 2), BPF_MOV64_IMM(BPF_REG_3, 4), BPF_MOV64_IMM(BPF_REG_3, 8), BPF_MOV64_IMM(BPF_REG_3, 16), BPF_MOV64_IMM(BPF_REG_3, 32), BPF_MOV64_IMM(BPF_REG_0, 0), BPF_EXIT_INSN(), }, .prog_type = BPF_PROG_TYPE_SCHED_CLS, .matches = { {0, "R1", "ctx(off=0,imm=0)"}, {0, "R10", "fp0"}, {0, "R3_w", "2"}, {1, "R3_w", "4"}, {2, "R3_w", "8"}, {3, "R3_w", "16"}, {4, "R3_w", "32"}, }, }, { .descr = "shift", .insns = { BPF_MOV64_IMM(BPF_REG_3, 1), BPF_ALU64_IMM(BPF_LSH, BPF_REG_3, 1), BPF_ALU64_IMM(BPF_LSH, BPF_REG_3, 1), BPF_ALU64_IMM(BPF_LSH, BPF_REG_3, 1), BPF_ALU64_IMM(BPF_LSH, BPF_REG_3, 1), BPF_ALU64_IMM(BPF_RSH, BPF_REG_3, 4), BPF_MOV64_IMM(BPF_REG_4, 32), BPF_ALU64_IMM(BPF_RSH, BPF_REG_4, 1), BPF_ALU64_IMM(BPF_RSH, BPF_REG_4, 1), BPF_ALU64_IMM(BPF_RSH, BPF_REG_4, 1), BPF_ALU64_IMM(BPF_RSH, BPF_REG_4, 1), BPF_MOV64_IMM(BPF_REG_0, 0), BPF_EXIT_INSN(), }, .prog_type = BPF_PROG_TYPE_SCHED_CLS, .matches = { {0, "R1", "ctx(off=0,imm=0)"}, {0, "R10", "fp0"}, {0, "R3_w", "1"}, {1, "R3_w", "2"}, {2, "R3_w", "4"}, {3, "R3_w", "8"}, {4, "R3_w", "16"}, {5, "R3_w", "1"}, {6, "R4_w", "32"}, {7, "R4_w", "16"}, {8, "R4_w", "8"}, {9, "R4_w", "4"}, {10, "R4_w", "2"}, }, }, { .descr = "addsub", .insns = { BPF_MOV64_IMM(BPF_REG_3, 4), BPF_ALU64_IMM(BPF_ADD, BPF_REG_3, 4), BPF_ALU64_IMM(BPF_ADD, BPF_REG_3, 2), BPF_MOV64_IMM(BPF_REG_4, 8), BPF_ALU64_IMM(BPF_ADD, BPF_REG_4, 4), BPF_ALU64_IMM(BPF_ADD, BPF_REG_4, 2), BPF_MOV64_IMM(BPF_REG_0, 0), BPF_EXIT_INSN(), }, .prog_type = BPF_PROG_TYPE_SCHED_CLS, .matches = { {0, "R1", "ctx(off=0,imm=0)"}, {0, "R10", "fp0"}, {0, "R3_w", "4"}, {1, "R3_w", "8"}, {2, "R3_w", "10"}, {3, "R4_w", "8"}, {4, "R4_w", "12"}, {5, "R4_w", "14"}, }, }, { .descr = "mul", .insns = { BPF_MOV64_IMM(BPF_REG_3, 7), BPF_ALU64_IMM(BPF_MUL, BPF_REG_3, 1), BPF_ALU64_IMM(BPF_MUL, BPF_REG_3, 2), BPF_ALU64_IMM(BPF_MUL, BPF_REG_3, 4), BPF_MOV64_IMM(BPF_REG_0, 0), BPF_EXIT_INSN(), }, .prog_type = BPF_PROG_TYPE_SCHED_CLS, .matches = { {0, "R1", "ctx(off=0,imm=0)"}, {0, "R10", "fp0"}, {0, "R3_w", "7"}, {1, "R3_w", "7"}, {2, "R3_w", "14"}, {3, "R3_w", "56"}, }, }, /* Tests using unknown values */ #define PREP_PKT_POINTERS \ BPF_LDX_MEM(BPF_W, BPF_REG_2, BPF_REG_1, \ offsetof(struct __sk_buff, data)), \ BPF_LDX_MEM(BPF_W, BPF_REG_3, BPF_REG_1, \ offsetof(struct __sk_buff, data_end)) #define LOAD_UNKNOWN(DST_REG) \ PREP_PKT_POINTERS, \ BPF_MOV64_REG(BPF_REG_0, BPF_REG_2), \ BPF_ALU64_IMM(BPF_ADD, BPF_REG_0, 8), \ BPF_JMP_REG(BPF_JGE, BPF_REG_3, BPF_REG_0, 1), \ BPF_EXIT_INSN(), \ BPF_LDX_MEM(BPF_B, DST_REG, BPF_REG_2, 0) { .descr = "unknown shift", .insns = { LOAD_UNKNOWN(BPF_REG_3), BPF_ALU64_IMM(BPF_LSH, BPF_REG_3, 1), BPF_ALU64_IMM(BPF_LSH, BPF_REG_3, 1), BPF_ALU64_IMM(BPF_LSH, BPF_REG_3, 1), BPF_ALU64_IMM(BPF_LSH, BPF_REG_3, 1), LOAD_UNKNOWN(BPF_REG_4), BPF_ALU64_IMM(BPF_LSH, BPF_REG_4, 5), BPF_ALU64_IMM(BPF_RSH, BPF_REG_4, 1), BPF_ALU64_IMM(BPF_RSH, BPF_REG_4, 1), BPF_ALU64_IMM(BPF_RSH, BPF_REG_4, 1), BPF_ALU64_IMM(BPF_RSH, BPF_REG_4, 1), BPF_MOV64_IMM(BPF_REG_0, 0), BPF_EXIT_INSN(), }, .prog_type = BPF_PROG_TYPE_SCHED_CLS, .matches = { {6, "R0_w", "pkt(off=8,r=8,imm=0)"}, {6, "R3_w", "var_off=(0x0; 0xff)"}, {7, "R3_w", "var_off=(0x0; 0x1fe)"}, {8, "R3_w", "var_off=(0x0; 0x3fc)"}, {9, "R3_w", "var_off=(0x0; 0x7f8)"}, {10, "R3_w", "var_off=(0x0; 0xff0)"}, {12, "R3_w", "pkt_end(off=0,imm=0)"}, {17, "R4_w", "var_off=(0x0; 0xff)"}, {18, "R4_w", "var_off=(0x0; 0x1fe0)"}, {19, "R4_w", "var_off=(0x0; 0xff0)"}, {20, "R4_w", "var_off=(0x0; 0x7f8)"}, {21, "R4_w", "var_off=(0x0; 0x3fc)"}, {22, "R4_w", "var_off=(0x0; 0x1fe)"}, }, }, { .descr = "unknown mul", .insns = { LOAD_UNKNOWN(BPF_REG_3), BPF_MOV64_REG(BPF_REG_4, BPF_REG_3), BPF_ALU64_IMM(BPF_MUL, BPF_REG_4, 1), BPF_MOV64_REG(BPF_REG_4, BPF_REG_3), BPF_ALU64_IMM(BPF_MUL, BPF_REG_4, 2), BPF_MOV64_REG(BPF_REG_4, BPF_REG_3), BPF_ALU64_IMM(BPF_MUL, BPF_REG_4, 4), BPF_MOV64_REG(BPF_REG_4, BPF_REG_3), BPF_ALU64_IMM(BPF_MUL, BPF_REG_4, 8), BPF_ALU64_IMM(BPF_MUL, BPF_REG_4, 2), BPF_MOV64_IMM(BPF_REG_0, 0), BPF_EXIT_INSN(), }, .prog_type = BPF_PROG_TYPE_SCHED_CLS, .matches = { {6, "R3_w", "var_off=(0x0; 0xff)"}, {7, "R4_w", "var_off=(0x0; 0xff)"}, {8, "R4_w", "var_off=(0x0; 0xff)"}, {9, "R4_w", "var_off=(0x0; 0xff)"}, {10, "R4_w", "var_off=(0x0; 0x1fe)"}, {11, "R4_w", "var_off=(0x0; 0xff)"}, {12, "R4_w", "var_off=(0x0; 0x3fc)"}, {13, "R4_w", "var_off=(0x0; 0xff)"}, {14, "R4_w", "var_off=(0x0; 0x7f8)"}, {15, "R4_w", "var_off=(0x0; 0xff0)"}, }, }, { .descr = "packet const offset", .insns = { PREP_PKT_POINTERS, BPF_MOV64_REG(BPF_REG_5, BPF_REG_2), BPF_MOV64_IMM(BPF_REG_0, 0), /* Skip over ethernet header. */ BPF_ALU64_IMM(BPF_ADD, BPF_REG_5, 14), BPF_MOV64_REG(BPF_REG_4, BPF_REG_5), BPF_ALU64_IMM(BPF_ADD, BPF_REG_4, 4), BPF_JMP_REG(BPF_JGE, BPF_REG_3, BPF_REG_4, 1), BPF_EXIT_INSN(), BPF_LDX_MEM(BPF_B, BPF_REG_4, BPF_REG_5, 0), BPF_LDX_MEM(BPF_B, BPF_REG_4, BPF_REG_5, 1), BPF_LDX_MEM(BPF_B, BPF_REG_4, BPF_REG_5, 2), BPF_LDX_MEM(BPF_B, BPF_REG_4, BPF_REG_5, 3), BPF_LDX_MEM(BPF_H, BPF_REG_4, BPF_REG_5, 0), BPF_LDX_MEM(BPF_H, BPF_REG_4, BPF_REG_5, 2), BPF_LDX_MEM(BPF_W, BPF_REG_4, BPF_REG_5, 0), BPF_MOV64_IMM(BPF_REG_0, 0), BPF_EXIT_INSN(), }, .prog_type = BPF_PROG_TYPE_SCHED_CLS, .matches = { {2, "R5_w", "pkt(off=0,r=0,imm=0)"}, {4, "R5_w", "pkt(off=14,r=0,imm=0)"}, {5, "R4_w", "pkt(off=14,r=0,imm=0)"}, {9, "R2", "pkt(off=0,r=18,imm=0)"}, {10, "R5", "pkt(off=14,r=18,imm=0)"}, {10, "R4_w", "var_off=(0x0; 0xff)"}, {13, "R4_w", "var_off=(0x0; 0xffff)"}, {14, "R4_w", "var_off=(0x0; 0xffff)"}, }, }, { .descr = "packet variable offset", .insns = { LOAD_UNKNOWN(BPF_REG_6), BPF_ALU64_IMM(BPF_LSH, BPF_REG_6, 2), /* First, add a constant to the R5 packet pointer, * then a variable with a known alignment. */ BPF_MOV64_REG(BPF_REG_5, BPF_REG_2), BPF_ALU64_IMM(BPF_ADD, BPF_REG_5, 14), BPF_ALU64_REG(BPF_ADD, BPF_REG_5, BPF_REG_6), BPF_MOV64_REG(BPF_REG_4, BPF_REG_5), BPF_ALU64_IMM(BPF_ADD, BPF_REG_4, 4), BPF_JMP_REG(BPF_JGE, BPF_REG_3, BPF_REG_4, 1), BPF_EXIT_INSN(), BPF_LDX_MEM(BPF_W, BPF_REG_4, BPF_REG_5, 0), /* Now, test in the other direction. Adding first * the variable offset to R5, then the constant. */ BPF_MOV64_REG(BPF_REG_5, BPF_REG_2), BPF_ALU64_REG(BPF_ADD, BPF_REG_5, BPF_REG_6), BPF_MOV64_REG(BPF_REG_4, BPF_REG_5), BPF_ALU64_IMM(BPF_ADD, BPF_REG_5, 14), BPF_MOV64_REG(BPF_REG_4, BPF_REG_5), BPF_ALU64_IMM(BPF_ADD, BPF_REG_4, 4), BPF_JMP_REG(BPF_JGE, BPF_REG_3, BPF_REG_4, 1), BPF_EXIT_INSN(), BPF_LDX_MEM(BPF_W, BPF_REG_4, BPF_REG_5, 0), /* Test multiple accumulations of unknown values * into a packet pointer. */ BPF_MOV64_REG(BPF_REG_5, BPF_REG_2), BPF_ALU64_IMM(BPF_ADD, BPF_REG_5, 14), BPF_ALU64_REG(BPF_ADD, BPF_REG_5, BPF_REG_6), BPF_MOV64_REG(BPF_REG_4, BPF_REG_5), BPF_ALU64_IMM(BPF_ADD, BPF_REG_5, 4), BPF_ALU64_REG(BPF_ADD, BPF_REG_5, BPF_REG_6), BPF_MOV64_REG(BPF_REG_4, BPF_REG_5), BPF_ALU64_IMM(BPF_ADD, BPF_REG_4, 4), BPF_JMP_REG(BPF_JGE, BPF_REG_3, BPF_REG_4, 1), BPF_EXIT_INSN(), BPF_LDX_MEM(BPF_W, BPF_REG_4, BPF_REG_5, 0), BPF_MOV64_IMM(BPF_REG_0, 0), BPF_EXIT_INSN(), }, .prog_type = BPF_PROG_TYPE_SCHED_CLS, .matches = { /* Calculated offset in R6 has unknown value, but known * alignment of 4. */ {6, "R2_w", "pkt(off=0,r=8,imm=0)"}, {7, "R6_w", "var_off=(0x0; 0x3fc)"}, /* Offset is added to packet pointer R5, resulting in * known fixed offset, and variable offset from R6. */ {11, "R5_w", "pkt(id=1,off=14,"}, /* At the time the word size load is performed from R5, * it's total offset is NET_IP_ALIGN + reg->off (0) + * reg->aux_off (14) which is 16. Then the variable * offset is considered using reg->aux_off_align which * is 4 and meets the load's requirements. */ {15, "R4", "var_off=(0x0; 0x3fc)"}, {15, "R5", "var_off=(0x0; 0x3fc)"}, /* Variable offset is added to R5 packet pointer, * resulting in auxiliary alignment of 4. To avoid BPF * verifier's precision backtracking logging * interfering we also have a no-op R4 = R5 * instruction to validate R5 state. We also check * that R4 is what it should be in such case. */ {18, "R4_w", "var_off=(0x0; 0x3fc)"}, {18, "R5_w", "var_off=(0x0; 0x3fc)"}, /* Constant offset is added to R5, resulting in * reg->off of 14. */ {19, "R5_w", "pkt(id=2,off=14,"}, /* At the time the word size load is performed from R5, * its total fixed offset is NET_IP_ALIGN + reg->off * (14) which is 16. Then the variable offset is 4-byte * aligned, so the total offset is 4-byte aligned and * meets the load's requirements. */ {24, "R4", "var_off=(0x0; 0x3fc)"}, {24, "R5", "var_off=(0x0; 0x3fc)"}, /* Constant offset is added to R5 packet pointer, * resulting in reg->off value of 14. */ {26, "R5_w", "pkt(off=14,r=8,"}, /* Variable offset is added to R5, resulting in a * variable offset of (4n). See comment for insn #18 * for R4 = R5 trick. */ {28, "R4_w", "var_off=(0x0; 0x3fc)"}, {28, "R5_w", "var_off=(0x0; 0x3fc)"}, /* Constant is added to R5 again, setting reg->off to 18. */ {29, "R5_w", "pkt(id=3,off=18,"}, /* And once more we add a variable; resulting var_off * is still (4n), fixed offset is not changed. * Also, we create a new reg->id. */ {31, "R4_w", "var_off=(0x0; 0x7fc)"}, {31, "R5_w", "var_off=(0x0; 0x7fc)"}, /* At the time the word size load is performed from R5, * its total fixed offset is NET_IP_ALIGN + reg->off (18) * which is 20. Then the variable offset is (4n), so * the total offset is 4-byte aligned and meets the * load's requirements. */ {35, "R4", "var_off=(0x0; 0x7fc)"}, {35, "R5", "var_off=(0x0; 0x7fc)"}, }, }, { .descr = "packet variable offset 2", .insns = { /* Create an unknown offset, (4n+2)-aligned */ LOAD_UNKNOWN(BPF_REG_6), BPF_ALU64_IMM(BPF_LSH, BPF_REG_6, 2), BPF_ALU64_IMM(BPF_ADD, BPF_REG_6, 14), /* Add it to the packet pointer */ BPF_MOV64_REG(BPF_REG_5, BPF_REG_2), BPF_ALU64_REG(BPF_ADD, BPF_REG_5, BPF_REG_6), /* Check bounds and perform a read */ BPF_MOV64_REG(BPF_REG_4, BPF_REG_5), BPF_ALU64_IMM(BPF_ADD, BPF_REG_4, 4), BPF_JMP_REG(BPF_JGE, BPF_REG_3, BPF_REG_4, 1), BPF_EXIT_INSN(), BPF_LDX_MEM(BPF_W, BPF_REG_6, BPF_REG_5, 0), /* Make a (4n) offset from the value we just read */ BPF_ALU64_IMM(BPF_AND, BPF_REG_6, 0xff), BPF_ALU64_IMM(BPF_LSH, BPF_REG_6, 2), /* Add it to the packet pointer */ BPF_ALU64_REG(BPF_ADD, BPF_REG_5, BPF_REG_6), /* Check bounds and perform a read */ BPF_MOV64_REG(BPF_REG_4, BPF_REG_5), BPF_ALU64_IMM(BPF_ADD, BPF_REG_4, 4), BPF_JMP_REG(BPF_JGE, BPF_REG_3, BPF_REG_4, 1), BPF_EXIT_INSN(), BPF_LDX_MEM(BPF_W, BPF_REG_6, BPF_REG_5, 0), BPF_MOV64_IMM(BPF_REG_0, 0), BPF_EXIT_INSN(), }, .prog_type = BPF_PROG_TYPE_SCHED_CLS, .matches = { /* Calculated offset in R6 has unknown value, but known * alignment of 4. */ {6, "R2_w", "pkt(off=0,r=8,imm=0)"}, {7, "R6_w", "var_off=(0x0; 0x3fc)"}, /* Adding 14 makes R6 be (4n+2) */ {8, "R6_w", "var_off=(0x2; 0x7fc)"}, /* Packet pointer has (4n+2) offset */ {11, "R5_w", "var_off=(0x2; 0x7fc)"}, {12, "R4", "var_off=(0x2; 0x7fc)"}, /* At the time the word size load is performed from R5, * its total fixed offset is NET_IP_ALIGN + reg->off (0) * which is 2. Then the variable offset is (4n+2), so * the total offset is 4-byte aligned and meets the * load's requirements. */ {15, "R5", "var_off=(0x2; 0x7fc)"}, /* Newly read value in R6 was shifted left by 2, so has * known alignment of 4. */ {17, "R6_w", "var_off=(0x0; 0x3fc)"}, /* Added (4n) to packet pointer's (4n+2) var_off, giving * another (4n+2). */ {19, "R5_w", "var_off=(0x2; 0xffc)"}, {20, "R4", "var_off=(0x2; 0xffc)"}, /* At the time the word size load is performed from R5, * its total fixed offset is NET_IP_ALIGN + reg->off (0) * which is 2. Then the variable offset is (4n+2), so * the total offset is 4-byte aligned and meets the * load's requirements. */ {23, "R5", "var_off=(0x2; 0xffc)"}, }, }, { .descr = "dubious pointer arithmetic", .insns = { PREP_PKT_POINTERS, BPF_MOV64_IMM(BPF_REG_0, 0), /* (ptr - ptr) << 2 */ BPF_MOV64_REG(BPF_REG_5, BPF_REG_3), BPF_ALU64_REG(BPF_SUB, BPF_REG_5, BPF_REG_2), BPF_ALU64_IMM(BPF_LSH, BPF_REG_5, 2), /* We have a (4n) value. Let's make a packet offset * out of it. First add 14, to make it a (4n+2) */ BPF_ALU64_IMM(BPF_ADD, BPF_REG_5, 14), /* Then make sure it's nonnegative */ BPF_JMP_IMM(BPF_JSGE, BPF_REG_5, 0, 1), BPF_EXIT_INSN(), /* Add it to packet pointer */ BPF_MOV64_REG(BPF_REG_6, BPF_REG_2), BPF_ALU64_REG(BPF_ADD, BPF_REG_6, BPF_REG_5), /* Check bounds and perform a read */ BPF_MOV64_REG(BPF_REG_4, BPF_REG_6), BPF_ALU64_IMM(BPF_ADD, BPF_REG_4, 4), BPF_JMP_REG(BPF_JGE, BPF_REG_3, BPF_REG_4, 1), BPF_EXIT_INSN(), BPF_LDX_MEM(BPF_W, BPF_REG_4, BPF_REG_6, 0), BPF_EXIT_INSN(), }, .prog_type = BPF_PROG_TYPE_SCHED_CLS, .result = REJECT, .matches = { {3, "R5_w", "pkt_end(off=0,imm=0)"}, /* (ptr - ptr) << 2 == unknown, (4n) */ {5, "R5_w", "var_off=(0x0; 0xfffffffffffffffc)"}, /* (4n) + 14 == (4n+2). We blow our bounds, because * the add could overflow. */ {6, "R5_w", "var_off=(0x2; 0xfffffffffffffffc)"}, /* Checked s>=0 */ {9, "R5", "var_off=(0x2; 0x7ffffffffffffffc)"}, /* packet pointer + nonnegative (4n+2) */ {11, "R6_w", "var_off=(0x2; 0x7ffffffffffffffc)"}, {12, "R4_w", "var_off=(0x2; 0x7ffffffffffffffc)"}, /* NET_IP_ALIGN + (4n+2) == (4n), alignment is fine. * We checked the bounds, but it might have been able * to overflow if the packet pointer started in the * upper half of the address space. * So we did not get a 'range' on R6, and the access * attempt will fail. */ {15, "R6_w", "var_off=(0x2; 0x7ffffffffffffffc)"}, } }, { .descr = "variable subtraction", .insns = { /* Create an unknown offset, (4n+2)-aligned */ LOAD_UNKNOWN(BPF_REG_6), BPF_MOV64_REG(BPF_REG_7, BPF_REG_6), BPF_ALU64_IMM(BPF_LSH, BPF_REG_6, 2), BPF_ALU64_IMM(BPF_ADD, BPF_REG_6, 14), /* Create another unknown, (4n)-aligned, and subtract * it from the first one */ BPF_ALU64_IMM(BPF_LSH, BPF_REG_7, 2), BPF_ALU64_REG(BPF_SUB, BPF_REG_6, BPF_REG_7), /* Bounds-check the result */ BPF_JMP_IMM(BPF_JSGE, BPF_REG_6, 0, 1), BPF_EXIT_INSN(), /* Add it to the packet pointer */ BPF_MOV64_REG(BPF_REG_5, BPF_REG_2), BPF_ALU64_REG(BPF_ADD, BPF_REG_5, BPF_REG_6), /* Check bounds and perform a read */ BPF_MOV64_REG(BPF_REG_4, BPF_REG_5), BPF_ALU64_IMM(BPF_ADD, BPF_REG_4, 4), BPF_JMP_REG(BPF_JGE, BPF_REG_3, BPF_REG_4, 1), BPF_EXIT_INSN(), BPF_LDX_MEM(BPF_W, BPF_REG_6, BPF_REG_5, 0), BPF_EXIT_INSN(), }, .prog_type = BPF_PROG_TYPE_SCHED_CLS, .matches = { /* Calculated offset in R6 has unknown value, but known * alignment of 4. */ {6, "R2_w", "pkt(off=0,r=8,imm=0)"}, {8, "R6_w", "var_off=(0x0; 0x3fc)"}, /* Adding 14 makes R6 be (4n+2) */ {9, "R6_w", "var_off=(0x2; 0x7fc)"}, /* New unknown value in R7 is (4n) */ {10, "R7_w", "var_off=(0x0; 0x3fc)"}, /* Subtracting it from R6 blows our unsigned bounds */ {11, "R6", "var_off=(0x2; 0xfffffffffffffffc)"}, /* Checked s>= 0 */ {14, "R6", "var_off=(0x2; 0x7fc)"}, /* At the time the word size load is performed from R5, * its total fixed offset is NET_IP_ALIGN + reg->off (0) * which is 2. Then the variable offset is (4n+2), so * the total offset is 4-byte aligned and meets the * load's requirements. */ {20, "R5", "var_off=(0x2; 0x7fc)"}, }, }, { .descr = "pointer variable subtraction", .insns = { /* Create an unknown offset, (4n+2)-aligned and bounded * to [14,74] */ LOAD_UNKNOWN(BPF_REG_6), BPF_MOV64_REG(BPF_REG_7, BPF_REG_6), BPF_ALU64_IMM(BPF_AND, BPF_REG_6, 0xf), BPF_ALU64_IMM(BPF_LSH, BPF_REG_6, 2), BPF_ALU64_IMM(BPF_ADD, BPF_REG_6, 14), /* Subtract it from the packet pointer */ BPF_MOV64_REG(BPF_REG_5, BPF_REG_2), BPF_ALU64_REG(BPF_SUB, BPF_REG_5, BPF_REG_6), /* Create another unknown, (4n)-aligned and >= 74. * That in fact means >= 76, since 74 % 4 == 2 */ BPF_ALU64_IMM(BPF_LSH, BPF_REG_7, 2), BPF_ALU64_IMM(BPF_ADD, BPF_REG_7, 76), /* Add it to the packet pointer */ BPF_ALU64_REG(BPF_ADD, BPF_REG_5, BPF_REG_7), /* Check bounds and perform a read */ BPF_MOV64_REG(BPF_REG_4, BPF_REG_5), BPF_ALU64_IMM(BPF_ADD, BPF_REG_4, 4), BPF_JMP_REG(BPF_JGE, BPF_REG_3, BPF_REG_4, 1), BPF_EXIT_INSN(), BPF_LDX_MEM(BPF_W, BPF_REG_6, BPF_REG_5, 0), BPF_EXIT_INSN(), }, .prog_type = BPF_PROG_TYPE_SCHED_CLS, .matches = { /* Calculated offset in R6 has unknown value, but known * alignment of 4. */ {6, "R2_w", "pkt(off=0,r=8,imm=0)"}, {9, "R6_w", "var_off=(0x0; 0x3c)"}, /* Adding 14 makes R6 be (4n+2) */ {10, "R6_w", "var_off=(0x2; 0x7c)"}, /* Subtracting from packet pointer overflows ubounds */ {13, "R5_w", "var_off=(0xffffffffffffff82; 0x7c)"}, /* New unknown value in R7 is (4n), >= 76 */ {14, "R7_w", "var_off=(0x0; 0x7fc)"}, /* Adding it to packet pointer gives nice bounds again */ {16, "R5_w", "var_off=(0x2; 0x7fc)"}, /* At the time the word size load is performed from R5, * its total fixed offset is NET_IP_ALIGN + reg->off (0) * which is 2. Then the variable offset is (4n+2), so * the total offset is 4-byte aligned and meets the * load's requirements. */ {20, "R5", "var_off=(0x2; 0x7fc)"}, }, }, }; static int probe_filter_length(const struct bpf_insn *fp) { int len; for (len = MAX_INSNS - 1; len > 0; --len) if (fp[len].code != 0 || fp[len].imm != 0) break; return len + 1; } static char bpf_vlog[32768]; static int do_test_single(struct bpf_align_test *test) { struct bpf_insn *prog = test->insns; int prog_type = test->prog_type; char bpf_vlog_copy[32768]; LIBBPF_OPTS(bpf_prog_load_opts, opts, .prog_flags = BPF_F_STRICT_ALIGNMENT, .log_buf = bpf_vlog, .log_size = sizeof(bpf_vlog), .log_level = 2, ); const char *line_ptr; int cur_line = -1; int prog_len, i; int fd_prog; int ret; prog_len = probe_filter_length(prog); fd_prog = bpf_prog_load(prog_type ? : BPF_PROG_TYPE_SOCKET_FILTER, NULL, "GPL", prog, prog_len, &opts); if (fd_prog < 0 && test->result != REJECT) { printf("Failed to load program.\n"); printf("%s", bpf_vlog); ret = 1; } else if (fd_prog >= 0 && test->result == REJECT) { printf("Unexpected success to load!\n"); printf("%s", bpf_vlog); ret = 1; close(fd_prog); } else { ret = 0; /* We make a local copy so that we can strtok() it */ strncpy(bpf_vlog_copy, bpf_vlog, sizeof(bpf_vlog_copy)); line_ptr = strtok(bpf_vlog_copy, "\n"); for (i = 0; i < MAX_MATCHES; i++) { struct bpf_reg_match m = test->matches[i]; const char *p; int tmp; if (!m.match) break; while (line_ptr) { cur_line = -1; sscanf(line_ptr, "%u: ", &cur_line); if (cur_line == -1) sscanf(line_ptr, "from %u to %u: ", &tmp, &cur_line); if (cur_line == m.line) break; line_ptr = strtok(NULL, "\n"); } if (!line_ptr) { printf("Failed to find line %u for match: %s=%s\n", m.line, m.reg, m.match); ret = 1; printf("%s", bpf_vlog); break; } /* Check the next line as well in case the previous line * did not have a corresponding bpf insn. Example: * func#0 @0 * 0: R1=ctx(off=0,imm=0) R10=fp0 * 0: (b7) r3 = 2 ; R3_w=2 * * Sometimes it's actually two lines below, e.g. when * searching for "6: R3_w=scalar(umax=255,var_off=(0x0; 0xff))": * from 4 to 6: R0_w=pkt(off=8,r=8,imm=0) R1=ctx(off=0,imm=0) R2_w=pkt(off=0,r=8,imm=0) R3_w=pkt_end(off=0,imm=0) R10=fp0 * 6: R0_w=pkt(off=8,r=8,imm=0) R1=ctx(off=0,imm=0) R2_w=pkt(off=0,r=8,imm=0) R3_w=pkt_end(off=0,imm=0) R10=fp0 * 6: (71) r3 = *(u8 *)(r2 +0) ; R2_w=pkt(off=0,r=8,imm=0) R3_w=scalar(umax=255,var_off=(0x0; 0xff)) */ while (!(p = strstr(line_ptr, m.reg)) || !strstr(p, m.match)) { cur_line = -1; line_ptr = strtok(NULL, "\n"); sscanf(line_ptr ?: "", "%u: ", &cur_line); if (!line_ptr || cur_line != m.line) break; } if (cur_line != m.line || !line_ptr || !(p = strstr(line_ptr, m.reg)) || !strstr(p, m.match)) { printf("Failed to find match %u: %s=%s\n", m.line, m.reg, m.match); ret = 1; printf("%s", bpf_vlog); break; } } if (fd_prog >= 0) close(fd_prog); } return ret; } void test_align(void) { unsigned int i; for (i = 0; i < ARRAY_SIZE(tests); i++) { struct bpf_align_test *test = &tests[i]; if (!test__start_subtest(test->descr)) continue; ASSERT_OK(do_test_single(test), test->descr); } }
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1