Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Paolo Bonzini | 2350 | 84.11% | 6 | 22.22% |
David Matlack | 315 | 11.27% | 7 | 25.93% |
Vitaly Kuznetsov | 59 | 2.11% | 3 | 11.11% |
Jim Mattson | 29 | 1.04% | 1 | 3.70% |
Sean Christopherson | 25 | 0.89% | 6 | 22.22% |
Eric Auger | 9 | 0.32% | 1 | 3.70% |
Andrew Jones | 5 | 0.18% | 2 | 7.41% |
Thomas Gleixner | 2 | 0.07% | 1 | 3.70% |
Total | 2794 | 27 |
// SPDX-License-Identifier: GPL-2.0-only /* * tools/testing/selftests/kvm/lib/x86_64/vmx.c * * Copyright (C) 2018, Google LLC. */ #include <asm/msr-index.h> #include "test_util.h" #include "kvm_util.h" #include "processor.h" #include "vmx.h" #define PAGE_SHIFT_4K 12 #define KVM_EPT_PAGE_TABLE_MIN_PADDR 0x1c0000 bool enable_evmcs; struct hv_enlightened_vmcs *current_evmcs; struct hv_vp_assist_page *current_vp_assist; struct eptPageTableEntry { uint64_t readable:1; uint64_t writable:1; uint64_t executable:1; uint64_t memory_type:3; uint64_t ignore_pat:1; uint64_t page_size:1; uint64_t accessed:1; uint64_t dirty:1; uint64_t ignored_11_10:2; uint64_t address:40; uint64_t ignored_62_52:11; uint64_t suppress_ve:1; }; struct eptPageTablePointer { uint64_t memory_type:3; uint64_t page_walk_length:3; uint64_t ad_enabled:1; uint64_t reserved_11_07:5; uint64_t address:40; uint64_t reserved_63_52:12; }; int vcpu_enable_evmcs(struct kvm_vcpu *vcpu) { uint16_t evmcs_ver; vcpu_enable_cap(vcpu, KVM_CAP_HYPERV_ENLIGHTENED_VMCS, (unsigned long)&evmcs_ver); /* KVM should return supported EVMCS version range */ TEST_ASSERT(((evmcs_ver >> 8) >= (evmcs_ver & 0xff)) && (evmcs_ver & 0xff) > 0, "Incorrect EVMCS version range: %x:%x\n", evmcs_ver & 0xff, evmcs_ver >> 8); return evmcs_ver; } /* Allocate memory regions for nested VMX tests. * * Input Args: * vm - The VM to allocate guest-virtual addresses in. * * Output Args: * p_vmx_gva - The guest virtual address for the struct vmx_pages. * * Return: * Pointer to structure with the addresses of the VMX areas. */ struct vmx_pages * vcpu_alloc_vmx(struct kvm_vm *vm, vm_vaddr_t *p_vmx_gva) { vm_vaddr_t vmx_gva = vm_vaddr_alloc_page(vm); struct vmx_pages *vmx = addr_gva2hva(vm, vmx_gva); /* Setup of a region of guest memory for the vmxon region. */ vmx->vmxon = (void *)vm_vaddr_alloc_page(vm); vmx->vmxon_hva = addr_gva2hva(vm, (uintptr_t)vmx->vmxon); vmx->vmxon_gpa = addr_gva2gpa(vm, (uintptr_t)vmx->vmxon); /* Setup of a region of guest memory for a vmcs. */ vmx->vmcs = (void *)vm_vaddr_alloc_page(vm); vmx->vmcs_hva = addr_gva2hva(vm, (uintptr_t)vmx->vmcs); vmx->vmcs_gpa = addr_gva2gpa(vm, (uintptr_t)vmx->vmcs); /* Setup of a region of guest memory for the MSR bitmap. */ vmx->msr = (void *)vm_vaddr_alloc_page(vm); vmx->msr_hva = addr_gva2hva(vm, (uintptr_t)vmx->msr); vmx->msr_gpa = addr_gva2gpa(vm, (uintptr_t)vmx->msr); memset(vmx->msr_hva, 0, getpagesize()); /* Setup of a region of guest memory for the shadow VMCS. */ vmx->shadow_vmcs = (void *)vm_vaddr_alloc_page(vm); vmx->shadow_vmcs_hva = addr_gva2hva(vm, (uintptr_t)vmx->shadow_vmcs); vmx->shadow_vmcs_gpa = addr_gva2gpa(vm, (uintptr_t)vmx->shadow_vmcs); /* Setup of a region of guest memory for the VMREAD and VMWRITE bitmaps. */ vmx->vmread = (void *)vm_vaddr_alloc_page(vm); vmx->vmread_hva = addr_gva2hva(vm, (uintptr_t)vmx->vmread); vmx->vmread_gpa = addr_gva2gpa(vm, (uintptr_t)vmx->vmread); memset(vmx->vmread_hva, 0, getpagesize()); vmx->vmwrite = (void *)vm_vaddr_alloc_page(vm); vmx->vmwrite_hva = addr_gva2hva(vm, (uintptr_t)vmx->vmwrite); vmx->vmwrite_gpa = addr_gva2gpa(vm, (uintptr_t)vmx->vmwrite); memset(vmx->vmwrite_hva, 0, getpagesize()); *p_vmx_gva = vmx_gva; return vmx; } bool prepare_for_vmx_operation(struct vmx_pages *vmx) { uint64_t feature_control; uint64_t required; unsigned long cr0; unsigned long cr4; /* * Ensure bits in CR0 and CR4 are valid in VMX operation: * - Bit X is 1 in _FIXED0: bit X is fixed to 1 in CRx. * - Bit X is 0 in _FIXED1: bit X is fixed to 0 in CRx. */ __asm__ __volatile__("mov %%cr0, %0" : "=r"(cr0) : : "memory"); cr0 &= rdmsr(MSR_IA32_VMX_CR0_FIXED1); cr0 |= rdmsr(MSR_IA32_VMX_CR0_FIXED0); __asm__ __volatile__("mov %0, %%cr0" : : "r"(cr0) : "memory"); __asm__ __volatile__("mov %%cr4, %0" : "=r"(cr4) : : "memory"); cr4 &= rdmsr(MSR_IA32_VMX_CR4_FIXED1); cr4 |= rdmsr(MSR_IA32_VMX_CR4_FIXED0); /* Enable VMX operation */ cr4 |= X86_CR4_VMXE; __asm__ __volatile__("mov %0, %%cr4" : : "r"(cr4) : "memory"); /* * Configure IA32_FEATURE_CONTROL MSR to allow VMXON: * Bit 0: Lock bit. If clear, VMXON causes a #GP. * Bit 2: Enables VMXON outside of SMX operation. If clear, VMXON * outside of SMX causes a #GP. */ required = FEAT_CTL_VMX_ENABLED_OUTSIDE_SMX; required |= FEAT_CTL_LOCKED; feature_control = rdmsr(MSR_IA32_FEAT_CTL); if ((feature_control & required) != required) wrmsr(MSR_IA32_FEAT_CTL, feature_control | required); /* Enter VMX root operation. */ *(uint32_t *)(vmx->vmxon) = vmcs_revision(); if (vmxon(vmx->vmxon_gpa)) return false; return true; } bool load_vmcs(struct vmx_pages *vmx) { /* Load a VMCS. */ *(uint32_t *)(vmx->vmcs) = vmcs_revision(); if (vmclear(vmx->vmcs_gpa)) return false; if (vmptrld(vmx->vmcs_gpa)) return false; /* Setup shadow VMCS, do not load it yet. */ *(uint32_t *)(vmx->shadow_vmcs) = vmcs_revision() | 0x80000000ul; if (vmclear(vmx->shadow_vmcs_gpa)) return false; return true; } static bool ept_vpid_cap_supported(uint64_t mask) { return rdmsr(MSR_IA32_VMX_EPT_VPID_CAP) & mask; } bool ept_1g_pages_supported(void) { return ept_vpid_cap_supported(VMX_EPT_VPID_CAP_1G_PAGES); } /* * Initialize the control fields to the most basic settings possible. */ static inline void init_vmcs_control_fields(struct vmx_pages *vmx) { uint32_t sec_exec_ctl = 0; vmwrite(VIRTUAL_PROCESSOR_ID, 0); vmwrite(POSTED_INTR_NV, 0); vmwrite(PIN_BASED_VM_EXEC_CONTROL, rdmsr(MSR_IA32_VMX_TRUE_PINBASED_CTLS)); if (vmx->eptp_gpa) { uint64_t ept_paddr; struct eptPageTablePointer eptp = { .memory_type = VMX_BASIC_MEM_TYPE_WB, .page_walk_length = 3, /* + 1 */ .ad_enabled = ept_vpid_cap_supported(VMX_EPT_VPID_CAP_AD_BITS), .address = vmx->eptp_gpa >> PAGE_SHIFT_4K, }; memcpy(&ept_paddr, &eptp, sizeof(ept_paddr)); vmwrite(EPT_POINTER, ept_paddr); sec_exec_ctl |= SECONDARY_EXEC_ENABLE_EPT; } if (!vmwrite(SECONDARY_VM_EXEC_CONTROL, sec_exec_ctl)) vmwrite(CPU_BASED_VM_EXEC_CONTROL, rdmsr(MSR_IA32_VMX_TRUE_PROCBASED_CTLS) | CPU_BASED_ACTIVATE_SECONDARY_CONTROLS); else { vmwrite(CPU_BASED_VM_EXEC_CONTROL, rdmsr(MSR_IA32_VMX_TRUE_PROCBASED_CTLS)); GUEST_ASSERT(!sec_exec_ctl); } vmwrite(EXCEPTION_BITMAP, 0); vmwrite(PAGE_FAULT_ERROR_CODE_MASK, 0); vmwrite(PAGE_FAULT_ERROR_CODE_MATCH, -1); /* Never match */ vmwrite(CR3_TARGET_COUNT, 0); vmwrite(VM_EXIT_CONTROLS, rdmsr(MSR_IA32_VMX_EXIT_CTLS) | VM_EXIT_HOST_ADDR_SPACE_SIZE); /* 64-bit host */ vmwrite(VM_EXIT_MSR_STORE_COUNT, 0); vmwrite(VM_EXIT_MSR_LOAD_COUNT, 0); vmwrite(VM_ENTRY_CONTROLS, rdmsr(MSR_IA32_VMX_ENTRY_CTLS) | VM_ENTRY_IA32E_MODE); /* 64-bit guest */ vmwrite(VM_ENTRY_MSR_LOAD_COUNT, 0); vmwrite(VM_ENTRY_INTR_INFO_FIELD, 0); vmwrite(TPR_THRESHOLD, 0); vmwrite(CR0_GUEST_HOST_MASK, 0); vmwrite(CR4_GUEST_HOST_MASK, 0); vmwrite(CR0_READ_SHADOW, get_cr0()); vmwrite(CR4_READ_SHADOW, get_cr4()); vmwrite(MSR_BITMAP, vmx->msr_gpa); vmwrite(VMREAD_BITMAP, vmx->vmread_gpa); vmwrite(VMWRITE_BITMAP, vmx->vmwrite_gpa); } /* * Initialize the host state fields based on the current host state, with * the exception of HOST_RSP and HOST_RIP, which should be set by vmlaunch * or vmresume. */ static inline void init_vmcs_host_state(void) { uint32_t exit_controls = vmreadz(VM_EXIT_CONTROLS); vmwrite(HOST_ES_SELECTOR, get_es()); vmwrite(HOST_CS_SELECTOR, get_cs()); vmwrite(HOST_SS_SELECTOR, get_ss()); vmwrite(HOST_DS_SELECTOR, get_ds()); vmwrite(HOST_FS_SELECTOR, get_fs()); vmwrite(HOST_GS_SELECTOR, get_gs()); vmwrite(HOST_TR_SELECTOR, get_tr()); if (exit_controls & VM_EXIT_LOAD_IA32_PAT) vmwrite(HOST_IA32_PAT, rdmsr(MSR_IA32_CR_PAT)); if (exit_controls & VM_EXIT_LOAD_IA32_EFER) vmwrite(HOST_IA32_EFER, rdmsr(MSR_EFER)); if (exit_controls & VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL) vmwrite(HOST_IA32_PERF_GLOBAL_CTRL, rdmsr(MSR_CORE_PERF_GLOBAL_CTRL)); vmwrite(HOST_IA32_SYSENTER_CS, rdmsr(MSR_IA32_SYSENTER_CS)); vmwrite(HOST_CR0, get_cr0()); vmwrite(HOST_CR3, get_cr3()); vmwrite(HOST_CR4, get_cr4()); vmwrite(HOST_FS_BASE, rdmsr(MSR_FS_BASE)); vmwrite(HOST_GS_BASE, rdmsr(MSR_GS_BASE)); vmwrite(HOST_TR_BASE, get_desc64_base((struct desc64 *)(get_gdt().address + get_tr()))); vmwrite(HOST_GDTR_BASE, get_gdt().address); vmwrite(HOST_IDTR_BASE, get_idt().address); vmwrite(HOST_IA32_SYSENTER_ESP, rdmsr(MSR_IA32_SYSENTER_ESP)); vmwrite(HOST_IA32_SYSENTER_EIP, rdmsr(MSR_IA32_SYSENTER_EIP)); } /* * Initialize the guest state fields essentially as a clone of * the host state fields. Some host state fields have fixed * values, and we set the corresponding guest state fields accordingly. */ static inline void init_vmcs_guest_state(void *rip, void *rsp) { vmwrite(GUEST_ES_SELECTOR, vmreadz(HOST_ES_SELECTOR)); vmwrite(GUEST_CS_SELECTOR, vmreadz(HOST_CS_SELECTOR)); vmwrite(GUEST_SS_SELECTOR, vmreadz(HOST_SS_SELECTOR)); vmwrite(GUEST_DS_SELECTOR, vmreadz(HOST_DS_SELECTOR)); vmwrite(GUEST_FS_SELECTOR, vmreadz(HOST_FS_SELECTOR)); vmwrite(GUEST_GS_SELECTOR, vmreadz(HOST_GS_SELECTOR)); vmwrite(GUEST_LDTR_SELECTOR, 0); vmwrite(GUEST_TR_SELECTOR, vmreadz(HOST_TR_SELECTOR)); vmwrite(GUEST_INTR_STATUS, 0); vmwrite(GUEST_PML_INDEX, 0); vmwrite(VMCS_LINK_POINTER, -1ll); vmwrite(GUEST_IA32_DEBUGCTL, 0); vmwrite(GUEST_IA32_PAT, vmreadz(HOST_IA32_PAT)); vmwrite(GUEST_IA32_EFER, vmreadz(HOST_IA32_EFER)); vmwrite(GUEST_IA32_PERF_GLOBAL_CTRL, vmreadz(HOST_IA32_PERF_GLOBAL_CTRL)); vmwrite(GUEST_ES_LIMIT, -1); vmwrite(GUEST_CS_LIMIT, -1); vmwrite(GUEST_SS_LIMIT, -1); vmwrite(GUEST_DS_LIMIT, -1); vmwrite(GUEST_FS_LIMIT, -1); vmwrite(GUEST_GS_LIMIT, -1); vmwrite(GUEST_LDTR_LIMIT, -1); vmwrite(GUEST_TR_LIMIT, 0x67); vmwrite(GUEST_GDTR_LIMIT, 0xffff); vmwrite(GUEST_IDTR_LIMIT, 0xffff); vmwrite(GUEST_ES_AR_BYTES, vmreadz(GUEST_ES_SELECTOR) == 0 ? 0x10000 : 0xc093); vmwrite(GUEST_CS_AR_BYTES, 0xa09b); vmwrite(GUEST_SS_AR_BYTES, 0xc093); vmwrite(GUEST_DS_AR_BYTES, vmreadz(GUEST_DS_SELECTOR) == 0 ? 0x10000 : 0xc093); vmwrite(GUEST_FS_AR_BYTES, vmreadz(GUEST_FS_SELECTOR) == 0 ? 0x10000 : 0xc093); vmwrite(GUEST_GS_AR_BYTES, vmreadz(GUEST_GS_SELECTOR) == 0 ? 0x10000 : 0xc093); vmwrite(GUEST_LDTR_AR_BYTES, 0x10000); vmwrite(GUEST_TR_AR_BYTES, 0x8b); vmwrite(GUEST_INTERRUPTIBILITY_INFO, 0); vmwrite(GUEST_ACTIVITY_STATE, 0); vmwrite(GUEST_SYSENTER_CS, vmreadz(HOST_IA32_SYSENTER_CS)); vmwrite(VMX_PREEMPTION_TIMER_VALUE, 0); vmwrite(GUEST_CR0, vmreadz(HOST_CR0)); vmwrite(GUEST_CR3, vmreadz(HOST_CR3)); vmwrite(GUEST_CR4, vmreadz(HOST_CR4)); vmwrite(GUEST_ES_BASE, 0); vmwrite(GUEST_CS_BASE, 0); vmwrite(GUEST_SS_BASE, 0); vmwrite(GUEST_DS_BASE, 0); vmwrite(GUEST_FS_BASE, vmreadz(HOST_FS_BASE)); vmwrite(GUEST_GS_BASE, vmreadz(HOST_GS_BASE)); vmwrite(GUEST_LDTR_BASE, 0); vmwrite(GUEST_TR_BASE, vmreadz(HOST_TR_BASE)); vmwrite(GUEST_GDTR_BASE, vmreadz(HOST_GDTR_BASE)); vmwrite(GUEST_IDTR_BASE, vmreadz(HOST_IDTR_BASE)); vmwrite(GUEST_DR7, 0x400); vmwrite(GUEST_RSP, (uint64_t)rsp); vmwrite(GUEST_RIP, (uint64_t)rip); vmwrite(GUEST_RFLAGS, 2); vmwrite(GUEST_PENDING_DBG_EXCEPTIONS, 0); vmwrite(GUEST_SYSENTER_ESP, vmreadz(HOST_IA32_SYSENTER_ESP)); vmwrite(GUEST_SYSENTER_EIP, vmreadz(HOST_IA32_SYSENTER_EIP)); } void prepare_vmcs(struct vmx_pages *vmx, void *guest_rip, void *guest_rsp) { init_vmcs_control_fields(vmx); init_vmcs_host_state(); init_vmcs_guest_state(guest_rip, guest_rsp); } static void nested_create_pte(struct kvm_vm *vm, struct eptPageTableEntry *pte, uint64_t nested_paddr, uint64_t paddr, int current_level, int target_level) { if (!pte->readable) { pte->writable = true; pte->readable = true; pte->executable = true; pte->page_size = (current_level == target_level); if (pte->page_size) pte->address = paddr >> vm->page_shift; else pte->address = vm_alloc_page_table(vm) >> vm->page_shift; } else { /* * Entry already present. Assert that the caller doesn't want * a hugepage at this level, and that there isn't a hugepage at * this level. */ TEST_ASSERT(current_level != target_level, "Cannot create hugepage at level: %u, nested_paddr: 0x%lx\n", current_level, nested_paddr); TEST_ASSERT(!pte->page_size, "Cannot create page table at level: %u, nested_paddr: 0x%lx\n", current_level, nested_paddr); } } void __nested_pg_map(struct vmx_pages *vmx, struct kvm_vm *vm, uint64_t nested_paddr, uint64_t paddr, int target_level) { const uint64_t page_size = PG_LEVEL_SIZE(target_level); struct eptPageTableEntry *pt = vmx->eptp_hva, *pte; uint16_t index; TEST_ASSERT(vm->mode == VM_MODE_PXXV48_4K, "Attempt to use " "unknown or unsupported guest mode, mode: 0x%x", vm->mode); TEST_ASSERT((nested_paddr >> 48) == 0, "Nested physical address 0x%lx requires 5-level paging", nested_paddr); TEST_ASSERT((nested_paddr % page_size) == 0, "Nested physical address not on page boundary,\n" " nested_paddr: 0x%lx page_size: 0x%lx", nested_paddr, page_size); TEST_ASSERT((nested_paddr >> vm->page_shift) <= vm->max_gfn, "Physical address beyond beyond maximum supported,\n" " nested_paddr: 0x%lx vm->max_gfn: 0x%lx vm->page_size: 0x%x", paddr, vm->max_gfn, vm->page_size); TEST_ASSERT((paddr % page_size) == 0, "Physical address not on page boundary,\n" " paddr: 0x%lx page_size: 0x%lx", paddr, page_size); TEST_ASSERT((paddr >> vm->page_shift) <= vm->max_gfn, "Physical address beyond beyond maximum supported,\n" " paddr: 0x%lx vm->max_gfn: 0x%lx vm->page_size: 0x%x", paddr, vm->max_gfn, vm->page_size); for (int level = PG_LEVEL_512G; level >= PG_LEVEL_4K; level--) { index = (nested_paddr >> PG_LEVEL_SHIFT(level)) & 0x1ffu; pte = &pt[index]; nested_create_pte(vm, pte, nested_paddr, paddr, level, target_level); if (pte->page_size) break; pt = addr_gpa2hva(vm, pte->address * vm->page_size); } /* * For now mark these as accessed and dirty because the only * testcase we have needs that. Can be reconsidered later. */ pte->accessed = true; pte->dirty = true; } void nested_pg_map(struct vmx_pages *vmx, struct kvm_vm *vm, uint64_t nested_paddr, uint64_t paddr) { __nested_pg_map(vmx, vm, nested_paddr, paddr, PG_LEVEL_4K); } /* * Map a range of EPT guest physical addresses to the VM's physical address * * Input Args: * vm - Virtual Machine * nested_paddr - Nested guest physical address to map * paddr - VM Physical Address * size - The size of the range to map * level - The level at which to map the range * * Output Args: None * * Return: None * * Within the VM given by vm, creates a nested guest translation for the * page range starting at nested_paddr to the page range starting at paddr. */ void __nested_map(struct vmx_pages *vmx, struct kvm_vm *vm, uint64_t nested_paddr, uint64_t paddr, uint64_t size, int level) { size_t page_size = PG_LEVEL_SIZE(level); size_t npages = size / page_size; TEST_ASSERT(nested_paddr + size > nested_paddr, "Vaddr overflow"); TEST_ASSERT(paddr + size > paddr, "Paddr overflow"); while (npages--) { __nested_pg_map(vmx, vm, nested_paddr, paddr, level); nested_paddr += page_size; paddr += page_size; } } void nested_map(struct vmx_pages *vmx, struct kvm_vm *vm, uint64_t nested_paddr, uint64_t paddr, uint64_t size) { __nested_map(vmx, vm, nested_paddr, paddr, size, PG_LEVEL_4K); } /* Prepare an identity extended page table that maps all the * physical pages in VM. */ void nested_map_memslot(struct vmx_pages *vmx, struct kvm_vm *vm, uint32_t memslot) { sparsebit_idx_t i, last; struct userspace_mem_region *region = memslot2region(vm, memslot); i = (region->region.guest_phys_addr >> vm->page_shift) - 1; last = i + (region->region.memory_size >> vm->page_shift); for (;;) { i = sparsebit_next_clear(region->unused_phy_pages, i); if (i > last) break; nested_map(vmx, vm, (uint64_t)i << vm->page_shift, (uint64_t)i << vm->page_shift, 1 << vm->page_shift); } } /* Identity map a region with 1GiB Pages. */ void nested_identity_map_1g(struct vmx_pages *vmx, struct kvm_vm *vm, uint64_t addr, uint64_t size) { __nested_map(vmx, vm, addr, addr, size, PG_LEVEL_1G); } bool kvm_cpu_has_ept(void) { uint64_t ctrl; ctrl = kvm_get_feature_msr(MSR_IA32_VMX_TRUE_PROCBASED_CTLS) >> 32; if (!(ctrl & CPU_BASED_ACTIVATE_SECONDARY_CONTROLS)) return false; ctrl = kvm_get_feature_msr(MSR_IA32_VMX_PROCBASED_CTLS2) >> 32; return ctrl & SECONDARY_EXEC_ENABLE_EPT; } void prepare_eptp(struct vmx_pages *vmx, struct kvm_vm *vm, uint32_t eptp_memslot) { TEST_ASSERT(kvm_cpu_has_ept(), "KVM doesn't support nested EPT"); vmx->eptp = (void *)vm_vaddr_alloc_page(vm); vmx->eptp_hva = addr_gva2hva(vm, (uintptr_t)vmx->eptp); vmx->eptp_gpa = addr_gva2gpa(vm, (uintptr_t)vmx->eptp); } void prepare_virtualize_apic_accesses(struct vmx_pages *vmx, struct kvm_vm *vm) { vmx->apic_access = (void *)vm_vaddr_alloc_page(vm); vmx->apic_access_hva = addr_gva2hva(vm, (uintptr_t)vmx->apic_access); vmx->apic_access_gpa = addr_gva2gpa(vm, (uintptr_t)vmx->apic_access); }
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1