Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Jue Wang | 1225 | 99.03% | 1 | 50.00% |
Vipin Sharma | 12 | 0.97% | 1 | 50.00% |
Total | 1237 | 2 |
// SPDX-License-Identifier: GPL-2.0 /* * ucna_injection_test * * Copyright (C) 2022, Google LLC. * * This work is licensed under the terms of the GNU GPL, version 2. * * Test that user space can inject UnCorrectable No Action required (UCNA) * memory errors to the guest. * * The test starts one vCPU with the MCG_CMCI_P enabled. It verifies that * proper UCNA errors can be injected to a vCPU with MCG_CMCI_P and * corresponding per-bank control register (MCI_CTL2) bit enabled. * The test also checks that the UCNA errors get recorded in the * Machine Check bank registers no matter the error signal interrupts get * delivered into the guest or not. * */ #define _GNU_SOURCE /* for program_invocation_short_name */ #include <pthread.h> #include <inttypes.h> #include <string.h> #include <time.h> #include "kvm_util_base.h" #include "kvm_util.h" #include "mce.h" #include "processor.h" #include "test_util.h" #include "apic.h" #define SYNC_FIRST_UCNA 9 #define SYNC_SECOND_UCNA 10 #define SYNC_GP 11 #define FIRST_UCNA_ADDR 0xdeadbeef #define SECOND_UCNA_ADDR 0xcafeb0ba /* * Vector for the CMCI interrupt. * Value is arbitrary. Any value in 0x20-0xFF should work: * https://wiki.osdev.org/Interrupt_Vector_Table */ #define CMCI_VECTOR 0xa9 #define UCNA_BANK 0x7 // IMC0 bank #define MCI_CTL2_RESERVED_BIT BIT_ULL(29) static uint64_t supported_mcg_caps; /* * Record states about the injected UCNA. * The variables started with the 'i_' prefixes are recorded in interrupt * handler. Variables without the 'i_' prefixes are recorded in guest main * execution thread. */ static volatile uint64_t i_ucna_rcvd; static volatile uint64_t i_ucna_addr; static volatile uint64_t ucna_addr; static volatile uint64_t ucna_addr2; struct thread_params { struct kvm_vcpu *vcpu; uint64_t *p_i_ucna_rcvd; uint64_t *p_i_ucna_addr; uint64_t *p_ucna_addr; uint64_t *p_ucna_addr2; }; static void verify_apic_base_addr(void) { uint64_t msr = rdmsr(MSR_IA32_APICBASE); uint64_t base = GET_APIC_BASE(msr); GUEST_ASSERT(base == APIC_DEFAULT_GPA); } static void ucna_injection_guest_code(void) { uint64_t ctl2; verify_apic_base_addr(); xapic_enable(); /* Sets up the interrupt vector and enables per-bank CMCI sigaling. */ xapic_write_reg(APIC_LVTCMCI, CMCI_VECTOR | APIC_DM_FIXED); ctl2 = rdmsr(MSR_IA32_MCx_CTL2(UCNA_BANK)); wrmsr(MSR_IA32_MCx_CTL2(UCNA_BANK), ctl2 | MCI_CTL2_CMCI_EN); /* Enables interrupt in guest. */ asm volatile("sti"); /* Let user space inject the first UCNA */ GUEST_SYNC(SYNC_FIRST_UCNA); ucna_addr = rdmsr(MSR_IA32_MCx_ADDR(UCNA_BANK)); /* Disables the per-bank CMCI signaling. */ ctl2 = rdmsr(MSR_IA32_MCx_CTL2(UCNA_BANK)); wrmsr(MSR_IA32_MCx_CTL2(UCNA_BANK), ctl2 & ~MCI_CTL2_CMCI_EN); /* Let the user space inject the second UCNA */ GUEST_SYNC(SYNC_SECOND_UCNA); ucna_addr2 = rdmsr(MSR_IA32_MCx_ADDR(UCNA_BANK)); GUEST_DONE(); } static void cmci_disabled_guest_code(void) { uint64_t ctl2 = rdmsr(MSR_IA32_MCx_CTL2(UCNA_BANK)); wrmsr(MSR_IA32_MCx_CTL2(UCNA_BANK), ctl2 | MCI_CTL2_CMCI_EN); GUEST_DONE(); } static void cmci_enabled_guest_code(void) { uint64_t ctl2 = rdmsr(MSR_IA32_MCx_CTL2(UCNA_BANK)); wrmsr(MSR_IA32_MCx_CTL2(UCNA_BANK), ctl2 | MCI_CTL2_RESERVED_BIT); GUEST_DONE(); } static void guest_cmci_handler(struct ex_regs *regs) { i_ucna_rcvd++; i_ucna_addr = rdmsr(MSR_IA32_MCx_ADDR(UCNA_BANK)); xapic_write_reg(APIC_EOI, 0); } static void guest_gp_handler(struct ex_regs *regs) { GUEST_SYNC(SYNC_GP); } static void run_vcpu_expect_gp(struct kvm_vcpu *vcpu) { struct ucall uc; vcpu_run(vcpu); TEST_ASSERT_KVM_EXIT_REASON(vcpu, KVM_EXIT_IO); TEST_ASSERT(get_ucall(vcpu, &uc) == UCALL_SYNC, "Expect UCALL_SYNC\n"); TEST_ASSERT(uc.args[1] == SYNC_GP, "#GP is expected."); printf("vCPU received GP in guest.\n"); } static void inject_ucna(struct kvm_vcpu *vcpu, uint64_t addr) { /* * A UCNA error is indicated with VAL=1, UC=1, PCC=0, S=0 and AR=0 in * the IA32_MCi_STATUS register. * MSCOD=1 (BIT[16] - MscodDataRdErr). * MCACOD=0x0090 (Memory controller error format, channel 0) */ uint64_t status = MCI_STATUS_VAL | MCI_STATUS_UC | MCI_STATUS_EN | MCI_STATUS_MISCV | MCI_STATUS_ADDRV | 0x10090; struct kvm_x86_mce mce = {}; mce.status = status; mce.mcg_status = 0; /* * MCM_ADDR_PHYS indicates the reported address is a physical address. * Lowest 6 bits is the recoverable address LSB, i.e., the injected MCE * is at 4KB granularity. */ mce.misc = (MCM_ADDR_PHYS << 6) | 0xc; mce.addr = addr; mce.bank = UCNA_BANK; vcpu_ioctl(vcpu, KVM_X86_SET_MCE, &mce); } static void *run_ucna_injection(void *arg) { struct thread_params *params = (struct thread_params *)arg; struct ucall uc; int old; int r; r = pthread_setcanceltype(PTHREAD_CANCEL_ASYNCHRONOUS, &old); TEST_ASSERT(r == 0, "pthread_setcanceltype failed with errno=%d", r); vcpu_run(params->vcpu); TEST_ASSERT_KVM_EXIT_REASON(params->vcpu, KVM_EXIT_IO); TEST_ASSERT(get_ucall(params->vcpu, &uc) == UCALL_SYNC, "Expect UCALL_SYNC\n"); TEST_ASSERT(uc.args[1] == SYNC_FIRST_UCNA, "Injecting first UCNA."); printf("Injecting first UCNA at %#x.\n", FIRST_UCNA_ADDR); inject_ucna(params->vcpu, FIRST_UCNA_ADDR); vcpu_run(params->vcpu); TEST_ASSERT_KVM_EXIT_REASON(params->vcpu, KVM_EXIT_IO); TEST_ASSERT(get_ucall(params->vcpu, &uc) == UCALL_SYNC, "Expect UCALL_SYNC\n"); TEST_ASSERT(uc.args[1] == SYNC_SECOND_UCNA, "Injecting second UCNA."); printf("Injecting second UCNA at %#x.\n", SECOND_UCNA_ADDR); inject_ucna(params->vcpu, SECOND_UCNA_ADDR); vcpu_run(params->vcpu); TEST_ASSERT_KVM_EXIT_REASON(params->vcpu, KVM_EXIT_IO); if (get_ucall(params->vcpu, &uc) == UCALL_ABORT) { TEST_ASSERT(false, "vCPU assertion failure: %s.\n", (const char *)uc.args[0]); } return NULL; } static void test_ucna_injection(struct kvm_vcpu *vcpu, struct thread_params *params) { struct kvm_vm *vm = vcpu->vm; params->vcpu = vcpu; params->p_i_ucna_rcvd = (uint64_t *)addr_gva2hva(vm, (uint64_t)&i_ucna_rcvd); params->p_i_ucna_addr = (uint64_t *)addr_gva2hva(vm, (uint64_t)&i_ucna_addr); params->p_ucna_addr = (uint64_t *)addr_gva2hva(vm, (uint64_t)&ucna_addr); params->p_ucna_addr2 = (uint64_t *)addr_gva2hva(vm, (uint64_t)&ucna_addr2); run_ucna_injection(params); TEST_ASSERT(*params->p_i_ucna_rcvd == 1, "Only first UCNA get signaled."); TEST_ASSERT(*params->p_i_ucna_addr == FIRST_UCNA_ADDR, "Only first UCNA reported addr get recorded via interrupt."); TEST_ASSERT(*params->p_ucna_addr == FIRST_UCNA_ADDR, "First injected UCNAs should get exposed via registers."); TEST_ASSERT(*params->p_ucna_addr2 == SECOND_UCNA_ADDR, "Second injected UCNAs should get exposed via registers."); printf("Test successful.\n" "UCNA CMCI interrupts received: %ld\n" "Last UCNA address received via CMCI: %lx\n" "First UCNA address in vCPU thread: %lx\n" "Second UCNA address in vCPU thread: %lx\n", *params->p_i_ucna_rcvd, *params->p_i_ucna_addr, *params->p_ucna_addr, *params->p_ucna_addr2); } static void setup_mce_cap(struct kvm_vcpu *vcpu, bool enable_cmci_p) { uint64_t mcg_caps = MCG_CTL_P | MCG_SER_P | MCG_LMCE_P | KVM_MAX_MCE_BANKS; if (enable_cmci_p) mcg_caps |= MCG_CMCI_P; mcg_caps &= supported_mcg_caps | MCG_CAP_BANKS_MASK; vcpu_ioctl(vcpu, KVM_X86_SETUP_MCE, &mcg_caps); } static struct kvm_vcpu *create_vcpu_with_mce_cap(struct kvm_vm *vm, uint32_t vcpuid, bool enable_cmci_p, void *guest_code) { struct kvm_vcpu *vcpu = vm_vcpu_add(vm, vcpuid, guest_code); setup_mce_cap(vcpu, enable_cmci_p); return vcpu; } int main(int argc, char *argv[]) { struct thread_params params; struct kvm_vm *vm; struct kvm_vcpu *ucna_vcpu; struct kvm_vcpu *cmcidis_vcpu; struct kvm_vcpu *cmci_vcpu; kvm_check_cap(KVM_CAP_MCE); vm = __vm_create(VM_MODE_DEFAULT, 3, 0); kvm_ioctl(vm->kvm_fd, KVM_X86_GET_MCE_CAP_SUPPORTED, &supported_mcg_caps); if (!(supported_mcg_caps & MCG_CMCI_P)) { print_skip("MCG_CMCI_P is not supported"); exit(KSFT_SKIP); } ucna_vcpu = create_vcpu_with_mce_cap(vm, 0, true, ucna_injection_guest_code); cmcidis_vcpu = create_vcpu_with_mce_cap(vm, 1, false, cmci_disabled_guest_code); cmci_vcpu = create_vcpu_with_mce_cap(vm, 2, true, cmci_enabled_guest_code); vm_init_descriptor_tables(vm); vcpu_init_descriptor_tables(ucna_vcpu); vcpu_init_descriptor_tables(cmcidis_vcpu); vcpu_init_descriptor_tables(cmci_vcpu); vm_install_exception_handler(vm, CMCI_VECTOR, guest_cmci_handler); vm_install_exception_handler(vm, GP_VECTOR, guest_gp_handler); virt_pg_map(vm, APIC_DEFAULT_GPA, APIC_DEFAULT_GPA); test_ucna_injection(ucna_vcpu, ¶ms); run_vcpu_expect_gp(cmcidis_vcpu); run_vcpu_expect_gp(cmci_vcpu); kvm_vm_free(vm); }
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1