Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Ilias Stamatis | 732 | 93.13% | 1 | 10.00% |
Sean Christopherson | 44 | 5.60% | 6 | 60.00% |
gehao | 6 | 0.76% | 1 | 10.00% |
Vipin Sharma | 3 | 0.38% | 1 | 10.00% |
Colton Lewis | 1 | 0.13% | 1 | 10.00% |
Total | 786 | 10 |
// SPDX-License-Identifier: GPL-2.0-only /* * vmx_nested_tsc_scaling_test * * Copyright 2021 Amazon.com, Inc. or its affiliates. All Rights Reserved. * * This test case verifies that nested TSC scaling behaves as expected when * both L1 and L2 are scaled using different ratios. For this test we scale * L1 down and scale L2 up. */ #include <time.h> #include "kvm_util.h" #include "vmx.h" #include "kselftest.h" /* L2 is scaled up (from L1's perspective) by this factor */ #define L2_SCALE_FACTOR 4ULL #define TSC_OFFSET_L2 ((uint64_t) -33125236320908) #define TSC_MULTIPLIER_L2 (L2_SCALE_FACTOR << 48) #define L2_GUEST_STACK_SIZE 64 enum { USLEEP, UCHECK_L1, UCHECK_L2 }; #define GUEST_SLEEP(sec) ucall(UCALL_SYNC, 2, USLEEP, sec) #define GUEST_CHECK(level, freq) ucall(UCALL_SYNC, 2, level, freq) /* * This function checks whether the "actual" TSC frequency of a guest matches * its expected frequency. In order to account for delays in taking the TSC * measurements, a difference of 1% between the actual and the expected value * is tolerated. */ static void compare_tsc_freq(uint64_t actual, uint64_t expected) { uint64_t tolerance, thresh_low, thresh_high; tolerance = expected / 100; thresh_low = expected - tolerance; thresh_high = expected + tolerance; TEST_ASSERT(thresh_low < actual, "TSC freq is expected to be between %"PRIu64" and %"PRIu64 " but it actually is %"PRIu64, thresh_low, thresh_high, actual); TEST_ASSERT(thresh_high > actual, "TSC freq is expected to be between %"PRIu64" and %"PRIu64 " but it actually is %"PRIu64, thresh_low, thresh_high, actual); } static void check_tsc_freq(int level) { uint64_t tsc_start, tsc_end, tsc_freq; /* * Reading the TSC twice with about a second's difference should give * us an approximation of the TSC frequency from the guest's * perspective. Now, this won't be completely accurate, but it should * be good enough for the purposes of this test. */ tsc_start = rdmsr(MSR_IA32_TSC); GUEST_SLEEP(1); tsc_end = rdmsr(MSR_IA32_TSC); tsc_freq = tsc_end - tsc_start; GUEST_CHECK(level, tsc_freq); } static void l2_guest_code(void) { check_tsc_freq(UCHECK_L2); /* exit to L1 */ __asm__ __volatile__("vmcall"); } static void l1_guest_code(struct vmx_pages *vmx_pages) { unsigned long l2_guest_stack[L2_GUEST_STACK_SIZE]; uint32_t control; /* check that L1's frequency looks alright before launching L2 */ check_tsc_freq(UCHECK_L1); GUEST_ASSERT(prepare_for_vmx_operation(vmx_pages)); GUEST_ASSERT(load_vmcs(vmx_pages)); /* prepare the VMCS for L2 execution */ prepare_vmcs(vmx_pages, l2_guest_code, &l2_guest_stack[L2_GUEST_STACK_SIZE]); /* enable TSC offsetting and TSC scaling for L2 */ control = vmreadz(CPU_BASED_VM_EXEC_CONTROL); control |= CPU_BASED_USE_MSR_BITMAPS | CPU_BASED_USE_TSC_OFFSETTING; vmwrite(CPU_BASED_VM_EXEC_CONTROL, control); control = vmreadz(SECONDARY_VM_EXEC_CONTROL); control |= SECONDARY_EXEC_TSC_SCALING; vmwrite(SECONDARY_VM_EXEC_CONTROL, control); vmwrite(TSC_OFFSET, TSC_OFFSET_L2); vmwrite(TSC_MULTIPLIER, TSC_MULTIPLIER_L2); vmwrite(TSC_MULTIPLIER_HIGH, TSC_MULTIPLIER_L2 >> 32); /* launch L2 */ GUEST_ASSERT(!vmlaunch()); GUEST_ASSERT(vmreadz(VM_EXIT_REASON) == EXIT_REASON_VMCALL); /* check that L1's frequency still looks good */ check_tsc_freq(UCHECK_L1); GUEST_DONE(); } static bool system_has_stable_tsc(void) { bool tsc_is_stable; FILE *fp; char buf[4]; fp = fopen("/sys/devices/system/clocksource/clocksource0/current_clocksource", "r"); if (fp == NULL) return false; tsc_is_stable = fgets(buf, sizeof(buf), fp) && !strncmp(buf, "tsc", sizeof(buf)); fclose(fp); return tsc_is_stable; } int main(int argc, char *argv[]) { struct kvm_vcpu *vcpu; struct kvm_vm *vm; vm_vaddr_t vmx_pages_gva; uint64_t tsc_start, tsc_end; uint64_t tsc_khz; uint64_t l1_scale_factor; uint64_t l0_tsc_freq = 0; uint64_t l1_tsc_freq = 0; uint64_t l2_tsc_freq = 0; TEST_REQUIRE(kvm_cpu_has(X86_FEATURE_VMX)); TEST_REQUIRE(kvm_has_cap(KVM_CAP_TSC_CONTROL)); TEST_REQUIRE(system_has_stable_tsc()); /* * We set L1's scale factor to be a random number from 2 to 10. * Ideally we would do the same for L2's factor but that one is * referenced by both main() and l1_guest_code() and using a global * variable does not work. */ srand(time(NULL)); l1_scale_factor = (rand() % 9) + 2; printf("L1's scale down factor is: %"PRIu64"\n", l1_scale_factor); printf("L2's scale up factor is: %llu\n", L2_SCALE_FACTOR); tsc_start = rdtsc(); sleep(1); tsc_end = rdtsc(); l0_tsc_freq = tsc_end - tsc_start; printf("real TSC frequency is around: %"PRIu64"\n", l0_tsc_freq); vm = vm_create_with_one_vcpu(&vcpu, l1_guest_code); vcpu_alloc_vmx(vm, &vmx_pages_gva); vcpu_args_set(vcpu, 1, vmx_pages_gva); tsc_khz = __vcpu_ioctl(vcpu, KVM_GET_TSC_KHZ, NULL); TEST_ASSERT(tsc_khz != -1, "vcpu ioctl KVM_GET_TSC_KHZ failed"); /* scale down L1's TSC frequency */ vcpu_ioctl(vcpu, KVM_SET_TSC_KHZ, (void *) (tsc_khz / l1_scale_factor)); for (;;) { struct ucall uc; vcpu_run(vcpu); TEST_ASSERT_KVM_EXIT_REASON(vcpu, KVM_EXIT_IO); switch (get_ucall(vcpu, &uc)) { case UCALL_ABORT: REPORT_GUEST_ASSERT(uc); case UCALL_SYNC: switch (uc.args[0]) { case USLEEP: sleep(uc.args[1]); break; case UCHECK_L1: l1_tsc_freq = uc.args[1]; printf("L1's TSC frequency is around: %"PRIu64 "\n", l1_tsc_freq); compare_tsc_freq(l1_tsc_freq, l0_tsc_freq / l1_scale_factor); break; case UCHECK_L2: l2_tsc_freq = uc.args[1]; printf("L2's TSC frequency is around: %"PRIu64 "\n", l2_tsc_freq); compare_tsc_freq(l2_tsc_freq, l1_tsc_freq * L2_SCALE_FACTOR); break; } break; case UCALL_DONE: goto done; default: TEST_FAIL("Unknown ucall %lu", uc.cmd); } } done: kvm_vm_free(vm); return 0; }
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1