Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Kent Overstreet | 1306 | 100.00% | 44 | 100.00% |
Total | 1306 | 44 |
/* SPDX-License-Identifier: GPL-2.0 */ #ifndef _BCACHEFS_BTREE_UPDATE_INTERIOR_H #define _BCACHEFS_BTREE_UPDATE_INTERIOR_H #include "btree_cache.h" #include "btree_locking.h" #include "btree_update.h" #define BTREE_UPDATE_NODES_MAX ((BTREE_MAX_DEPTH - 2) * 2 + GC_MERGE_NODES) #define BTREE_UPDATE_JOURNAL_RES (BTREE_UPDATE_NODES_MAX * (BKEY_BTREE_PTR_U64s_MAX + 1)) /* * Tracks an in progress split/rewrite of a btree node and the update to the * parent node: * * When we split/rewrite a node, we do all the updates in memory without * waiting for any writes to complete - we allocate the new node(s) and update * the parent node, possibly recursively up to the root. * * The end result is that we have one or more new nodes being written - * possibly several, if there were multiple splits - and then a write (updating * an interior node) which will make all these new nodes visible. * * Additionally, as we split/rewrite nodes we free the old nodes - but the old * nodes can't be freed (their space on disk can't be reclaimed) until the * update to the interior node that makes the new node visible completes - * until then, the old nodes are still reachable on disk. * */ struct btree_update { struct closure cl; struct bch_fs *c; u64 start_time; struct list_head list; struct list_head unwritten_list; /* What kind of update are we doing? */ enum { BTREE_INTERIOR_NO_UPDATE, BTREE_INTERIOR_UPDATING_NODE, BTREE_INTERIOR_UPDATING_ROOT, BTREE_INTERIOR_UPDATING_AS, } mode; unsigned nodes_written:1; unsigned took_gc_lock:1; enum btree_id btree_id; unsigned update_level; struct disk_reservation disk_res; /* * BTREE_INTERIOR_UPDATING_NODE: * The update that made the new nodes visible was a regular update to an * existing interior node - @b. We can't write out the update to @b * until the new nodes we created are finished writing, so we block @b * from writing by putting this btree_interior update on the * @b->write_blocked list with @write_blocked_list: */ struct btree *b; struct list_head write_blocked_list; /* * We may be freeing nodes that were dirty, and thus had journal entries * pinned: we need to transfer the oldest of those pins to the * btree_update operation, and release it when the new node(s) * are all persistent and reachable: */ struct journal_entry_pin journal; /* Preallocated nodes we reserve when we start the update: */ struct prealloc_nodes { struct btree *b[BTREE_UPDATE_NODES_MAX]; unsigned nr; } prealloc_nodes[2]; /* Nodes being freed: */ struct keylist old_keys; u64 _old_keys[BTREE_UPDATE_NODES_MAX * BKEY_BTREE_PTR_U64s_MAX]; /* Nodes being added: */ struct keylist new_keys; u64 _new_keys[BTREE_UPDATE_NODES_MAX * BKEY_BTREE_PTR_U64s_MAX]; /* New nodes, that will be made reachable by this update: */ struct btree *new_nodes[BTREE_UPDATE_NODES_MAX]; unsigned nr_new_nodes; struct btree *old_nodes[BTREE_UPDATE_NODES_MAX]; __le64 old_nodes_seq[BTREE_UPDATE_NODES_MAX]; unsigned nr_old_nodes; open_bucket_idx_t open_buckets[BTREE_UPDATE_NODES_MAX * BCH_REPLICAS_MAX]; open_bucket_idx_t nr_open_buckets; unsigned journal_u64s; u64 journal_entries[BTREE_UPDATE_JOURNAL_RES]; /* Only here to reduce stack usage on recursive splits: */ struct keylist parent_keys; /* * Enough room for btree_split's keys without realloc - btree node * pointers never have crc/compression info, so we only need to acount * for the pointers for three keys */ u64 inline_keys[BKEY_BTREE_PTR_U64s_MAX * 3]; }; struct btree *__bch2_btree_node_alloc_replacement(struct btree_update *, struct btree_trans *, struct btree *, struct bkey_format); int bch2_btree_split_leaf(struct btree_trans *, btree_path_idx_t, unsigned); int __bch2_foreground_maybe_merge(struct btree_trans *, btree_path_idx_t, unsigned, unsigned, enum btree_node_sibling); static inline int bch2_foreground_maybe_merge_sibling(struct btree_trans *trans, btree_path_idx_t path_idx, unsigned level, unsigned flags, enum btree_node_sibling sib) { struct btree_path *path = trans->paths + path_idx; struct btree *b; EBUG_ON(!btree_node_locked(path, level)); b = path->l[level].b; if (b->sib_u64s[sib] > trans->c->btree_foreground_merge_threshold) return 0; return __bch2_foreground_maybe_merge(trans, path_idx, level, flags, sib); } static inline int bch2_foreground_maybe_merge(struct btree_trans *trans, btree_path_idx_t path, unsigned level, unsigned flags) { return bch2_foreground_maybe_merge_sibling(trans, path, level, flags, btree_prev_sib) ?: bch2_foreground_maybe_merge_sibling(trans, path, level, flags, btree_next_sib); } int bch2_btree_node_rewrite(struct btree_trans *, struct btree_iter *, struct btree *, unsigned); void bch2_btree_node_rewrite_async(struct bch_fs *, struct btree *); int bch2_btree_node_update_key(struct btree_trans *, struct btree_iter *, struct btree *, struct bkey_i *, unsigned, bool); int bch2_btree_node_update_key_get_iter(struct btree_trans *, struct btree *, struct bkey_i *, unsigned, bool); void bch2_btree_set_root_for_read(struct bch_fs *, struct btree *); void bch2_btree_root_alloc(struct bch_fs *, enum btree_id); static inline unsigned btree_update_reserve_required(struct bch_fs *c, struct btree *b) { unsigned depth = btree_node_root(c, b)->c.level + 1; /* * Number of nodes we might have to allocate in a worst case btree * split operation - we split all the way up to the root, then allocate * a new root, unless we're already at max depth: */ if (depth < BTREE_MAX_DEPTH) return (depth - b->c.level) * 2 + 1; else return (depth - b->c.level) * 2 - 1; } static inline void btree_node_reset_sib_u64s(struct btree *b) { b->sib_u64s[0] = b->nr.live_u64s; b->sib_u64s[1] = b->nr.live_u64s; } static inline void *btree_data_end(struct btree *b) { return (void *) b->data + btree_buf_bytes(b); } static inline struct bkey_packed *unwritten_whiteouts_start(struct btree *b) { return (void *) ((u64 *) btree_data_end(b) - b->whiteout_u64s); } static inline struct bkey_packed *unwritten_whiteouts_end(struct btree *b) { return btree_data_end(b); } static inline void *write_block(struct btree *b) { return (void *) b->data + (b->written << 9); } static inline bool __btree_addr_written(struct btree *b, void *p) { return p < write_block(b); } static inline bool bset_written(struct btree *b, struct bset *i) { return __btree_addr_written(b, i); } static inline bool bkey_written(struct btree *b, struct bkey_packed *k) { return __btree_addr_written(b, k); } static inline ssize_t __bch2_btree_u64s_remaining(struct btree *b, void *end) { ssize_t used = bset_byte_offset(b, end) / sizeof(u64) + b->whiteout_u64s; ssize_t total = btree_buf_bytes(b) >> 3; /* Always leave one extra u64 for bch2_varint_decode: */ used++; return total - used; } static inline size_t bch2_btree_keys_u64s_remaining(struct btree *b) { ssize_t remaining = __bch2_btree_u64s_remaining(b, btree_bkey_last(b, bset_tree_last(b))); BUG_ON(remaining < 0); if (bset_written(b, btree_bset_last(b))) return 0; return remaining; } #define BTREE_WRITE_SET_U64s_BITS 9 static inline unsigned btree_write_set_buffer(struct btree *b) { /* * Could buffer up larger amounts of keys for btrees with larger keys, * pending benchmarking: */ return 8 << BTREE_WRITE_SET_U64s_BITS; } static inline struct btree_node_entry *want_new_bset(struct bch_fs *c, struct btree *b) { struct bset_tree *t = bset_tree_last(b); struct btree_node_entry *bne = max(write_block(b), (void *) btree_bkey_last(b, bset_tree_last(b))); ssize_t remaining_space = __bch2_btree_u64s_remaining(b, bne->keys.start); if (unlikely(bset_written(b, bset(b, t)))) { if (remaining_space > (ssize_t) (block_bytes(c) >> 3)) return bne; } else { if (unlikely(bset_u64s(t) * sizeof(u64) > btree_write_set_buffer(b)) && remaining_space > (ssize_t) (btree_write_set_buffer(b) >> 3)) return bne; } return NULL; } static inline void push_whiteout(struct btree *b, struct bpos pos) { struct bkey_packed k; BUG_ON(bch2_btree_keys_u64s_remaining(b) < BKEY_U64s); EBUG_ON(btree_node_just_written(b)); if (!bkey_pack_pos(&k, pos, b)) { struct bkey *u = (void *) &k; bkey_init(u); u->p = pos; } k.needs_whiteout = true; b->whiteout_u64s += k.u64s; bkey_p_copy(unwritten_whiteouts_start(b), &k); } /* * write lock must be held on @b (else the dirty bset that we were going to * insert into could be written out from under us) */ static inline bool bch2_btree_node_insert_fits(struct btree *b, unsigned u64s) { if (unlikely(btree_node_need_rewrite(b))) return false; return u64s <= bch2_btree_keys_u64s_remaining(b); } void bch2_btree_updates_to_text(struct printbuf *, struct bch_fs *); bool bch2_btree_interior_updates_flush(struct bch_fs *); void bch2_journal_entry_to_btree_root(struct bch_fs *, struct jset_entry *); struct jset_entry *bch2_btree_roots_to_journal_entries(struct bch_fs *, struct jset_entry *, unsigned long); void bch2_do_pending_node_rewrites(struct bch_fs *); void bch2_free_pending_node_rewrites(struct bch_fs *); void bch2_fs_btree_interior_update_exit(struct bch_fs *); void bch2_fs_btree_interior_update_init_early(struct bch_fs *); int bch2_fs_btree_interior_update_init(struct bch_fs *); #endif /* _BCACHEFS_BTREE_UPDATE_INTERIOR_H */
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1