Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Miao Xie | 5229 | 56.52% | 12 | 4.48% |
Filipe David Borba Manana | 1498 | 16.19% | 23 | 8.58% |
Chris Mason | 911 | 9.85% | 73 | 27.24% |
Josef Bacik | 276 | 2.98% | 19 | 7.09% |
Qu Wenruo | 260 | 2.81% | 9 | 3.36% |
David Sterba | 236 | 2.55% | 16 | 5.97% |
Nikolay Borisov | 148 | 1.60% | 23 | 8.58% |
Josef Whiter | 119 | 1.29% | 18 | 6.72% |
Jeff Mahoney | 81 | 0.88% | 9 | 3.36% |
Zheng Yan | 77 | 0.83% | 16 | 5.97% |
Liu Bo | 58 | 0.63% | 4 | 1.49% |
Omar Sandoval | 53 | 0.57% | 3 | 1.12% |
Jeff Layton | 43 | 0.46% | 4 | 1.49% |
Li Dongyang | 36 | 0.39% | 1 | 0.37% |
Boris Burkov | 25 | 0.27% | 1 | 0.37% |
Chandan Rajendra | 25 | 0.27% | 1 | 0.37% |
Elena Reshetova | 22 | 0.24% | 2 | 0.75% |
Christoph Hellwig | 17 | 0.18% | 2 | 0.75% |
Tsutomu Itoh | 15 | 0.16% | 2 | 0.75% |
Eric W. Biedermann | 14 | 0.15% | 1 | 0.37% |
Li Zefan | 10 | 0.11% | 1 | 0.37% |
Al Viro | 9 | 0.10% | 1 | 0.37% |
Américo Wang | 8 | 0.09% | 1 | 0.37% |
Lu Fengqi | 7 | 0.08% | 3 | 1.12% |
Dongsheng Yang | 7 | 0.08% | 1 | 0.37% |
Eric Sandeen | 7 | 0.08% | 1 | 0.37% |
Sage Weil | 6 | 0.06% | 1 | 0.37% |
Maxim Patlasov | 6 | 0.06% | 1 | 0.37% |
Yan Zheng | 6 | 0.06% | 2 | 0.75% |
Gustavo A. R. Silva | 5 | 0.05% | 1 | 0.37% |
Daniel Dressler | 5 | 0.05% | 1 | 0.37% |
Linus Torvalds | 4 | 0.04% | 2 | 0.75% |
Sven Wegener | 4 | 0.04% | 1 | 0.37% |
Miklos Szeredi | 4 | 0.04% | 1 | 0.37% |
Phillip Potter | 3 | 0.03% | 1 | 0.37% |
Frank Holton | 3 | 0.03% | 1 | 0.37% |
Gabriel Niebler | 2 | 0.02% | 1 | 0.37% |
Linus Torvalds (pre-git) | 2 | 0.02% | 1 | 0.37% |
Linda Knippers | 2 | 0.02% | 1 | 0.37% |
Misono, Tomohiro | 2 | 0.02% | 1 | 0.37% |
void0red | 2 | 0.02% | 1 | 0.37% |
Seraphime Kirkovski | 2 | 0.02% | 1 | 0.37% |
Alexandru Moise | 1 | 0.01% | 1 | 0.37% |
Fengguang Wu | 1 | 0.01% | 1 | 0.37% |
Masahiro Yamada | 1 | 0.01% | 1 | 0.37% |
Total | 9252 | 268 |
// SPDX-License-Identifier: GPL-2.0 /* * Copyright (C) 2011 Fujitsu. All rights reserved. * Written by Miao Xie <miaox@cn.fujitsu.com> */ #include <linux/slab.h> #include <linux/iversion.h> #include "ctree.h" #include "fs.h" #include "messages.h" #include "misc.h" #include "delayed-inode.h" #include "disk-io.h" #include "transaction.h" #include "qgroup.h" #include "locking.h" #include "inode-item.h" #include "space-info.h" #include "accessors.h" #include "file-item.h" #define BTRFS_DELAYED_WRITEBACK 512 #define BTRFS_DELAYED_BACKGROUND 128 #define BTRFS_DELAYED_BATCH 16 static struct kmem_cache *delayed_node_cache; int __init btrfs_delayed_inode_init(void) { delayed_node_cache = kmem_cache_create("btrfs_delayed_node", sizeof(struct btrfs_delayed_node), 0, SLAB_MEM_SPREAD, NULL); if (!delayed_node_cache) return -ENOMEM; return 0; } void __cold btrfs_delayed_inode_exit(void) { kmem_cache_destroy(delayed_node_cache); } static inline void btrfs_init_delayed_node( struct btrfs_delayed_node *delayed_node, struct btrfs_root *root, u64 inode_id) { delayed_node->root = root; delayed_node->inode_id = inode_id; refcount_set(&delayed_node->refs, 0); delayed_node->ins_root = RB_ROOT_CACHED; delayed_node->del_root = RB_ROOT_CACHED; mutex_init(&delayed_node->mutex); INIT_LIST_HEAD(&delayed_node->n_list); INIT_LIST_HEAD(&delayed_node->p_list); } static struct btrfs_delayed_node *btrfs_get_delayed_node( struct btrfs_inode *btrfs_inode) { struct btrfs_root *root = btrfs_inode->root; u64 ino = btrfs_ino(btrfs_inode); struct btrfs_delayed_node *node; node = READ_ONCE(btrfs_inode->delayed_node); if (node) { refcount_inc(&node->refs); return node; } spin_lock(&root->inode_lock); node = xa_load(&root->delayed_nodes, ino); if (node) { if (btrfs_inode->delayed_node) { refcount_inc(&node->refs); /* can be accessed */ BUG_ON(btrfs_inode->delayed_node != node); spin_unlock(&root->inode_lock); return node; } /* * It's possible that we're racing into the middle of removing * this node from the xarray. In this case, the refcount * was zero and it should never go back to one. Just return * NULL like it was never in the xarray at all; our release * function is in the process of removing it. * * Some implementations of refcount_inc refuse to bump the * refcount once it has hit zero. If we don't do this dance * here, refcount_inc() may decide to just WARN_ONCE() instead * of actually bumping the refcount. * * If this node is properly in the xarray, we want to bump the * refcount twice, once for the inode and once for this get * operation. */ if (refcount_inc_not_zero(&node->refs)) { refcount_inc(&node->refs); btrfs_inode->delayed_node = node; } else { node = NULL; } spin_unlock(&root->inode_lock); return node; } spin_unlock(&root->inode_lock); return NULL; } /* Will return either the node or PTR_ERR(-ENOMEM) */ static struct btrfs_delayed_node *btrfs_get_or_create_delayed_node( struct btrfs_inode *btrfs_inode) { struct btrfs_delayed_node *node; struct btrfs_root *root = btrfs_inode->root; u64 ino = btrfs_ino(btrfs_inode); int ret; void *ptr; again: node = btrfs_get_delayed_node(btrfs_inode); if (node) return node; node = kmem_cache_zalloc(delayed_node_cache, GFP_NOFS); if (!node) return ERR_PTR(-ENOMEM); btrfs_init_delayed_node(node, root, ino); /* Cached in the inode and can be accessed. */ refcount_set(&node->refs, 2); /* Allocate and reserve the slot, from now it can return a NULL from xa_load(). */ ret = xa_reserve(&root->delayed_nodes, ino, GFP_NOFS); if (ret == -ENOMEM) { kmem_cache_free(delayed_node_cache, node); return ERR_PTR(-ENOMEM); } spin_lock(&root->inode_lock); ptr = xa_load(&root->delayed_nodes, ino); if (ptr) { /* Somebody inserted it, go back and read it. */ spin_unlock(&root->inode_lock); kmem_cache_free(delayed_node_cache, node); node = NULL; goto again; } ptr = xa_store(&root->delayed_nodes, ino, node, GFP_ATOMIC); ASSERT(xa_err(ptr) != -EINVAL); ASSERT(xa_err(ptr) != -ENOMEM); ASSERT(ptr == NULL); btrfs_inode->delayed_node = node; spin_unlock(&root->inode_lock); return node; } /* * Call it when holding delayed_node->mutex * * If mod = 1, add this node into the prepared list. */ static void btrfs_queue_delayed_node(struct btrfs_delayed_root *root, struct btrfs_delayed_node *node, int mod) { spin_lock(&root->lock); if (test_bit(BTRFS_DELAYED_NODE_IN_LIST, &node->flags)) { if (!list_empty(&node->p_list)) list_move_tail(&node->p_list, &root->prepare_list); else if (mod) list_add_tail(&node->p_list, &root->prepare_list); } else { list_add_tail(&node->n_list, &root->node_list); list_add_tail(&node->p_list, &root->prepare_list); refcount_inc(&node->refs); /* inserted into list */ root->nodes++; set_bit(BTRFS_DELAYED_NODE_IN_LIST, &node->flags); } spin_unlock(&root->lock); } /* Call it when holding delayed_node->mutex */ static void btrfs_dequeue_delayed_node(struct btrfs_delayed_root *root, struct btrfs_delayed_node *node) { spin_lock(&root->lock); if (test_bit(BTRFS_DELAYED_NODE_IN_LIST, &node->flags)) { root->nodes--; refcount_dec(&node->refs); /* not in the list */ list_del_init(&node->n_list); if (!list_empty(&node->p_list)) list_del_init(&node->p_list); clear_bit(BTRFS_DELAYED_NODE_IN_LIST, &node->flags); } spin_unlock(&root->lock); } static struct btrfs_delayed_node *btrfs_first_delayed_node( struct btrfs_delayed_root *delayed_root) { struct list_head *p; struct btrfs_delayed_node *node = NULL; spin_lock(&delayed_root->lock); if (list_empty(&delayed_root->node_list)) goto out; p = delayed_root->node_list.next; node = list_entry(p, struct btrfs_delayed_node, n_list); refcount_inc(&node->refs); out: spin_unlock(&delayed_root->lock); return node; } static struct btrfs_delayed_node *btrfs_next_delayed_node( struct btrfs_delayed_node *node) { struct btrfs_delayed_root *delayed_root; struct list_head *p; struct btrfs_delayed_node *next = NULL; delayed_root = node->root->fs_info->delayed_root; spin_lock(&delayed_root->lock); if (!test_bit(BTRFS_DELAYED_NODE_IN_LIST, &node->flags)) { /* not in the list */ if (list_empty(&delayed_root->node_list)) goto out; p = delayed_root->node_list.next; } else if (list_is_last(&node->n_list, &delayed_root->node_list)) goto out; else p = node->n_list.next; next = list_entry(p, struct btrfs_delayed_node, n_list); refcount_inc(&next->refs); out: spin_unlock(&delayed_root->lock); return next; } static void __btrfs_release_delayed_node( struct btrfs_delayed_node *delayed_node, int mod) { struct btrfs_delayed_root *delayed_root; if (!delayed_node) return; delayed_root = delayed_node->root->fs_info->delayed_root; mutex_lock(&delayed_node->mutex); if (delayed_node->count) btrfs_queue_delayed_node(delayed_root, delayed_node, mod); else btrfs_dequeue_delayed_node(delayed_root, delayed_node); mutex_unlock(&delayed_node->mutex); if (refcount_dec_and_test(&delayed_node->refs)) { struct btrfs_root *root = delayed_node->root; spin_lock(&root->inode_lock); /* * Once our refcount goes to zero, nobody is allowed to bump it * back up. We can delete it now. */ ASSERT(refcount_read(&delayed_node->refs) == 0); xa_erase(&root->delayed_nodes, delayed_node->inode_id); spin_unlock(&root->inode_lock); kmem_cache_free(delayed_node_cache, delayed_node); } } static inline void btrfs_release_delayed_node(struct btrfs_delayed_node *node) { __btrfs_release_delayed_node(node, 0); } static struct btrfs_delayed_node *btrfs_first_prepared_delayed_node( struct btrfs_delayed_root *delayed_root) { struct list_head *p; struct btrfs_delayed_node *node = NULL; spin_lock(&delayed_root->lock); if (list_empty(&delayed_root->prepare_list)) goto out; p = delayed_root->prepare_list.next; list_del_init(p); node = list_entry(p, struct btrfs_delayed_node, p_list); refcount_inc(&node->refs); out: spin_unlock(&delayed_root->lock); return node; } static inline void btrfs_release_prepared_delayed_node( struct btrfs_delayed_node *node) { __btrfs_release_delayed_node(node, 1); } static struct btrfs_delayed_item *btrfs_alloc_delayed_item(u16 data_len, struct btrfs_delayed_node *node, enum btrfs_delayed_item_type type) { struct btrfs_delayed_item *item; item = kmalloc(struct_size(item, data, data_len), GFP_NOFS); if (item) { item->data_len = data_len; item->type = type; item->bytes_reserved = 0; item->delayed_node = node; RB_CLEAR_NODE(&item->rb_node); INIT_LIST_HEAD(&item->log_list); item->logged = false; refcount_set(&item->refs, 1); } return item; } /* * Look up the delayed item by key. * * @delayed_node: pointer to the delayed node * @index: the dir index value to lookup (offset of a dir index key) * * Note: if we don't find the right item, we will return the prev item and * the next item. */ static struct btrfs_delayed_item *__btrfs_lookup_delayed_item( struct rb_root *root, u64 index) { struct rb_node *node = root->rb_node; struct btrfs_delayed_item *delayed_item = NULL; while (node) { delayed_item = rb_entry(node, struct btrfs_delayed_item, rb_node); if (delayed_item->index < index) node = node->rb_right; else if (delayed_item->index > index) node = node->rb_left; else return delayed_item; } return NULL; } static int __btrfs_add_delayed_item(struct btrfs_delayed_node *delayed_node, struct btrfs_delayed_item *ins) { struct rb_node **p, *node; struct rb_node *parent_node = NULL; struct rb_root_cached *root; struct btrfs_delayed_item *item; bool leftmost = true; if (ins->type == BTRFS_DELAYED_INSERTION_ITEM) root = &delayed_node->ins_root; else root = &delayed_node->del_root; p = &root->rb_root.rb_node; node = &ins->rb_node; while (*p) { parent_node = *p; item = rb_entry(parent_node, struct btrfs_delayed_item, rb_node); if (item->index < ins->index) { p = &(*p)->rb_right; leftmost = false; } else if (item->index > ins->index) { p = &(*p)->rb_left; } else { return -EEXIST; } } rb_link_node(node, parent_node, p); rb_insert_color_cached(node, root, leftmost); if (ins->type == BTRFS_DELAYED_INSERTION_ITEM && ins->index >= delayed_node->index_cnt) delayed_node->index_cnt = ins->index + 1; delayed_node->count++; atomic_inc(&delayed_node->root->fs_info->delayed_root->items); return 0; } static void finish_one_item(struct btrfs_delayed_root *delayed_root) { int seq = atomic_inc_return(&delayed_root->items_seq); /* atomic_dec_return implies a barrier */ if ((atomic_dec_return(&delayed_root->items) < BTRFS_DELAYED_BACKGROUND || seq % BTRFS_DELAYED_BATCH == 0)) cond_wake_up_nomb(&delayed_root->wait); } static void __btrfs_remove_delayed_item(struct btrfs_delayed_item *delayed_item) { struct btrfs_delayed_node *delayed_node = delayed_item->delayed_node; struct rb_root_cached *root; struct btrfs_delayed_root *delayed_root; /* Not inserted, ignore it. */ if (RB_EMPTY_NODE(&delayed_item->rb_node)) return; /* If it's in a rbtree, then we need to have delayed node locked. */ lockdep_assert_held(&delayed_node->mutex); delayed_root = delayed_node->root->fs_info->delayed_root; BUG_ON(!delayed_root); if (delayed_item->type == BTRFS_DELAYED_INSERTION_ITEM) root = &delayed_node->ins_root; else root = &delayed_node->del_root; rb_erase_cached(&delayed_item->rb_node, root); RB_CLEAR_NODE(&delayed_item->rb_node); delayed_node->count--; finish_one_item(delayed_root); } static void btrfs_release_delayed_item(struct btrfs_delayed_item *item) { if (item) { __btrfs_remove_delayed_item(item); if (refcount_dec_and_test(&item->refs)) kfree(item); } } static struct btrfs_delayed_item *__btrfs_first_delayed_insertion_item( struct btrfs_delayed_node *delayed_node) { struct rb_node *p; struct btrfs_delayed_item *item = NULL; p = rb_first_cached(&delayed_node->ins_root); if (p) item = rb_entry(p, struct btrfs_delayed_item, rb_node); return item; } static struct btrfs_delayed_item *__btrfs_first_delayed_deletion_item( struct btrfs_delayed_node *delayed_node) { struct rb_node *p; struct btrfs_delayed_item *item = NULL; p = rb_first_cached(&delayed_node->del_root); if (p) item = rb_entry(p, struct btrfs_delayed_item, rb_node); return item; } static struct btrfs_delayed_item *__btrfs_next_delayed_item( struct btrfs_delayed_item *item) { struct rb_node *p; struct btrfs_delayed_item *next = NULL; p = rb_next(&item->rb_node); if (p) next = rb_entry(p, struct btrfs_delayed_item, rb_node); return next; } static int btrfs_delayed_item_reserve_metadata(struct btrfs_trans_handle *trans, struct btrfs_delayed_item *item) { struct btrfs_block_rsv *src_rsv; struct btrfs_block_rsv *dst_rsv; struct btrfs_fs_info *fs_info = trans->fs_info; u64 num_bytes; int ret; if (!trans->bytes_reserved) return 0; src_rsv = trans->block_rsv; dst_rsv = &fs_info->delayed_block_rsv; num_bytes = btrfs_calc_insert_metadata_size(fs_info, 1); /* * Here we migrate space rsv from transaction rsv, since have already * reserved space when starting a transaction. So no need to reserve * qgroup space here. */ ret = btrfs_block_rsv_migrate(src_rsv, dst_rsv, num_bytes, true); if (!ret) { trace_btrfs_space_reservation(fs_info, "delayed_item", item->delayed_node->inode_id, num_bytes, 1); /* * For insertions we track reserved metadata space by accounting * for the number of leaves that will be used, based on the delayed * node's curr_index_batch_size and index_item_leaves fields. */ if (item->type == BTRFS_DELAYED_DELETION_ITEM) item->bytes_reserved = num_bytes; } return ret; } static void btrfs_delayed_item_release_metadata(struct btrfs_root *root, struct btrfs_delayed_item *item) { struct btrfs_block_rsv *rsv; struct btrfs_fs_info *fs_info = root->fs_info; if (!item->bytes_reserved) return; rsv = &fs_info->delayed_block_rsv; /* * Check btrfs_delayed_item_reserve_metadata() to see why we don't need * to release/reserve qgroup space. */ trace_btrfs_space_reservation(fs_info, "delayed_item", item->delayed_node->inode_id, item->bytes_reserved, 0); btrfs_block_rsv_release(fs_info, rsv, item->bytes_reserved, NULL); } static void btrfs_delayed_item_release_leaves(struct btrfs_delayed_node *node, unsigned int num_leaves) { struct btrfs_fs_info *fs_info = node->root->fs_info; const u64 bytes = btrfs_calc_insert_metadata_size(fs_info, num_leaves); /* There are no space reservations during log replay, bail out. */ if (test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags)) return; trace_btrfs_space_reservation(fs_info, "delayed_item", node->inode_id, bytes, 0); btrfs_block_rsv_release(fs_info, &fs_info->delayed_block_rsv, bytes, NULL); } static int btrfs_delayed_inode_reserve_metadata( struct btrfs_trans_handle *trans, struct btrfs_root *root, struct btrfs_delayed_node *node) { struct btrfs_fs_info *fs_info = root->fs_info; struct btrfs_block_rsv *src_rsv; struct btrfs_block_rsv *dst_rsv; u64 num_bytes; int ret; src_rsv = trans->block_rsv; dst_rsv = &fs_info->delayed_block_rsv; num_bytes = btrfs_calc_metadata_size(fs_info, 1); /* * btrfs_dirty_inode will update the inode under btrfs_join_transaction * which doesn't reserve space for speed. This is a problem since we * still need to reserve space for this update, so try to reserve the * space. * * Now if src_rsv == delalloc_block_rsv we'll let it just steal since * we always reserve enough to update the inode item. */ if (!src_rsv || (!trans->bytes_reserved && src_rsv->type != BTRFS_BLOCK_RSV_DELALLOC)) { ret = btrfs_qgroup_reserve_meta(root, num_bytes, BTRFS_QGROUP_RSV_META_PREALLOC, true); if (ret < 0) return ret; ret = btrfs_block_rsv_add(fs_info, dst_rsv, num_bytes, BTRFS_RESERVE_NO_FLUSH); /* NO_FLUSH could only fail with -ENOSPC */ ASSERT(ret == 0 || ret == -ENOSPC); if (ret) btrfs_qgroup_free_meta_prealloc(root, num_bytes); } else { ret = btrfs_block_rsv_migrate(src_rsv, dst_rsv, num_bytes, true); } if (!ret) { trace_btrfs_space_reservation(fs_info, "delayed_inode", node->inode_id, num_bytes, 1); node->bytes_reserved = num_bytes; } return ret; } static void btrfs_delayed_inode_release_metadata(struct btrfs_fs_info *fs_info, struct btrfs_delayed_node *node, bool qgroup_free) { struct btrfs_block_rsv *rsv; if (!node->bytes_reserved) return; rsv = &fs_info->delayed_block_rsv; trace_btrfs_space_reservation(fs_info, "delayed_inode", node->inode_id, node->bytes_reserved, 0); btrfs_block_rsv_release(fs_info, rsv, node->bytes_reserved, NULL); if (qgroup_free) btrfs_qgroup_free_meta_prealloc(node->root, node->bytes_reserved); else btrfs_qgroup_convert_reserved_meta(node->root, node->bytes_reserved); node->bytes_reserved = 0; } /* * Insert a single delayed item or a batch of delayed items, as many as possible * that fit in a leaf. The delayed items (dir index keys) are sorted by their key * in the rbtree, and if there's a gap between two consecutive dir index items, * then it means at some point we had delayed dir indexes to add but they got * removed (by btrfs_delete_delayed_dir_index()) before we attempted to flush them * into the subvolume tree. Dir index keys also have their offsets coming from a * monotonically increasing counter, so we can't get new keys with an offset that * fits within a gap between delayed dir index items. */ static int btrfs_insert_delayed_item(struct btrfs_trans_handle *trans, struct btrfs_root *root, struct btrfs_path *path, struct btrfs_delayed_item *first_item) { struct btrfs_fs_info *fs_info = root->fs_info; struct btrfs_delayed_node *node = first_item->delayed_node; LIST_HEAD(item_list); struct btrfs_delayed_item *curr; struct btrfs_delayed_item *next; const int max_size = BTRFS_LEAF_DATA_SIZE(fs_info); struct btrfs_item_batch batch; struct btrfs_key first_key; const u32 first_data_size = first_item->data_len; int total_size; char *ins_data = NULL; int ret; bool continuous_keys_only = false; lockdep_assert_held(&node->mutex); /* * During normal operation the delayed index offset is continuously * increasing, so we can batch insert all items as there will not be any * overlapping keys in the tree. * * The exception to this is log replay, where we may have interleaved * offsets in the tree, so our batch needs to be continuous keys only in * order to ensure we do not end up with out of order items in our leaf. */ if (test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags)) continuous_keys_only = true; /* * For delayed items to insert, we track reserved metadata bytes based * on the number of leaves that we will use. * See btrfs_insert_delayed_dir_index() and * btrfs_delayed_item_reserve_metadata()). */ ASSERT(first_item->bytes_reserved == 0); list_add_tail(&first_item->tree_list, &item_list); batch.total_data_size = first_data_size; batch.nr = 1; total_size = first_data_size + sizeof(struct btrfs_item); curr = first_item; while (true) { int next_size; next = __btrfs_next_delayed_item(curr); if (!next) break; /* * We cannot allow gaps in the key space if we're doing log * replay. */ if (continuous_keys_only && (next->index != curr->index + 1)) break; ASSERT(next->bytes_reserved == 0); next_size = next->data_len + sizeof(struct btrfs_item); if (total_size + next_size > max_size) break; list_add_tail(&next->tree_list, &item_list); batch.nr++; total_size += next_size; batch.total_data_size += next->data_len; curr = next; } if (batch.nr == 1) { first_key.objectid = node->inode_id; first_key.type = BTRFS_DIR_INDEX_KEY; first_key.offset = first_item->index; batch.keys = &first_key; batch.data_sizes = &first_data_size; } else { struct btrfs_key *ins_keys; u32 *ins_sizes; int i = 0; ins_data = kmalloc(batch.nr * sizeof(u32) + batch.nr * sizeof(struct btrfs_key), GFP_NOFS); if (!ins_data) { ret = -ENOMEM; goto out; } ins_sizes = (u32 *)ins_data; ins_keys = (struct btrfs_key *)(ins_data + batch.nr * sizeof(u32)); batch.keys = ins_keys; batch.data_sizes = ins_sizes; list_for_each_entry(curr, &item_list, tree_list) { ins_keys[i].objectid = node->inode_id; ins_keys[i].type = BTRFS_DIR_INDEX_KEY; ins_keys[i].offset = curr->index; ins_sizes[i] = curr->data_len; i++; } } ret = btrfs_insert_empty_items(trans, root, path, &batch); if (ret) goto out; list_for_each_entry(curr, &item_list, tree_list) { char *data_ptr; data_ptr = btrfs_item_ptr(path->nodes[0], path->slots[0], char); write_extent_buffer(path->nodes[0], &curr->data, (unsigned long)data_ptr, curr->data_len); path->slots[0]++; } /* * Now release our path before releasing the delayed items and their * metadata reservations, so that we don't block other tasks for more * time than needed. */ btrfs_release_path(path); ASSERT(node->index_item_leaves > 0); /* * For normal operations we will batch an entire leaf's worth of delayed * items, so if there are more items to process we can decrement * index_item_leaves by 1 as we inserted 1 leaf's worth of items. * * However for log replay we may not have inserted an entire leaf's * worth of items, we may have not had continuous items, so decrementing * here would mess up the index_item_leaves accounting. For this case * only clean up the accounting when there are no items left. */ if (next && !continuous_keys_only) { /* * We inserted one batch of items into a leaf a there are more * items to flush in a future batch, now release one unit of * metadata space from the delayed block reserve, corresponding * the leaf we just flushed to. */ btrfs_delayed_item_release_leaves(node, 1); node->index_item_leaves--; } else if (!next) { /* * There are no more items to insert. We can have a number of * reserved leaves > 1 here - this happens when many dir index * items are added and then removed before they are flushed (file * names with a very short life, never span a transaction). So * release all remaining leaves. */ btrfs_delayed_item_release_leaves(node, node->index_item_leaves); node->index_item_leaves = 0; } list_for_each_entry_safe(curr, next, &item_list, tree_list) { list_del(&curr->tree_list); btrfs_release_delayed_item(curr); } out: kfree(ins_data); return ret; } static int btrfs_insert_delayed_items(struct btrfs_trans_handle *trans, struct btrfs_path *path, struct btrfs_root *root, struct btrfs_delayed_node *node) { int ret = 0; while (ret == 0) { struct btrfs_delayed_item *curr; mutex_lock(&node->mutex); curr = __btrfs_first_delayed_insertion_item(node); if (!curr) { mutex_unlock(&node->mutex); break; } ret = btrfs_insert_delayed_item(trans, root, path, curr); mutex_unlock(&node->mutex); } return ret; } static int btrfs_batch_delete_items(struct btrfs_trans_handle *trans, struct btrfs_root *root, struct btrfs_path *path, struct btrfs_delayed_item *item) { const u64 ino = item->delayed_node->inode_id; struct btrfs_fs_info *fs_info = root->fs_info; struct btrfs_delayed_item *curr, *next; struct extent_buffer *leaf = path->nodes[0]; LIST_HEAD(batch_list); int nitems, slot, last_slot; int ret; u64 total_reserved_size = item->bytes_reserved; ASSERT(leaf != NULL); slot = path->slots[0]; last_slot = btrfs_header_nritems(leaf) - 1; /* * Our caller always gives us a path pointing to an existing item, so * this can not happen. */ ASSERT(slot <= last_slot); if (WARN_ON(slot > last_slot)) return -ENOENT; nitems = 1; curr = item; list_add_tail(&curr->tree_list, &batch_list); /* * Keep checking if the next delayed item matches the next item in the * leaf - if so, we can add it to the batch of items to delete from the * leaf. */ while (slot < last_slot) { struct btrfs_key key; next = __btrfs_next_delayed_item(curr); if (!next) break; slot++; btrfs_item_key_to_cpu(leaf, &key, slot); if (key.objectid != ino || key.type != BTRFS_DIR_INDEX_KEY || key.offset != next->index) break; nitems++; curr = next; list_add_tail(&curr->tree_list, &batch_list); total_reserved_size += curr->bytes_reserved; } ret = btrfs_del_items(trans, root, path, path->slots[0], nitems); if (ret) return ret; /* In case of BTRFS_FS_LOG_RECOVERING items won't have reserved space */ if (total_reserved_size > 0) { /* * Check btrfs_delayed_item_reserve_metadata() to see why we * don't need to release/reserve qgroup space. */ trace_btrfs_space_reservation(fs_info, "delayed_item", ino, total_reserved_size, 0); btrfs_block_rsv_release(fs_info, &fs_info->delayed_block_rsv, total_reserved_size, NULL); } list_for_each_entry_safe(curr, next, &batch_list, tree_list) { list_del(&curr->tree_list); btrfs_release_delayed_item(curr); } return 0; } static int btrfs_delete_delayed_items(struct btrfs_trans_handle *trans, struct btrfs_path *path, struct btrfs_root *root, struct btrfs_delayed_node *node) { struct btrfs_key key; int ret = 0; key.objectid = node->inode_id; key.type = BTRFS_DIR_INDEX_KEY; while (ret == 0) { struct btrfs_delayed_item *item; mutex_lock(&node->mutex); item = __btrfs_first_delayed_deletion_item(node); if (!item) { mutex_unlock(&node->mutex); break; } key.offset = item->index; ret = btrfs_search_slot(trans, root, &key, path, -1, 1); if (ret > 0) { /* * There's no matching item in the leaf. This means we * have already deleted this item in a past run of the * delayed items. We ignore errors when running delayed * items from an async context, through a work queue job * running btrfs_async_run_delayed_root(), and don't * release delayed items that failed to complete. This * is because we will retry later, and at transaction * commit time we always run delayed items and will * then deal with errors if they fail to run again. * * So just release delayed items for which we can't find * an item in the tree, and move to the next item. */ btrfs_release_path(path); btrfs_release_delayed_item(item); ret = 0; } else if (ret == 0) { ret = btrfs_batch_delete_items(trans, root, path, item); btrfs_release_path(path); } /* * We unlock and relock on each iteration, this is to prevent * blocking other tasks for too long while we are being run from * the async context (work queue job). Those tasks are typically * running system calls like creat/mkdir/rename/unlink/etc which * need to add delayed items to this delayed node. */ mutex_unlock(&node->mutex); } return ret; } static void btrfs_release_delayed_inode(struct btrfs_delayed_node *delayed_node) { struct btrfs_delayed_root *delayed_root; if (delayed_node && test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags)) { BUG_ON(!delayed_node->root); clear_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags); delayed_node->count--; delayed_root = delayed_node->root->fs_info->delayed_root; finish_one_item(delayed_root); } } static void btrfs_release_delayed_iref(struct btrfs_delayed_node *delayed_node) { if (test_and_clear_bit(BTRFS_DELAYED_NODE_DEL_IREF, &delayed_node->flags)) { struct btrfs_delayed_root *delayed_root; ASSERT(delayed_node->root); delayed_node->count--; delayed_root = delayed_node->root->fs_info->delayed_root; finish_one_item(delayed_root); } } static int __btrfs_update_delayed_inode(struct btrfs_trans_handle *trans, struct btrfs_root *root, struct btrfs_path *path, struct btrfs_delayed_node *node) { struct btrfs_fs_info *fs_info = root->fs_info; struct btrfs_key key; struct btrfs_inode_item *inode_item; struct extent_buffer *leaf; int mod; int ret; key.objectid = node->inode_id; key.type = BTRFS_INODE_ITEM_KEY; key.offset = 0; if (test_bit(BTRFS_DELAYED_NODE_DEL_IREF, &node->flags)) mod = -1; else mod = 1; ret = btrfs_lookup_inode(trans, root, path, &key, mod); if (ret > 0) ret = -ENOENT; if (ret < 0) goto out; leaf = path->nodes[0]; inode_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_inode_item); write_extent_buffer(leaf, &node->inode_item, (unsigned long)inode_item, sizeof(struct btrfs_inode_item)); btrfs_mark_buffer_dirty(trans, leaf); if (!test_bit(BTRFS_DELAYED_NODE_DEL_IREF, &node->flags)) goto out; /* * Now we're going to delete the INODE_REF/EXTREF, which should be the * only one ref left. Check if the next item is an INODE_REF/EXTREF. * * But if we're the last item already, release and search for the last * INODE_REF/EXTREF. */ if (path->slots[0] + 1 >= btrfs_header_nritems(leaf)) { key.objectid = node->inode_id; key.type = BTRFS_INODE_EXTREF_KEY; key.offset = (u64)-1; btrfs_release_path(path); ret = btrfs_search_slot(trans, root, &key, path, -1, 1); if (ret < 0) goto err_out; ASSERT(ret > 0); ASSERT(path->slots[0] > 0); ret = 0; path->slots[0]--; leaf = path->nodes[0]; } else { path->slots[0]++; } btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); if (key.objectid != node->inode_id) goto out; if (key.type != BTRFS_INODE_REF_KEY && key.type != BTRFS_INODE_EXTREF_KEY) goto out; /* * Delayed iref deletion is for the inode who has only one link, * so there is only one iref. The case that several irefs are * in the same item doesn't exist. */ ret = btrfs_del_item(trans, root, path); out: btrfs_release_delayed_iref(node); btrfs_release_path(path); err_out: btrfs_delayed_inode_release_metadata(fs_info, node, (ret < 0)); btrfs_release_delayed_inode(node); /* * If we fail to update the delayed inode we need to abort the * transaction, because we could leave the inode with the improper * counts behind. */ if (ret && ret != -ENOENT) btrfs_abort_transaction(trans, ret); return ret; } static inline int btrfs_update_delayed_inode(struct btrfs_trans_handle *trans, struct btrfs_root *root, struct btrfs_path *path, struct btrfs_delayed_node *node) { int ret; mutex_lock(&node->mutex); if (!test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &node->flags)) { mutex_unlock(&node->mutex); return 0; } ret = __btrfs_update_delayed_inode(trans, root, path, node); mutex_unlock(&node->mutex); return ret; } static inline int __btrfs_commit_inode_delayed_items(struct btrfs_trans_handle *trans, struct btrfs_path *path, struct btrfs_delayed_node *node) { int ret; ret = btrfs_insert_delayed_items(trans, path, node->root, node); if (ret) return ret; ret = btrfs_delete_delayed_items(trans, path, node->root, node); if (ret) return ret; ret = btrfs_update_delayed_inode(trans, node->root, path, node); return ret; } /* * Called when committing the transaction. * Returns 0 on success. * Returns < 0 on error and returns with an aborted transaction with any * outstanding delayed items cleaned up. */ static int __btrfs_run_delayed_items(struct btrfs_trans_handle *trans, int nr) { struct btrfs_fs_info *fs_info = trans->fs_info; struct btrfs_delayed_root *delayed_root; struct btrfs_delayed_node *curr_node, *prev_node; struct btrfs_path *path; struct btrfs_block_rsv *block_rsv; int ret = 0; bool count = (nr > 0); if (TRANS_ABORTED(trans)) return -EIO; path = btrfs_alloc_path(); if (!path) return -ENOMEM; block_rsv = trans->block_rsv; trans->block_rsv = &fs_info->delayed_block_rsv; delayed_root = fs_info->delayed_root; curr_node = btrfs_first_delayed_node(delayed_root); while (curr_node && (!count || nr--)) { ret = __btrfs_commit_inode_delayed_items(trans, path, curr_node); if (ret) { btrfs_abort_transaction(trans, ret); break; } prev_node = curr_node; curr_node = btrfs_next_delayed_node(curr_node); /* * See the comment below about releasing path before releasing * node. If the commit of delayed items was successful the path * should always be released, but in case of an error, it may * point to locked extent buffers (a leaf at the very least). */ ASSERT(path->nodes[0] == NULL); btrfs_release_delayed_node(prev_node); } /* * Release the path to avoid a potential deadlock and lockdep splat when * releasing the delayed node, as that requires taking the delayed node's * mutex. If another task starts running delayed items before we take * the mutex, it will first lock the mutex and then it may try to lock * the same btree path (leaf). */ btrfs_free_path(path); if (curr_node) btrfs_release_delayed_node(curr_node); trans->block_rsv = block_rsv; return ret; } int btrfs_run_delayed_items(struct btrfs_trans_handle *trans) { return __btrfs_run_delayed_items(trans, -1); } int btrfs_run_delayed_items_nr(struct btrfs_trans_handle *trans, int nr) { return __btrfs_run_delayed_items(trans, nr); } int btrfs_commit_inode_delayed_items(struct btrfs_trans_handle *trans, struct btrfs_inode *inode) { struct btrfs_delayed_node *delayed_node = btrfs_get_delayed_node(inode); struct btrfs_path *path; struct btrfs_block_rsv *block_rsv; int ret; if (!delayed_node) return 0; mutex_lock(&delayed_node->mutex); if (!delayed_node->count) { mutex_unlock(&delayed_node->mutex); btrfs_release_delayed_node(delayed_node); return 0; } mutex_unlock(&delayed_node->mutex); path = btrfs_alloc_path(); if (!path) { btrfs_release_delayed_node(delayed_node); return -ENOMEM; } block_rsv = trans->block_rsv; trans->block_rsv = &delayed_node->root->fs_info->delayed_block_rsv; ret = __btrfs_commit_inode_delayed_items(trans, path, delayed_node); btrfs_release_delayed_node(delayed_node); btrfs_free_path(path); trans->block_rsv = block_rsv; return ret; } int btrfs_commit_inode_delayed_inode(struct btrfs_inode *inode) { struct btrfs_fs_info *fs_info = inode->root->fs_info; struct btrfs_trans_handle *trans; struct btrfs_delayed_node *delayed_node = btrfs_get_delayed_node(inode); struct btrfs_path *path; struct btrfs_block_rsv *block_rsv; int ret; if (!delayed_node) return 0; mutex_lock(&delayed_node->mutex); if (!test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags)) { mutex_unlock(&delayed_node->mutex); btrfs_release_delayed_node(delayed_node); return 0; } mutex_unlock(&delayed_node->mutex); trans = btrfs_join_transaction(delayed_node->root); if (IS_ERR(trans)) { ret = PTR_ERR(trans); goto out; } path = btrfs_alloc_path(); if (!path) { ret = -ENOMEM; goto trans_out; } block_rsv = trans->block_rsv; trans->block_rsv = &fs_info->delayed_block_rsv; mutex_lock(&delayed_node->mutex); if (test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags)) ret = __btrfs_update_delayed_inode(trans, delayed_node->root, path, delayed_node); else ret = 0; mutex_unlock(&delayed_node->mutex); btrfs_free_path(path); trans->block_rsv = block_rsv; trans_out: btrfs_end_transaction(trans); btrfs_btree_balance_dirty(fs_info); out: btrfs_release_delayed_node(delayed_node); return ret; } void btrfs_remove_delayed_node(struct btrfs_inode *inode) { struct btrfs_delayed_node *delayed_node; delayed_node = READ_ONCE(inode->delayed_node); if (!delayed_node) return; inode->delayed_node = NULL; btrfs_release_delayed_node(delayed_node); } struct btrfs_async_delayed_work { struct btrfs_delayed_root *delayed_root; int nr; struct btrfs_work work; }; static void btrfs_async_run_delayed_root(struct btrfs_work *work) { struct btrfs_async_delayed_work *async_work; struct btrfs_delayed_root *delayed_root; struct btrfs_trans_handle *trans; struct btrfs_path *path; struct btrfs_delayed_node *delayed_node = NULL; struct btrfs_root *root; struct btrfs_block_rsv *block_rsv; int total_done = 0; async_work = container_of(work, struct btrfs_async_delayed_work, work); delayed_root = async_work->delayed_root; path = btrfs_alloc_path(); if (!path) goto out; do { if (atomic_read(&delayed_root->items) < BTRFS_DELAYED_BACKGROUND / 2) break; delayed_node = btrfs_first_prepared_delayed_node(delayed_root); if (!delayed_node) break; root = delayed_node->root; trans = btrfs_join_transaction(root); if (IS_ERR(trans)) { btrfs_release_path(path); btrfs_release_prepared_delayed_node(delayed_node); total_done++; continue; } block_rsv = trans->block_rsv; trans->block_rsv = &root->fs_info->delayed_block_rsv; __btrfs_commit_inode_delayed_items(trans, path, delayed_node); trans->block_rsv = block_rsv; btrfs_end_transaction(trans); btrfs_btree_balance_dirty_nodelay(root->fs_info); btrfs_release_path(path); btrfs_release_prepared_delayed_node(delayed_node); total_done++; } while ((async_work->nr == 0 && total_done < BTRFS_DELAYED_WRITEBACK) || total_done < async_work->nr); btrfs_free_path(path); out: wake_up(&delayed_root->wait); kfree(async_work); } static int btrfs_wq_run_delayed_node(struct btrfs_delayed_root *delayed_root, struct btrfs_fs_info *fs_info, int nr) { struct btrfs_async_delayed_work *async_work; async_work = kmalloc(sizeof(*async_work), GFP_NOFS); if (!async_work) return -ENOMEM; async_work->delayed_root = delayed_root; btrfs_init_work(&async_work->work, btrfs_async_run_delayed_root, NULL); async_work->nr = nr; btrfs_queue_work(fs_info->delayed_workers, &async_work->work); return 0; } void btrfs_assert_delayed_root_empty(struct btrfs_fs_info *fs_info) { WARN_ON(btrfs_first_delayed_node(fs_info->delayed_root)); } static int could_end_wait(struct btrfs_delayed_root *delayed_root, int seq) { int val = atomic_read(&delayed_root->items_seq); if (val < seq || val >= seq + BTRFS_DELAYED_BATCH) return 1; if (atomic_read(&delayed_root->items) < BTRFS_DELAYED_BACKGROUND) return 1; return 0; } void btrfs_balance_delayed_items(struct btrfs_fs_info *fs_info) { struct btrfs_delayed_root *delayed_root = fs_info->delayed_root; if ((atomic_read(&delayed_root->items) < BTRFS_DELAYED_BACKGROUND) || btrfs_workqueue_normal_congested(fs_info->delayed_workers)) return; if (atomic_read(&delayed_root->items) >= BTRFS_DELAYED_WRITEBACK) { int seq; int ret; seq = atomic_read(&delayed_root->items_seq); ret = btrfs_wq_run_delayed_node(delayed_root, fs_info, 0); if (ret) return; wait_event_interruptible(delayed_root->wait, could_end_wait(delayed_root, seq)); return; } btrfs_wq_run_delayed_node(delayed_root, fs_info, BTRFS_DELAYED_BATCH); } static void btrfs_release_dir_index_item_space(struct btrfs_trans_handle *trans) { struct btrfs_fs_info *fs_info = trans->fs_info; const u64 bytes = btrfs_calc_insert_metadata_size(fs_info, 1); if (test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags)) return; /* * Adding the new dir index item does not require touching another * leaf, so we can release 1 unit of metadata that was previously * reserved when starting the transaction. This applies only to * the case where we had a transaction start and excludes the * transaction join case (when replaying log trees). */ trace_btrfs_space_reservation(fs_info, "transaction", trans->transid, bytes, 0); btrfs_block_rsv_release(fs_info, trans->block_rsv, bytes, NULL); ASSERT(trans->bytes_reserved >= bytes); trans->bytes_reserved -= bytes; } /* Will return 0, -ENOMEM or -EEXIST (index number collision, unexpected). */ int btrfs_insert_delayed_dir_index(struct btrfs_trans_handle *trans, const char *name, int name_len, struct btrfs_inode *dir, struct btrfs_disk_key *disk_key, u8 flags, u64 index) { struct btrfs_fs_info *fs_info = trans->fs_info; const unsigned int leaf_data_size = BTRFS_LEAF_DATA_SIZE(fs_info); struct btrfs_delayed_node *delayed_node; struct btrfs_delayed_item *delayed_item; struct btrfs_dir_item *dir_item; bool reserve_leaf_space; u32 data_len; int ret; delayed_node = btrfs_get_or_create_delayed_node(dir); if (IS_ERR(delayed_node)) return PTR_ERR(delayed_node); delayed_item = btrfs_alloc_delayed_item(sizeof(*dir_item) + name_len, delayed_node, BTRFS_DELAYED_INSERTION_ITEM); if (!delayed_item) { ret = -ENOMEM; goto release_node; } delayed_item->index = index; dir_item = (struct btrfs_dir_item *)delayed_item->data; dir_item->location = *disk_key; btrfs_set_stack_dir_transid(dir_item, trans->transid); btrfs_set_stack_dir_data_len(dir_item, 0); btrfs_set_stack_dir_name_len(dir_item, name_len); btrfs_set_stack_dir_flags(dir_item, flags); memcpy((char *)(dir_item + 1), name, name_len); data_len = delayed_item->data_len + sizeof(struct btrfs_item); mutex_lock(&delayed_node->mutex); /* * First attempt to insert the delayed item. This is to make the error * handling path simpler in case we fail (-EEXIST). There's no risk of * any other task coming in and running the delayed item before we do * the metadata space reservation below, because we are holding the * delayed node's mutex and that mutex must also be locked before the * node's delayed items can be run. */ ret = __btrfs_add_delayed_item(delayed_node, delayed_item); if (unlikely(ret)) { btrfs_err(trans->fs_info, "error adding delayed dir index item, name: %.*s, index: %llu, root: %llu, dir: %llu, dir->index_cnt: %llu, delayed_node->index_cnt: %llu, error: %d", name_len, name, index, btrfs_root_id(delayed_node->root), delayed_node->inode_id, dir->index_cnt, delayed_node->index_cnt, ret); btrfs_release_delayed_item(delayed_item); btrfs_release_dir_index_item_space(trans); mutex_unlock(&delayed_node->mutex); goto release_node; } if (delayed_node->index_item_leaves == 0 || delayed_node->curr_index_batch_size + data_len > leaf_data_size) { delayed_node->curr_index_batch_size = data_len; reserve_leaf_space = true; } else { delayed_node->curr_index_batch_size += data_len; reserve_leaf_space = false; } if (reserve_leaf_space) { ret = btrfs_delayed_item_reserve_metadata(trans, delayed_item); /* * Space was reserved for a dir index item insertion when we * started the transaction, so getting a failure here should be * impossible. */ if (WARN_ON(ret)) { btrfs_release_delayed_item(delayed_item); mutex_unlock(&delayed_node->mutex); goto release_node; } delayed_node->index_item_leaves++; } else { btrfs_release_dir_index_item_space(trans); } mutex_unlock(&delayed_node->mutex); release_node: btrfs_release_delayed_node(delayed_node); return ret; } static int btrfs_delete_delayed_insertion_item(struct btrfs_fs_info *fs_info, struct btrfs_delayed_node *node, u64 index) { struct btrfs_delayed_item *item; mutex_lock(&node->mutex); item = __btrfs_lookup_delayed_item(&node->ins_root.rb_root, index); if (!item) { mutex_unlock(&node->mutex); return 1; } /* * For delayed items to insert, we track reserved metadata bytes based * on the number of leaves that we will use. * See btrfs_insert_delayed_dir_index() and * btrfs_delayed_item_reserve_metadata()). */ ASSERT(item->bytes_reserved == 0); ASSERT(node->index_item_leaves > 0); /* * If there's only one leaf reserved, we can decrement this item from the * current batch, otherwise we can not because we don't know which leaf * it belongs to. With the current limit on delayed items, we rarely * accumulate enough dir index items to fill more than one leaf (even * when using a leaf size of 4K). */ if (node->index_item_leaves == 1) { const u32 data_len = item->data_len + sizeof(struct btrfs_item); ASSERT(node->curr_index_batch_size >= data_len); node->curr_index_batch_size -= data_len; } btrfs_release_delayed_item(item); /* If we now have no more dir index items, we can release all leaves. */ if (RB_EMPTY_ROOT(&node->ins_root.rb_root)) { btrfs_delayed_item_release_leaves(node, node->index_item_leaves); node->index_item_leaves = 0; } mutex_unlock(&node->mutex); return 0; } int btrfs_delete_delayed_dir_index(struct btrfs_trans_handle *trans, struct btrfs_inode *dir, u64 index) { struct btrfs_delayed_node *node; struct btrfs_delayed_item *item; int ret; node = btrfs_get_or_create_delayed_node(dir); if (IS_ERR(node)) return PTR_ERR(node); ret = btrfs_delete_delayed_insertion_item(trans->fs_info, node, index); if (!ret) goto end; item = btrfs_alloc_delayed_item(0, node, BTRFS_DELAYED_DELETION_ITEM); if (!item) { ret = -ENOMEM; goto end; } item->index = index; ret = btrfs_delayed_item_reserve_metadata(trans, item); /* * we have reserved enough space when we start a new transaction, * so reserving metadata failure is impossible. */ if (ret < 0) { btrfs_err(trans->fs_info, "metadata reservation failed for delayed dir item deltiona, should have been reserved"); btrfs_release_delayed_item(item); goto end; } mutex_lock(&node->mutex); ret = __btrfs_add_delayed_item(node, item); if (unlikely(ret)) { btrfs_err(trans->fs_info, "err add delayed dir index item(index: %llu) into the deletion tree of the delayed node(root id: %llu, inode id: %llu, errno: %d)", index, node->root->root_key.objectid, node->inode_id, ret); btrfs_delayed_item_release_metadata(dir->root, item); btrfs_release_delayed_item(item); } mutex_unlock(&node->mutex); end: btrfs_release_delayed_node(node); return ret; } int btrfs_inode_delayed_dir_index_count(struct btrfs_inode *inode) { struct btrfs_delayed_node *delayed_node = btrfs_get_delayed_node(inode); if (!delayed_node) return -ENOENT; /* * Since we have held i_mutex of this directory, it is impossible that * a new directory index is added into the delayed node and index_cnt * is updated now. So we needn't lock the delayed node. */ if (!delayed_node->index_cnt) { btrfs_release_delayed_node(delayed_node); return -EINVAL; } inode->index_cnt = delayed_node->index_cnt; btrfs_release_delayed_node(delayed_node); return 0; } bool btrfs_readdir_get_delayed_items(struct inode *inode, u64 last_index, struct list_head *ins_list, struct list_head *del_list) { struct btrfs_delayed_node *delayed_node; struct btrfs_delayed_item *item; delayed_node = btrfs_get_delayed_node(BTRFS_I(inode)); if (!delayed_node) return false; /* * We can only do one readdir with delayed items at a time because of * item->readdir_list. */ btrfs_inode_unlock(BTRFS_I(inode), BTRFS_ILOCK_SHARED); btrfs_inode_lock(BTRFS_I(inode), 0); mutex_lock(&delayed_node->mutex); item = __btrfs_first_delayed_insertion_item(delayed_node); while (item && item->index <= last_index) { refcount_inc(&item->refs); list_add_tail(&item->readdir_list, ins_list); item = __btrfs_next_delayed_item(item); } item = __btrfs_first_delayed_deletion_item(delayed_node); while (item && item->index <= last_index) { refcount_inc(&item->refs); list_add_tail(&item->readdir_list, del_list); item = __btrfs_next_delayed_item(item); } mutex_unlock(&delayed_node->mutex); /* * This delayed node is still cached in the btrfs inode, so refs * must be > 1 now, and we needn't check it is going to be freed * or not. * * Besides that, this function is used to read dir, we do not * insert/delete delayed items in this period. So we also needn't * requeue or dequeue this delayed node. */ refcount_dec(&delayed_node->refs); return true; } void btrfs_readdir_put_delayed_items(struct inode *inode, struct list_head *ins_list, struct list_head *del_list) { struct btrfs_delayed_item *curr, *next; list_for_each_entry_safe(curr, next, ins_list, readdir_list) { list_del(&curr->readdir_list); if (refcount_dec_and_test(&curr->refs)) kfree(curr); } list_for_each_entry_safe(curr, next, del_list, readdir_list) { list_del(&curr->readdir_list); if (refcount_dec_and_test(&curr->refs)) kfree(curr); } /* * The VFS is going to do up_read(), so we need to downgrade back to a * read lock. */ downgrade_write(&inode->i_rwsem); } int btrfs_should_delete_dir_index(struct list_head *del_list, u64 index) { struct btrfs_delayed_item *curr; int ret = 0; list_for_each_entry(curr, del_list, readdir_list) { if (curr->index > index) break; if (curr->index == index) { ret = 1; break; } } return ret; } /* * Read dir info stored in the delayed tree. */ int btrfs_readdir_delayed_dir_index(struct dir_context *ctx, struct list_head *ins_list) { struct btrfs_dir_item *di; struct btrfs_delayed_item *curr, *next; struct btrfs_key location; char *name; int name_len; int over = 0; unsigned char d_type; /* * Changing the data of the delayed item is impossible. So * we needn't lock them. And we have held i_mutex of the * directory, nobody can delete any directory indexes now. */ list_for_each_entry_safe(curr, next, ins_list, readdir_list) { list_del(&curr->readdir_list); if (curr->index < ctx->pos) { if (refcount_dec_and_test(&curr->refs)) kfree(curr); continue; } ctx->pos = curr->index; di = (struct btrfs_dir_item *)curr->data; name = (char *)(di + 1); name_len = btrfs_stack_dir_name_len(di); d_type = fs_ftype_to_dtype(btrfs_dir_flags_to_ftype(di->type)); btrfs_disk_key_to_cpu(&location, &di->location); over = !dir_emit(ctx, name, name_len, location.objectid, d_type); if (refcount_dec_and_test(&curr->refs)) kfree(curr); if (over) return 1; ctx->pos++; } return 0; } static void fill_stack_inode_item(struct btrfs_trans_handle *trans, struct btrfs_inode_item *inode_item, struct inode *inode) { u64 flags; btrfs_set_stack_inode_uid(inode_item, i_uid_read(inode)); btrfs_set_stack_inode_gid(inode_item, i_gid_read(inode)); btrfs_set_stack_inode_size(inode_item, BTRFS_I(inode)->disk_i_size); btrfs_set_stack_inode_mode(inode_item, inode->i_mode); btrfs_set_stack_inode_nlink(inode_item, inode->i_nlink); btrfs_set_stack_inode_nbytes(inode_item, inode_get_bytes(inode)); btrfs_set_stack_inode_generation(inode_item, BTRFS_I(inode)->generation); btrfs_set_stack_inode_sequence(inode_item, inode_peek_iversion(inode)); btrfs_set_stack_inode_transid(inode_item, trans->transid); btrfs_set_stack_inode_rdev(inode_item, inode->i_rdev); flags = btrfs_inode_combine_flags(BTRFS_I(inode)->flags, BTRFS_I(inode)->ro_flags); btrfs_set_stack_inode_flags(inode_item, flags); btrfs_set_stack_inode_block_group(inode_item, 0); btrfs_set_stack_timespec_sec(&inode_item->atime, inode_get_atime_sec(inode)); btrfs_set_stack_timespec_nsec(&inode_item->atime, inode_get_atime_nsec(inode)); btrfs_set_stack_timespec_sec(&inode_item->mtime, inode_get_mtime_sec(inode)); btrfs_set_stack_timespec_nsec(&inode_item->mtime, inode_get_mtime_nsec(inode)); btrfs_set_stack_timespec_sec(&inode_item->ctime, inode_get_ctime_sec(inode)); btrfs_set_stack_timespec_nsec(&inode_item->ctime, inode_get_ctime_nsec(inode)); btrfs_set_stack_timespec_sec(&inode_item->otime, BTRFS_I(inode)->i_otime_sec); btrfs_set_stack_timespec_nsec(&inode_item->otime, BTRFS_I(inode)->i_otime_nsec); } int btrfs_fill_inode(struct inode *inode, u32 *rdev) { struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info; struct btrfs_delayed_node *delayed_node; struct btrfs_inode_item *inode_item; delayed_node = btrfs_get_delayed_node(BTRFS_I(inode)); if (!delayed_node) return -ENOENT; mutex_lock(&delayed_node->mutex); if (!test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags)) { mutex_unlock(&delayed_node->mutex); btrfs_release_delayed_node(delayed_node); return -ENOENT; } inode_item = &delayed_node->inode_item; i_uid_write(inode, btrfs_stack_inode_uid(inode_item)); i_gid_write(inode, btrfs_stack_inode_gid(inode_item)); btrfs_i_size_write(BTRFS_I(inode), btrfs_stack_inode_size(inode_item)); btrfs_inode_set_file_extent_range(BTRFS_I(inode), 0, round_up(i_size_read(inode), fs_info->sectorsize)); inode->i_mode = btrfs_stack_inode_mode(inode_item); set_nlink(inode, btrfs_stack_inode_nlink(inode_item)); inode_set_bytes(inode, btrfs_stack_inode_nbytes(inode_item)); BTRFS_I(inode)->generation = btrfs_stack_inode_generation(inode_item); BTRFS_I(inode)->last_trans = btrfs_stack_inode_transid(inode_item); inode_set_iversion_queried(inode, btrfs_stack_inode_sequence(inode_item)); inode->i_rdev = 0; *rdev = btrfs_stack_inode_rdev(inode_item); btrfs_inode_split_flags(btrfs_stack_inode_flags(inode_item), &BTRFS_I(inode)->flags, &BTRFS_I(inode)->ro_flags); inode_set_atime(inode, btrfs_stack_timespec_sec(&inode_item->atime), btrfs_stack_timespec_nsec(&inode_item->atime)); inode_set_mtime(inode, btrfs_stack_timespec_sec(&inode_item->mtime), btrfs_stack_timespec_nsec(&inode_item->mtime)); inode_set_ctime(inode, btrfs_stack_timespec_sec(&inode_item->ctime), btrfs_stack_timespec_nsec(&inode_item->ctime)); BTRFS_I(inode)->i_otime_sec = btrfs_stack_timespec_sec(&inode_item->otime); BTRFS_I(inode)->i_otime_nsec = btrfs_stack_timespec_nsec(&inode_item->otime); inode->i_generation = BTRFS_I(inode)->generation; BTRFS_I(inode)->index_cnt = (u64)-1; mutex_unlock(&delayed_node->mutex); btrfs_release_delayed_node(delayed_node); return 0; } int btrfs_delayed_update_inode(struct btrfs_trans_handle *trans, struct btrfs_inode *inode) { struct btrfs_root *root = inode->root; struct btrfs_delayed_node *delayed_node; int ret = 0; delayed_node = btrfs_get_or_create_delayed_node(inode); if (IS_ERR(delayed_node)) return PTR_ERR(delayed_node); mutex_lock(&delayed_node->mutex); if (test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags)) { fill_stack_inode_item(trans, &delayed_node->inode_item, &inode->vfs_inode); goto release_node; } ret = btrfs_delayed_inode_reserve_metadata(trans, root, delayed_node); if (ret) goto release_node; fill_stack_inode_item(trans, &delayed_node->inode_item, &inode->vfs_inode); set_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags); delayed_node->count++; atomic_inc(&root->fs_info->delayed_root->items); release_node: mutex_unlock(&delayed_node->mutex); btrfs_release_delayed_node(delayed_node); return ret; } int btrfs_delayed_delete_inode_ref(struct btrfs_inode *inode) { struct btrfs_fs_info *fs_info = inode->root->fs_info; struct btrfs_delayed_node *delayed_node; /* * we don't do delayed inode updates during log recovery because it * leads to enospc problems. This means we also can't do * delayed inode refs */ if (test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags)) return -EAGAIN; delayed_node = btrfs_get_or_create_delayed_node(inode); if (IS_ERR(delayed_node)) return PTR_ERR(delayed_node); /* * We don't reserve space for inode ref deletion is because: * - We ONLY do async inode ref deletion for the inode who has only * one link(i_nlink == 1), it means there is only one inode ref. * And in most case, the inode ref and the inode item are in the * same leaf, and we will deal with them at the same time. * Since we are sure we will reserve the space for the inode item, * it is unnecessary to reserve space for inode ref deletion. * - If the inode ref and the inode item are not in the same leaf, * We also needn't worry about enospc problem, because we reserve * much more space for the inode update than it needs. * - At the worst, we can steal some space from the global reservation. * It is very rare. */ mutex_lock(&delayed_node->mutex); if (test_bit(BTRFS_DELAYED_NODE_DEL_IREF, &delayed_node->flags)) goto release_node; set_bit(BTRFS_DELAYED_NODE_DEL_IREF, &delayed_node->flags); delayed_node->count++; atomic_inc(&fs_info->delayed_root->items); release_node: mutex_unlock(&delayed_node->mutex); btrfs_release_delayed_node(delayed_node); return 0; } static void __btrfs_kill_delayed_node(struct btrfs_delayed_node *delayed_node) { struct btrfs_root *root = delayed_node->root; struct btrfs_fs_info *fs_info = root->fs_info; struct btrfs_delayed_item *curr_item, *prev_item; mutex_lock(&delayed_node->mutex); curr_item = __btrfs_first_delayed_insertion_item(delayed_node); while (curr_item) { prev_item = curr_item; curr_item = __btrfs_next_delayed_item(prev_item); btrfs_release_delayed_item(prev_item); } if (delayed_node->index_item_leaves > 0) { btrfs_delayed_item_release_leaves(delayed_node, delayed_node->index_item_leaves); delayed_node->index_item_leaves = 0; } curr_item = __btrfs_first_delayed_deletion_item(delayed_node); while (curr_item) { btrfs_delayed_item_release_metadata(root, curr_item); prev_item = curr_item; curr_item = __btrfs_next_delayed_item(prev_item); btrfs_release_delayed_item(prev_item); } btrfs_release_delayed_iref(delayed_node); if (test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags)) { btrfs_delayed_inode_release_metadata(fs_info, delayed_node, false); btrfs_release_delayed_inode(delayed_node); } mutex_unlock(&delayed_node->mutex); } void btrfs_kill_delayed_inode_items(struct btrfs_inode *inode) { struct btrfs_delayed_node *delayed_node; delayed_node = btrfs_get_delayed_node(inode); if (!delayed_node) return; __btrfs_kill_delayed_node(delayed_node); btrfs_release_delayed_node(delayed_node); } void btrfs_kill_all_delayed_nodes(struct btrfs_root *root) { unsigned long index = 0; struct btrfs_delayed_node *delayed_nodes[8]; while (1) { struct btrfs_delayed_node *node; int count; spin_lock(&root->inode_lock); if (xa_empty(&root->delayed_nodes)) { spin_unlock(&root->inode_lock); return; } count = 0; xa_for_each_start(&root->delayed_nodes, index, node, index) { /* * Don't increase refs in case the node is dead and * about to be removed from the tree in the loop below */ if (refcount_inc_not_zero(&node->refs)) { delayed_nodes[count] = node; count++; } if (count >= ARRAY_SIZE(delayed_nodes)) break; } spin_unlock(&root->inode_lock); index++; for (int i = 0; i < count; i++) { __btrfs_kill_delayed_node(delayed_nodes[i]); btrfs_release_delayed_node(delayed_nodes[i]); } } } void btrfs_destroy_delayed_inodes(struct btrfs_fs_info *fs_info) { struct btrfs_delayed_node *curr_node, *prev_node; curr_node = btrfs_first_delayed_node(fs_info->delayed_root); while (curr_node) { __btrfs_kill_delayed_node(curr_node); prev_node = curr_node; curr_node = btrfs_next_delayed_node(curr_node); btrfs_release_delayed_node(prev_node); } } void btrfs_log_get_delayed_items(struct btrfs_inode *inode, struct list_head *ins_list, struct list_head *del_list) { struct btrfs_delayed_node *node; struct btrfs_delayed_item *item; node = btrfs_get_delayed_node(inode); if (!node) return; mutex_lock(&node->mutex); item = __btrfs_first_delayed_insertion_item(node); while (item) { /* * It's possible that the item is already in a log list. This * can happen in case two tasks are trying to log the same * directory. For example if we have tasks A and task B: * * Task A collected the delayed items into a log list while * under the inode's log_mutex (at btrfs_log_inode()), but it * only releases the items after logging the inodes they point * to (if they are new inodes), which happens after unlocking * the log mutex; * * Task B enters btrfs_log_inode() and acquires the log_mutex * of the same directory inode, before task B releases the * delayed items. This can happen for example when logging some * inode we need to trigger logging of its parent directory, so * logging two files that have the same parent directory can * lead to this. * * If this happens, just ignore delayed items already in a log * list. All the tasks logging the directory are under a log * transaction and whichever finishes first can not sync the log * before the other completes and leaves the log transaction. */ if (!item->logged && list_empty(&item->log_list)) { refcount_inc(&item->refs); list_add_tail(&item->log_list, ins_list); } item = __btrfs_next_delayed_item(item); } item = __btrfs_first_delayed_deletion_item(node); while (item) { /* It may be non-empty, for the same reason mentioned above. */ if (!item->logged && list_empty(&item->log_list)) { refcount_inc(&item->refs); list_add_tail(&item->log_list, del_list); } item = __btrfs_next_delayed_item(item); } mutex_unlock(&node->mutex); /* * We are called during inode logging, which means the inode is in use * and can not be evicted before we finish logging the inode. So we never * have the last reference on the delayed inode. * Also, we don't use btrfs_release_delayed_node() because that would * requeue the delayed inode (change its order in the list of prepared * nodes) and we don't want to do such change because we don't create or * delete delayed items. */ ASSERT(refcount_read(&node->refs) > 1); refcount_dec(&node->refs); } void btrfs_log_put_delayed_items(struct btrfs_inode *inode, struct list_head *ins_list, struct list_head *del_list) { struct btrfs_delayed_node *node; struct btrfs_delayed_item *item; struct btrfs_delayed_item *next; node = btrfs_get_delayed_node(inode); if (!node) return; mutex_lock(&node->mutex); list_for_each_entry_safe(item, next, ins_list, log_list) { item->logged = true; list_del_init(&item->log_list); if (refcount_dec_and_test(&item->refs)) kfree(item); } list_for_each_entry_safe(item, next, del_list, log_list) { item->logged = true; list_del_init(&item->log_list); if (refcount_dec_and_test(&item->refs)) kfree(item); } mutex_unlock(&node->mutex); /* * We are called during inode logging, which means the inode is in use * and can not be evicted before we finish logging the inode. So we never * have the last reference on the delayed inode. * Also, we don't use btrfs_release_delayed_node() because that would * requeue the delayed inode (change its order in the list of prepared * nodes) and we don't want to do such change because we don't create or * delete delayed items. */ ASSERT(refcount_read(&node->refs) > 1); refcount_dec(&node->refs); }
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1