Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Stefan Behrens | 2621 | 47.87% | 10 | 6.02% |
David Sterba | 723 | 13.21% | 19 | 11.45% |
Naohiro Aota | 633 | 11.56% | 4 | 2.41% |
Anand Jain | 475 | 8.68% | 32 | 19.28% |
Miao Xie | 259 | 4.73% | 14 | 8.43% |
Filipe David Borba Manana | 152 | 2.78% | 6 | 3.61% |
Chris Mason | 137 | 2.50% | 24 | 14.46% |
Josef Whiter | 97 | 1.77% | 9 | 5.42% |
Nikolay Borisov | 58 | 1.06% | 7 | 4.22% |
Frank Holton | 48 | 0.88% | 1 | 0.60% |
Qu Wenruo | 46 | 0.84% | 6 | 3.61% |
Jeff Mahoney | 38 | 0.69% | 4 | 2.41% |
Liu Bo | 30 | 0.55% | 2 | 1.20% |
Jan Kara | 23 | 0.42% | 1 | 0.60% |
Gabriel Niebler | 22 | 0.40% | 1 | 0.60% |
Arne Jansen | 13 | 0.24% | 2 | 1.20% |
Omar Sandoval | 12 | 0.22% | 1 | 0.60% |
Eryu Guan | 12 | 0.22% | 1 | 0.60% |
Zhao Lei | 12 | 0.22% | 2 | 1.20% |
Zheng Yan | 10 | 0.18% | 1 | 0.60% |
Ilya Dryomov | 10 | 0.18% | 1 | 0.60% |
Misono, Tomohiro | 9 | 0.16% | 1 | 0.60% |
Li Dongyang | 5 | 0.09% | 1 | 0.60% |
Christoph Hellwig | 5 | 0.09% | 4 | 2.41% |
Goldwyn Rodrigues | 5 | 0.09% | 1 | 0.60% |
Allen Pais | 4 | 0.07% | 1 | 0.60% |
David Howells | 3 | 0.05% | 1 | 0.60% |
Simon Kirby | 3 | 0.05% | 1 | 0.60% |
Qinghuang Feng | 2 | 0.04% | 1 | 0.60% |
Linus Torvalds (pre-git) | 2 | 0.04% | 1 | 0.60% |
Nicholas D Steeves | 1 | 0.02% | 1 | 0.60% |
Josef Bacik | 1 | 0.02% | 1 | 0.60% |
Andrea Gelmini | 1 | 0.02% | 1 | 0.60% |
Zach Brown | 1 | 0.02% | 1 | 0.60% |
Linus Torvalds | 1 | 0.02% | 1 | 0.60% |
Rusty Russell | 1 | 0.02% | 1 | 0.60% |
Total | 5475 | 166 |
// SPDX-License-Identifier: GPL-2.0 /* * Copyright (C) STRATO AG 2012. All rights reserved. */ #include <linux/sched.h> #include <linux/bio.h> #include <linux/slab.h> #include <linux/blkdev.h> #include <linux/kthread.h> #include <linux/math64.h> #include "misc.h" #include "ctree.h" #include "extent_map.h" #include "disk-io.h" #include "transaction.h" #include "print-tree.h" #include "volumes.h" #include "async-thread.h" #include "dev-replace.h" #include "sysfs.h" #include "zoned.h" #include "block-group.h" #include "fs.h" #include "accessors.h" #include "scrub.h" /* * Device replace overview * * [Objective] * To copy all extents (both new and on-disk) from source device to target * device, while still keeping the filesystem read-write. * * [Method] * There are two main methods involved: * * - Write duplication * * All new writes will be written to both target and source devices, so even * if replace gets canceled, sources device still contains up-to-date data. * * Location: handle_ops_on_dev_replace() from btrfs_map_block() * Start: btrfs_dev_replace_start() * End: btrfs_dev_replace_finishing() * Content: Latest data/metadata * * - Copy existing extents * * This happens by re-using scrub facility, as scrub also iterates through * existing extents from commit root. * * Location: scrub_write_block_to_dev_replace() from * scrub_block_complete() * Content: Data/meta from commit root. * * Due to the content difference, we need to avoid nocow write when dev-replace * is happening. This is done by marking the block group read-only and waiting * for NOCOW writes. * * After replace is done, the finishing part is done by swapping the target and * source devices. * * Location: btrfs_dev_replace_update_device_in_mapping_tree() from * btrfs_dev_replace_finishing() */ static int btrfs_dev_replace_finishing(struct btrfs_fs_info *fs_info, int scrub_ret); static int btrfs_dev_replace_kthread(void *data); int btrfs_init_dev_replace(struct btrfs_fs_info *fs_info) { struct btrfs_dev_lookup_args args = { .devid = BTRFS_DEV_REPLACE_DEVID }; struct btrfs_key key; struct btrfs_root *dev_root = fs_info->dev_root; struct btrfs_dev_replace *dev_replace = &fs_info->dev_replace; struct extent_buffer *eb; int slot; int ret = 0; struct btrfs_path *path = NULL; int item_size; struct btrfs_dev_replace_item *ptr; u64 src_devid; if (!dev_root) return 0; path = btrfs_alloc_path(); if (!path) { ret = -ENOMEM; goto out; } key.objectid = 0; key.type = BTRFS_DEV_REPLACE_KEY; key.offset = 0; ret = btrfs_search_slot(NULL, dev_root, &key, path, 0, 0); if (ret) { no_valid_dev_replace_entry_found: /* * We don't have a replace item or it's corrupted. If there is * a replace target, fail the mount. */ if (btrfs_find_device(fs_info->fs_devices, &args)) { btrfs_err(fs_info, "found replace target device without a valid replace item"); ret = -EUCLEAN; goto out; } ret = 0; dev_replace->replace_state = BTRFS_IOCTL_DEV_REPLACE_STATE_NEVER_STARTED; dev_replace->cont_reading_from_srcdev_mode = BTRFS_DEV_REPLACE_ITEM_CONT_READING_FROM_SRCDEV_MODE_ALWAYS; dev_replace->time_started = 0; dev_replace->time_stopped = 0; atomic64_set(&dev_replace->num_write_errors, 0); atomic64_set(&dev_replace->num_uncorrectable_read_errors, 0); dev_replace->cursor_left = 0; dev_replace->committed_cursor_left = 0; dev_replace->cursor_left_last_write_of_item = 0; dev_replace->cursor_right = 0; dev_replace->srcdev = NULL; dev_replace->tgtdev = NULL; dev_replace->is_valid = 0; dev_replace->item_needs_writeback = 0; goto out; } slot = path->slots[0]; eb = path->nodes[0]; item_size = btrfs_item_size(eb, slot); ptr = btrfs_item_ptr(eb, slot, struct btrfs_dev_replace_item); if (item_size != sizeof(struct btrfs_dev_replace_item)) { btrfs_warn(fs_info, "dev_replace entry found has unexpected size, ignore entry"); goto no_valid_dev_replace_entry_found; } src_devid = btrfs_dev_replace_src_devid(eb, ptr); dev_replace->cont_reading_from_srcdev_mode = btrfs_dev_replace_cont_reading_from_srcdev_mode(eb, ptr); dev_replace->replace_state = btrfs_dev_replace_replace_state(eb, ptr); dev_replace->time_started = btrfs_dev_replace_time_started(eb, ptr); dev_replace->time_stopped = btrfs_dev_replace_time_stopped(eb, ptr); atomic64_set(&dev_replace->num_write_errors, btrfs_dev_replace_num_write_errors(eb, ptr)); atomic64_set(&dev_replace->num_uncorrectable_read_errors, btrfs_dev_replace_num_uncorrectable_read_errors(eb, ptr)); dev_replace->cursor_left = btrfs_dev_replace_cursor_left(eb, ptr); dev_replace->committed_cursor_left = dev_replace->cursor_left; dev_replace->cursor_left_last_write_of_item = dev_replace->cursor_left; dev_replace->cursor_right = btrfs_dev_replace_cursor_right(eb, ptr); dev_replace->is_valid = 1; dev_replace->item_needs_writeback = 0; switch (dev_replace->replace_state) { case BTRFS_IOCTL_DEV_REPLACE_STATE_NEVER_STARTED: case BTRFS_IOCTL_DEV_REPLACE_STATE_FINISHED: case BTRFS_IOCTL_DEV_REPLACE_STATE_CANCELED: /* * We don't have an active replace item but if there is a * replace target, fail the mount. */ if (btrfs_find_device(fs_info->fs_devices, &args)) { btrfs_err(fs_info, "replace without active item, run 'device scan --forget' on the target device"); ret = -EUCLEAN; } else { dev_replace->srcdev = NULL; dev_replace->tgtdev = NULL; } break; case BTRFS_IOCTL_DEV_REPLACE_STATE_STARTED: case BTRFS_IOCTL_DEV_REPLACE_STATE_SUSPENDED: dev_replace->tgtdev = btrfs_find_device(fs_info->fs_devices, &args); args.devid = src_devid; dev_replace->srcdev = btrfs_find_device(fs_info->fs_devices, &args); /* * allow 'btrfs dev replace_cancel' if src/tgt device is * missing */ if (!dev_replace->srcdev && !btrfs_test_opt(fs_info, DEGRADED)) { ret = -EIO; btrfs_warn(fs_info, "cannot mount because device replace operation is ongoing and"); btrfs_warn(fs_info, "srcdev (devid %llu) is missing, need to run 'btrfs dev scan'?", src_devid); } if (!dev_replace->tgtdev && !btrfs_test_opt(fs_info, DEGRADED)) { ret = -EIO; btrfs_warn(fs_info, "cannot mount because device replace operation is ongoing and"); btrfs_warn(fs_info, "tgtdev (devid %llu) is missing, need to run 'btrfs dev scan'?", BTRFS_DEV_REPLACE_DEVID); } if (dev_replace->tgtdev) { if (dev_replace->srcdev) { dev_replace->tgtdev->total_bytes = dev_replace->srcdev->total_bytes; dev_replace->tgtdev->disk_total_bytes = dev_replace->srcdev->disk_total_bytes; dev_replace->tgtdev->commit_total_bytes = dev_replace->srcdev->commit_total_bytes; dev_replace->tgtdev->bytes_used = dev_replace->srcdev->bytes_used; dev_replace->tgtdev->commit_bytes_used = dev_replace->srcdev->commit_bytes_used; } set_bit(BTRFS_DEV_STATE_REPLACE_TGT, &dev_replace->tgtdev->dev_state); WARN_ON(fs_info->fs_devices->rw_devices == 0); dev_replace->tgtdev->io_width = fs_info->sectorsize; dev_replace->tgtdev->io_align = fs_info->sectorsize; dev_replace->tgtdev->sector_size = fs_info->sectorsize; dev_replace->tgtdev->fs_info = fs_info; set_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev_replace->tgtdev->dev_state); } break; } out: btrfs_free_path(path); return ret; } /* * Initialize a new device for device replace target from a given source dev * and path. * * Return 0 and new device in @device_out, otherwise return < 0 */ static int btrfs_init_dev_replace_tgtdev(struct btrfs_fs_info *fs_info, const char *device_path, struct btrfs_device *srcdev, struct btrfs_device **device_out) { struct btrfs_fs_devices *fs_devices = fs_info->fs_devices; struct btrfs_device *device; struct bdev_handle *bdev_handle; struct block_device *bdev; u64 devid = BTRFS_DEV_REPLACE_DEVID; int ret = 0; *device_out = NULL; if (srcdev->fs_devices->seeding) { btrfs_err(fs_info, "the filesystem is a seed filesystem!"); return -EINVAL; } bdev_handle = bdev_open_by_path(device_path, BLK_OPEN_WRITE, fs_info->bdev_holder, NULL); if (IS_ERR(bdev_handle)) { btrfs_err(fs_info, "target device %s is invalid!", device_path); return PTR_ERR(bdev_handle); } bdev = bdev_handle->bdev; if (!btrfs_check_device_zone_type(fs_info, bdev)) { btrfs_err(fs_info, "dev-replace: zoned type of target device mismatch with filesystem"); ret = -EINVAL; goto error; } sync_blockdev(bdev); list_for_each_entry(device, &fs_devices->devices, dev_list) { if (device->bdev == bdev) { btrfs_err(fs_info, "target device is in the filesystem!"); ret = -EEXIST; goto error; } } if (bdev_nr_bytes(bdev) < btrfs_device_get_total_bytes(srcdev)) { btrfs_err(fs_info, "target device is smaller than source device!"); ret = -EINVAL; goto error; } device = btrfs_alloc_device(NULL, &devid, NULL, device_path); if (IS_ERR(device)) { ret = PTR_ERR(device); goto error; } ret = lookup_bdev(device_path, &device->devt); if (ret) goto error; set_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state); device->generation = 0; device->io_width = fs_info->sectorsize; device->io_align = fs_info->sectorsize; device->sector_size = fs_info->sectorsize; device->total_bytes = btrfs_device_get_total_bytes(srcdev); device->disk_total_bytes = btrfs_device_get_disk_total_bytes(srcdev); device->bytes_used = btrfs_device_get_bytes_used(srcdev); device->commit_total_bytes = srcdev->commit_total_bytes; device->commit_bytes_used = device->bytes_used; device->fs_info = fs_info; device->bdev = bdev; device->bdev_handle = bdev_handle; set_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state); set_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state); device->dev_stats_valid = 1; set_blocksize(device->bdev, BTRFS_BDEV_BLOCKSIZE); device->fs_devices = fs_devices; ret = btrfs_get_dev_zone_info(device, false); if (ret) goto error; mutex_lock(&fs_devices->device_list_mutex); list_add(&device->dev_list, &fs_devices->devices); fs_devices->num_devices++; fs_devices->open_devices++; mutex_unlock(&fs_devices->device_list_mutex); *device_out = device; return 0; error: bdev_release(bdev_handle); return ret; } /* * called from commit_transaction. Writes changed device replace state to * disk. */ int btrfs_run_dev_replace(struct btrfs_trans_handle *trans) { struct btrfs_fs_info *fs_info = trans->fs_info; int ret; struct btrfs_root *dev_root = fs_info->dev_root; struct btrfs_path *path; struct btrfs_key key; struct extent_buffer *eb; struct btrfs_dev_replace_item *ptr; struct btrfs_dev_replace *dev_replace = &fs_info->dev_replace; down_read(&dev_replace->rwsem); if (!dev_replace->is_valid || !dev_replace->item_needs_writeback) { up_read(&dev_replace->rwsem); return 0; } up_read(&dev_replace->rwsem); key.objectid = 0; key.type = BTRFS_DEV_REPLACE_KEY; key.offset = 0; path = btrfs_alloc_path(); if (!path) { ret = -ENOMEM; goto out; } ret = btrfs_search_slot(trans, dev_root, &key, path, -1, 1); if (ret < 0) { btrfs_warn(fs_info, "error %d while searching for dev_replace item!", ret); goto out; } if (ret == 0 && btrfs_item_size(path->nodes[0], path->slots[0]) < sizeof(*ptr)) { /* * need to delete old one and insert a new one. * Since no attempt is made to recover any old state, if the * dev_replace state is 'running', the data on the target * drive is lost. * It would be possible to recover the state: just make sure * that the beginning of the item is never changed and always * contains all the essential information. Then read this * minimal set of information and use it as a base for the * new state. */ ret = btrfs_del_item(trans, dev_root, path); if (ret != 0) { btrfs_warn(fs_info, "delete too small dev_replace item failed %d!", ret); goto out; } ret = 1; } if (ret == 1) { /* need to insert a new item */ btrfs_release_path(path); ret = btrfs_insert_empty_item(trans, dev_root, path, &key, sizeof(*ptr)); if (ret < 0) { btrfs_warn(fs_info, "insert dev_replace item failed %d!", ret); goto out; } } eb = path->nodes[0]; ptr = btrfs_item_ptr(eb, path->slots[0], struct btrfs_dev_replace_item); down_write(&dev_replace->rwsem); if (dev_replace->srcdev) btrfs_set_dev_replace_src_devid(eb, ptr, dev_replace->srcdev->devid); else btrfs_set_dev_replace_src_devid(eb, ptr, (u64)-1); btrfs_set_dev_replace_cont_reading_from_srcdev_mode(eb, ptr, dev_replace->cont_reading_from_srcdev_mode); btrfs_set_dev_replace_replace_state(eb, ptr, dev_replace->replace_state); btrfs_set_dev_replace_time_started(eb, ptr, dev_replace->time_started); btrfs_set_dev_replace_time_stopped(eb, ptr, dev_replace->time_stopped); btrfs_set_dev_replace_num_write_errors(eb, ptr, atomic64_read(&dev_replace->num_write_errors)); btrfs_set_dev_replace_num_uncorrectable_read_errors(eb, ptr, atomic64_read(&dev_replace->num_uncorrectable_read_errors)); dev_replace->cursor_left_last_write_of_item = dev_replace->cursor_left; btrfs_set_dev_replace_cursor_left(eb, ptr, dev_replace->cursor_left_last_write_of_item); btrfs_set_dev_replace_cursor_right(eb, ptr, dev_replace->cursor_right); dev_replace->item_needs_writeback = 0; up_write(&dev_replace->rwsem); btrfs_mark_buffer_dirty(trans, eb); out: btrfs_free_path(path); return ret; } static int mark_block_group_to_copy(struct btrfs_fs_info *fs_info, struct btrfs_device *src_dev) { struct btrfs_path *path; struct btrfs_key key; struct btrfs_key found_key; struct btrfs_root *root = fs_info->dev_root; struct btrfs_dev_extent *dev_extent = NULL; struct btrfs_block_group *cache; struct btrfs_trans_handle *trans; int iter_ret = 0; int ret = 0; u64 chunk_offset; /* Do not use "to_copy" on non zoned filesystem for now */ if (!btrfs_is_zoned(fs_info)) return 0; mutex_lock(&fs_info->chunk_mutex); /* Ensure we don't have pending new block group */ spin_lock(&fs_info->trans_lock); while (fs_info->running_transaction && !list_empty(&fs_info->running_transaction->dev_update_list)) { spin_unlock(&fs_info->trans_lock); mutex_unlock(&fs_info->chunk_mutex); trans = btrfs_attach_transaction(root); if (IS_ERR(trans)) { ret = PTR_ERR(trans); mutex_lock(&fs_info->chunk_mutex); if (ret == -ENOENT) { spin_lock(&fs_info->trans_lock); continue; } else { goto unlock; } } ret = btrfs_commit_transaction(trans); mutex_lock(&fs_info->chunk_mutex); if (ret) goto unlock; spin_lock(&fs_info->trans_lock); } spin_unlock(&fs_info->trans_lock); path = btrfs_alloc_path(); if (!path) { ret = -ENOMEM; goto unlock; } path->reada = READA_FORWARD; path->search_commit_root = 1; path->skip_locking = 1; key.objectid = src_dev->devid; key.type = BTRFS_DEV_EXTENT_KEY; key.offset = 0; btrfs_for_each_slot(root, &key, &found_key, path, iter_ret) { struct extent_buffer *leaf = path->nodes[0]; if (found_key.objectid != src_dev->devid) break; if (found_key.type != BTRFS_DEV_EXTENT_KEY) break; if (found_key.offset < key.offset) break; dev_extent = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_extent); chunk_offset = btrfs_dev_extent_chunk_offset(leaf, dev_extent); cache = btrfs_lookup_block_group(fs_info, chunk_offset); if (!cache) continue; set_bit(BLOCK_GROUP_FLAG_TO_COPY, &cache->runtime_flags); btrfs_put_block_group(cache); } if (iter_ret < 0) ret = iter_ret; btrfs_free_path(path); unlock: mutex_unlock(&fs_info->chunk_mutex); return ret; } bool btrfs_finish_block_group_to_copy(struct btrfs_device *srcdev, struct btrfs_block_group *cache, u64 physical) { struct btrfs_fs_info *fs_info = cache->fs_info; struct btrfs_chunk_map *map; u64 chunk_offset = cache->start; int num_extents, cur_extent; int i; /* Do not use "to_copy" on non zoned filesystem for now */ if (!btrfs_is_zoned(fs_info)) return true; spin_lock(&cache->lock); if (test_bit(BLOCK_GROUP_FLAG_REMOVED, &cache->runtime_flags)) { spin_unlock(&cache->lock); return true; } spin_unlock(&cache->lock); map = btrfs_get_chunk_map(fs_info, chunk_offset, 1); ASSERT(!IS_ERR(map)); num_extents = 0; cur_extent = 0; for (i = 0; i < map->num_stripes; i++) { /* We have more device extent to copy */ if (srcdev != map->stripes[i].dev) continue; num_extents++; if (physical == map->stripes[i].physical) cur_extent = i; } btrfs_free_chunk_map(map); if (num_extents > 1 && cur_extent < num_extents - 1) { /* * Has more stripes on this device. Keep this block group * readonly until we finish all the stripes. */ return false; } /* Last stripe on this device */ clear_bit(BLOCK_GROUP_FLAG_TO_COPY, &cache->runtime_flags); return true; } static int btrfs_dev_replace_start(struct btrfs_fs_info *fs_info, const char *tgtdev_name, u64 srcdevid, const char *srcdev_name, int read_src) { struct btrfs_root *root = fs_info->dev_root; struct btrfs_trans_handle *trans; struct btrfs_dev_replace *dev_replace = &fs_info->dev_replace; int ret; struct btrfs_device *tgt_device = NULL; struct btrfs_device *src_device = NULL; src_device = btrfs_find_device_by_devspec(fs_info, srcdevid, srcdev_name); if (IS_ERR(src_device)) return PTR_ERR(src_device); if (btrfs_pinned_by_swapfile(fs_info, src_device)) { btrfs_warn_in_rcu(fs_info, "cannot replace device %s (devid %llu) due to active swapfile", btrfs_dev_name(src_device), src_device->devid); return -ETXTBSY; } /* * Here we commit the transaction to make sure commit_total_bytes * of all the devices are updated. */ trans = btrfs_attach_transaction(root); if (!IS_ERR(trans)) { ret = btrfs_commit_transaction(trans); if (ret) return ret; } else if (PTR_ERR(trans) != -ENOENT) { return PTR_ERR(trans); } ret = btrfs_init_dev_replace_tgtdev(fs_info, tgtdev_name, src_device, &tgt_device); if (ret) return ret; ret = mark_block_group_to_copy(fs_info, src_device); if (ret) return ret; down_write(&dev_replace->rwsem); switch (dev_replace->replace_state) { case BTRFS_IOCTL_DEV_REPLACE_STATE_NEVER_STARTED: case BTRFS_IOCTL_DEV_REPLACE_STATE_FINISHED: case BTRFS_IOCTL_DEV_REPLACE_STATE_CANCELED: break; case BTRFS_IOCTL_DEV_REPLACE_STATE_STARTED: case BTRFS_IOCTL_DEV_REPLACE_STATE_SUSPENDED: ASSERT(0); ret = BTRFS_IOCTL_DEV_REPLACE_RESULT_ALREADY_STARTED; up_write(&dev_replace->rwsem); goto leave; } dev_replace->cont_reading_from_srcdev_mode = read_src; dev_replace->srcdev = src_device; dev_replace->tgtdev = tgt_device; btrfs_info_in_rcu(fs_info, "dev_replace from %s (devid %llu) to %s started", btrfs_dev_name(src_device), src_device->devid, btrfs_dev_name(tgt_device)); /* * from now on, the writes to the srcdev are all duplicated to * go to the tgtdev as well (refer to btrfs_map_block()). */ dev_replace->replace_state = BTRFS_IOCTL_DEV_REPLACE_STATE_STARTED; dev_replace->time_started = ktime_get_real_seconds(); dev_replace->cursor_left = 0; dev_replace->committed_cursor_left = 0; dev_replace->cursor_left_last_write_of_item = 0; dev_replace->cursor_right = 0; dev_replace->is_valid = 1; dev_replace->item_needs_writeback = 1; atomic64_set(&dev_replace->num_write_errors, 0); atomic64_set(&dev_replace->num_uncorrectable_read_errors, 0); up_write(&dev_replace->rwsem); ret = btrfs_sysfs_add_device(tgt_device); if (ret) btrfs_err(fs_info, "kobj add dev failed %d", ret); btrfs_wait_ordered_roots(fs_info, U64_MAX, 0, (u64)-1); /* * Commit dev_replace state and reserve 1 item for it. * This is crucial to ensure we won't miss copying extents for new block * groups that are allocated after we started the device replace, and * must be done after setting up the device replace state. */ trans = btrfs_start_transaction(root, 1); if (IS_ERR(trans)) { ret = PTR_ERR(trans); down_write(&dev_replace->rwsem); dev_replace->replace_state = BTRFS_IOCTL_DEV_REPLACE_STATE_NEVER_STARTED; dev_replace->srcdev = NULL; dev_replace->tgtdev = NULL; up_write(&dev_replace->rwsem); goto leave; } ret = btrfs_commit_transaction(trans); WARN_ON(ret); /* the disk copy procedure reuses the scrub code */ ret = btrfs_scrub_dev(fs_info, src_device->devid, 0, btrfs_device_get_total_bytes(src_device), &dev_replace->scrub_progress, 0, 1); ret = btrfs_dev_replace_finishing(fs_info, ret); if (ret == -EINPROGRESS) ret = BTRFS_IOCTL_DEV_REPLACE_RESULT_SCRUB_INPROGRESS; return ret; leave: btrfs_destroy_dev_replace_tgtdev(tgt_device); return ret; } static int btrfs_check_replace_dev_names(struct btrfs_ioctl_dev_replace_args *args) { if (args->start.srcdevid == 0) { if (memchr(args->start.srcdev_name, 0, sizeof(args->start.srcdev_name)) == NULL) return -ENAMETOOLONG; } else { args->start.srcdev_name[0] = 0; } if (memchr(args->start.tgtdev_name, 0, sizeof(args->start.tgtdev_name)) == NULL) return -ENAMETOOLONG; return 0; } int btrfs_dev_replace_by_ioctl(struct btrfs_fs_info *fs_info, struct btrfs_ioctl_dev_replace_args *args) { int ret; switch (args->start.cont_reading_from_srcdev_mode) { case BTRFS_IOCTL_DEV_REPLACE_CONT_READING_FROM_SRCDEV_MODE_ALWAYS: case BTRFS_IOCTL_DEV_REPLACE_CONT_READING_FROM_SRCDEV_MODE_AVOID: break; default: return -EINVAL; } ret = btrfs_check_replace_dev_names(args); if (ret < 0) return ret; ret = btrfs_dev_replace_start(fs_info, args->start.tgtdev_name, args->start.srcdevid, args->start.srcdev_name, args->start.cont_reading_from_srcdev_mode); args->result = ret; /* don't warn if EINPROGRESS, someone else might be running scrub */ if (ret == BTRFS_IOCTL_DEV_REPLACE_RESULT_SCRUB_INPROGRESS || ret == BTRFS_IOCTL_DEV_REPLACE_RESULT_NO_ERROR) return 0; return ret; } /* * blocked until all in-flight bios operations are finished. */ static void btrfs_rm_dev_replace_blocked(struct btrfs_fs_info *fs_info) { set_bit(BTRFS_FS_STATE_DEV_REPLACING, &fs_info->fs_state); wait_event(fs_info->dev_replace.replace_wait, !percpu_counter_sum( &fs_info->dev_replace.bio_counter)); } /* * we have removed target device, it is safe to allow new bios request. */ static void btrfs_rm_dev_replace_unblocked(struct btrfs_fs_info *fs_info) { clear_bit(BTRFS_FS_STATE_DEV_REPLACING, &fs_info->fs_state); wake_up(&fs_info->dev_replace.replace_wait); } /* * When finishing the device replace, before swapping the source device with the * target device we must update the chunk allocation state in the target device, * as it is empty because replace works by directly copying the chunks and not * through the normal chunk allocation path. */ static int btrfs_set_target_alloc_state(struct btrfs_device *srcdev, struct btrfs_device *tgtdev) { struct extent_state *cached_state = NULL; u64 start = 0; u64 found_start; u64 found_end; int ret = 0; lockdep_assert_held(&srcdev->fs_info->chunk_mutex); while (find_first_extent_bit(&srcdev->alloc_state, start, &found_start, &found_end, CHUNK_ALLOCATED, &cached_state)) { ret = set_extent_bit(&tgtdev->alloc_state, found_start, found_end, CHUNK_ALLOCATED, NULL); if (ret) break; start = found_end + 1; } free_extent_state(cached_state); return ret; } static void btrfs_dev_replace_update_device_in_mapping_tree( struct btrfs_fs_info *fs_info, struct btrfs_device *srcdev, struct btrfs_device *tgtdev) { u64 start = 0; int i; write_lock(&fs_info->mapping_tree_lock); do { struct btrfs_chunk_map *map; map = btrfs_find_chunk_map_nolock(fs_info, start, U64_MAX); if (!map) break; for (i = 0; i < map->num_stripes; i++) if (srcdev == map->stripes[i].dev) map->stripes[i].dev = tgtdev; start = map->start + map->chunk_len; btrfs_free_chunk_map(map); } while (start); write_unlock(&fs_info->mapping_tree_lock); } static int btrfs_dev_replace_finishing(struct btrfs_fs_info *fs_info, int scrub_ret) { struct btrfs_dev_replace *dev_replace = &fs_info->dev_replace; struct btrfs_fs_devices *fs_devices = fs_info->fs_devices; struct btrfs_device *tgt_device; struct btrfs_device *src_device; struct btrfs_root *root = fs_info->tree_root; u8 uuid_tmp[BTRFS_UUID_SIZE]; struct btrfs_trans_handle *trans; int ret = 0; /* don't allow cancel or unmount to disturb the finishing procedure */ mutex_lock(&dev_replace->lock_finishing_cancel_unmount); down_read(&dev_replace->rwsem); /* was the operation canceled, or is it finished? */ if (dev_replace->replace_state != BTRFS_IOCTL_DEV_REPLACE_STATE_STARTED) { up_read(&dev_replace->rwsem); mutex_unlock(&dev_replace->lock_finishing_cancel_unmount); return 0; } tgt_device = dev_replace->tgtdev; src_device = dev_replace->srcdev; up_read(&dev_replace->rwsem); /* * flush all outstanding I/O and inode extent mappings before the * copy operation is declared as being finished */ ret = btrfs_start_delalloc_roots(fs_info, LONG_MAX, false); if (ret) { mutex_unlock(&dev_replace->lock_finishing_cancel_unmount); return ret; } btrfs_wait_ordered_roots(fs_info, U64_MAX, 0, (u64)-1); /* * We have to use this loop approach because at this point src_device * has to be available for transaction commit to complete, yet new * chunks shouldn't be allocated on the device. */ while (1) { trans = btrfs_start_transaction(root, 0); if (IS_ERR(trans)) { mutex_unlock(&dev_replace->lock_finishing_cancel_unmount); return PTR_ERR(trans); } ret = btrfs_commit_transaction(trans); WARN_ON(ret); /* Prevent write_all_supers() during the finishing procedure */ mutex_lock(&fs_devices->device_list_mutex); /* Prevent new chunks being allocated on the source device */ mutex_lock(&fs_info->chunk_mutex); if (!list_empty(&src_device->post_commit_list)) { mutex_unlock(&fs_devices->device_list_mutex); mutex_unlock(&fs_info->chunk_mutex); } else { break; } } down_write(&dev_replace->rwsem); dev_replace->replace_state = scrub_ret ? BTRFS_IOCTL_DEV_REPLACE_STATE_CANCELED : BTRFS_IOCTL_DEV_REPLACE_STATE_FINISHED; dev_replace->tgtdev = NULL; dev_replace->srcdev = NULL; dev_replace->time_stopped = ktime_get_real_seconds(); dev_replace->item_needs_writeback = 1; /* * Update allocation state in the new device and replace the old device * with the new one in the mapping tree. */ if (!scrub_ret) { scrub_ret = btrfs_set_target_alloc_state(src_device, tgt_device); if (scrub_ret) goto error; btrfs_dev_replace_update_device_in_mapping_tree(fs_info, src_device, tgt_device); } else { if (scrub_ret != -ECANCELED) btrfs_err_in_rcu(fs_info, "btrfs_scrub_dev(%s, %llu, %s) failed %d", btrfs_dev_name(src_device), src_device->devid, btrfs_dev_name(tgt_device), scrub_ret); error: up_write(&dev_replace->rwsem); mutex_unlock(&fs_info->chunk_mutex); mutex_unlock(&fs_devices->device_list_mutex); btrfs_rm_dev_replace_blocked(fs_info); if (tgt_device) btrfs_destroy_dev_replace_tgtdev(tgt_device); btrfs_rm_dev_replace_unblocked(fs_info); mutex_unlock(&dev_replace->lock_finishing_cancel_unmount); return scrub_ret; } btrfs_info_in_rcu(fs_info, "dev_replace from %s (devid %llu) to %s finished", btrfs_dev_name(src_device), src_device->devid, btrfs_dev_name(tgt_device)); clear_bit(BTRFS_DEV_STATE_REPLACE_TGT, &tgt_device->dev_state); tgt_device->devid = src_device->devid; src_device->devid = BTRFS_DEV_REPLACE_DEVID; memcpy(uuid_tmp, tgt_device->uuid, sizeof(uuid_tmp)); memcpy(tgt_device->uuid, src_device->uuid, sizeof(tgt_device->uuid)); memcpy(src_device->uuid, uuid_tmp, sizeof(src_device->uuid)); btrfs_device_set_total_bytes(tgt_device, src_device->total_bytes); btrfs_device_set_disk_total_bytes(tgt_device, src_device->disk_total_bytes); btrfs_device_set_bytes_used(tgt_device, src_device->bytes_used); tgt_device->commit_bytes_used = src_device->bytes_used; btrfs_assign_next_active_device(src_device, tgt_device); list_add(&tgt_device->dev_alloc_list, &fs_devices->alloc_list); fs_devices->rw_devices++; up_write(&dev_replace->rwsem); btrfs_rm_dev_replace_blocked(fs_info); btrfs_rm_dev_replace_remove_srcdev(src_device); btrfs_rm_dev_replace_unblocked(fs_info); /* * Increment dev_stats_ccnt so that btrfs_run_dev_stats() will * update on-disk dev stats value during commit transaction */ atomic_inc(&tgt_device->dev_stats_ccnt); /* * this is again a consistent state where no dev_replace procedure * is running, the target device is part of the filesystem, the * source device is not part of the filesystem anymore and its 1st * superblock is scratched out so that it is no longer marked to * belong to this filesystem. */ mutex_unlock(&fs_info->chunk_mutex); mutex_unlock(&fs_devices->device_list_mutex); /* replace the sysfs entry */ btrfs_sysfs_remove_device(src_device); btrfs_sysfs_update_devid(tgt_device); if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &src_device->dev_state)) btrfs_scratch_superblocks(fs_info, src_device->bdev, src_device->name->str); /* write back the superblocks */ trans = btrfs_start_transaction(root, 0); if (!IS_ERR(trans)) btrfs_commit_transaction(trans); mutex_unlock(&dev_replace->lock_finishing_cancel_unmount); btrfs_rm_dev_replace_free_srcdev(src_device); return 0; } /* * Read progress of device replace status according to the state and last * stored position. The value format is the same as for * btrfs_dev_replace::progress_1000 */ static u64 btrfs_dev_replace_progress(struct btrfs_fs_info *fs_info) { struct btrfs_dev_replace *dev_replace = &fs_info->dev_replace; u64 ret = 0; switch (dev_replace->replace_state) { case BTRFS_IOCTL_DEV_REPLACE_STATE_NEVER_STARTED: case BTRFS_IOCTL_DEV_REPLACE_STATE_CANCELED: ret = 0; break; case BTRFS_IOCTL_DEV_REPLACE_STATE_FINISHED: ret = 1000; break; case BTRFS_IOCTL_DEV_REPLACE_STATE_STARTED: case BTRFS_IOCTL_DEV_REPLACE_STATE_SUSPENDED: ret = div64_u64(dev_replace->cursor_left, div_u64(btrfs_device_get_total_bytes( dev_replace->srcdev), 1000)); break; } return ret; } void btrfs_dev_replace_status(struct btrfs_fs_info *fs_info, struct btrfs_ioctl_dev_replace_args *args) { struct btrfs_dev_replace *dev_replace = &fs_info->dev_replace; down_read(&dev_replace->rwsem); /* even if !dev_replace_is_valid, the values are good enough for * the replace_status ioctl */ args->result = BTRFS_IOCTL_DEV_REPLACE_RESULT_NO_ERROR; args->status.replace_state = dev_replace->replace_state; args->status.time_started = dev_replace->time_started; args->status.time_stopped = dev_replace->time_stopped; args->status.num_write_errors = atomic64_read(&dev_replace->num_write_errors); args->status.num_uncorrectable_read_errors = atomic64_read(&dev_replace->num_uncorrectable_read_errors); args->status.progress_1000 = btrfs_dev_replace_progress(fs_info); up_read(&dev_replace->rwsem); } int btrfs_dev_replace_cancel(struct btrfs_fs_info *fs_info) { struct btrfs_dev_replace *dev_replace = &fs_info->dev_replace; struct btrfs_device *tgt_device = NULL; struct btrfs_device *src_device = NULL; struct btrfs_trans_handle *trans; struct btrfs_root *root = fs_info->tree_root; int result; int ret; if (sb_rdonly(fs_info->sb)) return -EROFS; mutex_lock(&dev_replace->lock_finishing_cancel_unmount); down_write(&dev_replace->rwsem); switch (dev_replace->replace_state) { case BTRFS_IOCTL_DEV_REPLACE_STATE_NEVER_STARTED: case BTRFS_IOCTL_DEV_REPLACE_STATE_FINISHED: case BTRFS_IOCTL_DEV_REPLACE_STATE_CANCELED: result = BTRFS_IOCTL_DEV_REPLACE_RESULT_NOT_STARTED; up_write(&dev_replace->rwsem); break; case BTRFS_IOCTL_DEV_REPLACE_STATE_STARTED: tgt_device = dev_replace->tgtdev; src_device = dev_replace->srcdev; up_write(&dev_replace->rwsem); ret = btrfs_scrub_cancel(fs_info); if (ret < 0) { result = BTRFS_IOCTL_DEV_REPLACE_RESULT_NOT_STARTED; } else { result = BTRFS_IOCTL_DEV_REPLACE_RESULT_NO_ERROR; /* * btrfs_dev_replace_finishing() will handle the * cleanup part */ btrfs_info_in_rcu(fs_info, "dev_replace from %s (devid %llu) to %s canceled", btrfs_dev_name(src_device), src_device->devid, btrfs_dev_name(tgt_device)); } break; case BTRFS_IOCTL_DEV_REPLACE_STATE_SUSPENDED: /* * Scrub doing the replace isn't running so we need to do the * cleanup step of btrfs_dev_replace_finishing() here */ result = BTRFS_IOCTL_DEV_REPLACE_RESULT_NO_ERROR; tgt_device = dev_replace->tgtdev; src_device = dev_replace->srcdev; dev_replace->tgtdev = NULL; dev_replace->srcdev = NULL; dev_replace->replace_state = BTRFS_IOCTL_DEV_REPLACE_STATE_CANCELED; dev_replace->time_stopped = ktime_get_real_seconds(); dev_replace->item_needs_writeback = 1; up_write(&dev_replace->rwsem); /* Scrub for replace must not be running in suspended state */ btrfs_scrub_cancel(fs_info); trans = btrfs_start_transaction(root, 0); if (IS_ERR(trans)) { mutex_unlock(&dev_replace->lock_finishing_cancel_unmount); return PTR_ERR(trans); } ret = btrfs_commit_transaction(trans); WARN_ON(ret); btrfs_info_in_rcu(fs_info, "suspended dev_replace from %s (devid %llu) to %s canceled", btrfs_dev_name(src_device), src_device->devid, btrfs_dev_name(tgt_device)); if (tgt_device) btrfs_destroy_dev_replace_tgtdev(tgt_device); break; default: up_write(&dev_replace->rwsem); result = -EINVAL; } mutex_unlock(&dev_replace->lock_finishing_cancel_unmount); return result; } void btrfs_dev_replace_suspend_for_unmount(struct btrfs_fs_info *fs_info) { struct btrfs_dev_replace *dev_replace = &fs_info->dev_replace; mutex_lock(&dev_replace->lock_finishing_cancel_unmount); down_write(&dev_replace->rwsem); switch (dev_replace->replace_state) { case BTRFS_IOCTL_DEV_REPLACE_STATE_NEVER_STARTED: case BTRFS_IOCTL_DEV_REPLACE_STATE_FINISHED: case BTRFS_IOCTL_DEV_REPLACE_STATE_CANCELED: case BTRFS_IOCTL_DEV_REPLACE_STATE_SUSPENDED: break; case BTRFS_IOCTL_DEV_REPLACE_STATE_STARTED: dev_replace->replace_state = BTRFS_IOCTL_DEV_REPLACE_STATE_SUSPENDED; dev_replace->time_stopped = ktime_get_real_seconds(); dev_replace->item_needs_writeback = 1; btrfs_info(fs_info, "suspending dev_replace for unmount"); break; } up_write(&dev_replace->rwsem); mutex_unlock(&dev_replace->lock_finishing_cancel_unmount); } /* resume dev_replace procedure that was interrupted by unmount */ int btrfs_resume_dev_replace_async(struct btrfs_fs_info *fs_info) { struct task_struct *task; struct btrfs_dev_replace *dev_replace = &fs_info->dev_replace; down_write(&dev_replace->rwsem); switch (dev_replace->replace_state) { case BTRFS_IOCTL_DEV_REPLACE_STATE_NEVER_STARTED: case BTRFS_IOCTL_DEV_REPLACE_STATE_FINISHED: case BTRFS_IOCTL_DEV_REPLACE_STATE_CANCELED: up_write(&dev_replace->rwsem); return 0; case BTRFS_IOCTL_DEV_REPLACE_STATE_STARTED: break; case BTRFS_IOCTL_DEV_REPLACE_STATE_SUSPENDED: dev_replace->replace_state = BTRFS_IOCTL_DEV_REPLACE_STATE_STARTED; break; } if (!dev_replace->tgtdev || !dev_replace->tgtdev->bdev) { btrfs_info(fs_info, "cannot continue dev_replace, tgtdev is missing"); btrfs_info(fs_info, "you may cancel the operation after 'mount -o degraded'"); dev_replace->replace_state = BTRFS_IOCTL_DEV_REPLACE_STATE_SUSPENDED; up_write(&dev_replace->rwsem); return 0; } up_write(&dev_replace->rwsem); /* * This could collide with a paused balance, but the exclusive op logic * should never allow both to start and pause. We don't want to allow * dev-replace to start anyway. */ if (!btrfs_exclop_start(fs_info, BTRFS_EXCLOP_DEV_REPLACE)) { down_write(&dev_replace->rwsem); dev_replace->replace_state = BTRFS_IOCTL_DEV_REPLACE_STATE_SUSPENDED; up_write(&dev_replace->rwsem); btrfs_info(fs_info, "cannot resume dev-replace, other exclusive operation running"); return 0; } task = kthread_run(btrfs_dev_replace_kthread, fs_info, "btrfs-devrepl"); return PTR_ERR_OR_ZERO(task); } static int btrfs_dev_replace_kthread(void *data) { struct btrfs_fs_info *fs_info = data; struct btrfs_dev_replace *dev_replace = &fs_info->dev_replace; u64 progress; int ret; progress = btrfs_dev_replace_progress(fs_info); progress = div_u64(progress, 10); btrfs_info_in_rcu(fs_info, "continuing dev_replace from %s (devid %llu) to target %s @%u%%", btrfs_dev_name(dev_replace->srcdev), dev_replace->srcdev->devid, btrfs_dev_name(dev_replace->tgtdev), (unsigned int)progress); ret = btrfs_scrub_dev(fs_info, dev_replace->srcdev->devid, dev_replace->committed_cursor_left, btrfs_device_get_total_bytes(dev_replace->srcdev), &dev_replace->scrub_progress, 0, 1); ret = btrfs_dev_replace_finishing(fs_info, ret); WARN_ON(ret && ret != -ECANCELED); btrfs_exclop_finish(fs_info); return 0; } int __pure btrfs_dev_replace_is_ongoing(struct btrfs_dev_replace *dev_replace) { if (!dev_replace->is_valid) return 0; switch (dev_replace->replace_state) { case BTRFS_IOCTL_DEV_REPLACE_STATE_NEVER_STARTED: case BTRFS_IOCTL_DEV_REPLACE_STATE_FINISHED: case BTRFS_IOCTL_DEV_REPLACE_STATE_CANCELED: return 0; case BTRFS_IOCTL_DEV_REPLACE_STATE_STARTED: case BTRFS_IOCTL_DEV_REPLACE_STATE_SUSPENDED: /* * return true even if tgtdev is missing (this is * something that can happen if the dev_replace * procedure is suspended by an umount and then * the tgtdev is missing (or "btrfs dev scan") was * not called and the filesystem is remounted * in degraded state. This does not stop the * dev_replace procedure. It needs to be canceled * manually if the cancellation is wanted. */ break; } return 1; } void btrfs_bio_counter_sub(struct btrfs_fs_info *fs_info, s64 amount) { percpu_counter_sub(&fs_info->dev_replace.bio_counter, amount); cond_wake_up_nomb(&fs_info->dev_replace.replace_wait); } void btrfs_bio_counter_inc_blocked(struct btrfs_fs_info *fs_info) { while (1) { percpu_counter_inc(&fs_info->dev_replace.bio_counter); if (likely(!test_bit(BTRFS_FS_STATE_DEV_REPLACING, &fs_info->fs_state))) break; btrfs_bio_counter_dec(fs_info); wait_event(fs_info->dev_replace.replace_wait, !test_bit(BTRFS_FS_STATE_DEV_REPLACING, &fs_info->fs_state)); } }
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1