Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Boris Burkov | 2058 | 78.88% | 2 | 2.20% |
Matthew Wilcox | 80 | 3.07% | 1 | 1.10% |
Chris Mason | 73 | 2.80% | 15 | 16.48% |
Qu Wenruo | 55 | 2.11% | 7 | 7.69% |
Filipe David Borba Manana | 51 | 1.95% | 5 | 5.49% |
Jeff Mahoney | 33 | 1.26% | 4 | 4.40% |
Josef Bacik | 27 | 1.03% | 5 | 5.49% |
Josef Whiter | 25 | 0.96% | 8 | 8.79% |
Christoph Hellwig | 22 | 0.84% | 2 | 2.20% |
Goldwyn Rodrigues | 20 | 0.77% | 2 | 2.20% |
David Sterba | 19 | 0.73% | 5 | 5.49% |
Nikolay Borisov | 16 | 0.61% | 8 | 8.79% |
Omar Sandoval | 15 | 0.57% | 1 | 1.10% |
Zheng Yan | 13 | 0.50% | 4 | 4.40% |
Naohiro Aota | 12 | 0.46% | 2 | 2.20% |
Yan Zheng | 10 | 0.38% | 2 | 2.20% |
Tom Van Braeckel | 10 | 0.38% | 1 | 1.10% |
Miklos Szeredi | 9 | 0.34% | 1 | 1.10% |
Liu Bo | 9 | 0.34% | 1 | 1.10% |
Eric Biggers | 8 | 0.31% | 1 | 1.10% |
Miao Xie | 8 | 0.31% | 1 | 1.10% |
Jie Liu | 7 | 0.27% | 1 | 1.10% |
Jan Schmidt | 6 | 0.23% | 2 | 2.20% |
David Woodhouse | 6 | 0.23% | 1 | 1.10% |
Li Zefan | 4 | 0.15% | 2 | 2.20% |
Jeff Layton | 3 | 0.11% | 1 | 1.10% |
Al Viro | 2 | 0.08% | 1 | 1.10% |
Byongho Lee | 2 | 0.08% | 1 | 1.10% |
Eric Paris | 2 | 0.08% | 1 | 1.10% |
Sage Weil | 2 | 0.08% | 1 | 1.10% |
Greg Kroah-Hartman | 1 | 0.04% | 1 | 1.10% |
David Chinner | 1 | 0.04% | 1 | 1.10% |
Total | 2609 | 91 |
// SPDX-License-Identifier: GPL-2.0 #include <linux/init.h> #include <linux/fs.h> #include <linux/slab.h> #include <linux/rwsem.h> #include <linux/xattr.h> #include <linux/security.h> #include <linux/posix_acl_xattr.h> #include <linux/iversion.h> #include <linux/fsverity.h> #include <linux/sched/mm.h> #include "messages.h" #include "ctree.h" #include "btrfs_inode.h" #include "transaction.h" #include "disk-io.h" #include "locking.h" #include "fs.h" #include "accessors.h" #include "ioctl.h" #include "verity.h" #include "orphan.h" /* * Implementation of the interface defined in struct fsverity_operations. * * The main question is how and where to store the verity descriptor and the * Merkle tree. We store both in dedicated btree items in the filesystem tree, * together with the rest of the inode metadata. This means we'll need to do * extra work to encrypt them once encryption is supported in btrfs, but btrfs * has a lot of careful code around i_size and it seems better to make a new key * type than try and adjust all of our expectations for i_size. * * Note that this differs from the implementation in ext4 and f2fs, where * this data is stored as if it were in the file, but past EOF. However, btrfs * does not have a widespread mechanism for caching opaque metadata pages, so we * do pretend that the Merkle tree pages themselves are past EOF for the * purposes of caching them (as opposed to creating a virtual inode). * * fs verity items are stored under two different key types on disk. * The descriptor items: * [ inode objectid, BTRFS_VERITY_DESC_ITEM_KEY, offset ] * * At offset 0, we store a btrfs_verity_descriptor_item which tracks the * size of the descriptor item and some extra data for encryption. * Starting at offset 1, these hold the generic fs verity descriptor. * The latter are opaque to btrfs, we just read and write them as a blob for * the higher level verity code. The most common descriptor size is 256 bytes. * * The merkle tree items: * [ inode objectid, BTRFS_VERITY_MERKLE_ITEM_KEY, offset ] * * These also start at offset 0, and correspond to the merkle tree bytes. * So when fsverity asks for page 0 of the merkle tree, we pull up one page * starting at offset 0 for this key type. These are also opaque to btrfs, * we're blindly storing whatever fsverity sends down. * * Another important consideration is the fact that the Merkle tree data scales * linearly with the size of the file (with 4K pages/blocks and SHA-256, it's * ~1/127th the size) so for large files, writing the tree can be a lengthy * operation. For that reason, we guard the whole enable verity operation * (between begin_enable_verity and end_enable_verity) with an orphan item. * Again, because the data can be pretty large, it's quite possible that we * could run out of space writing it, so we try our best to handle errors by * stopping and rolling back rather than aborting the victim transaction. */ #define MERKLE_START_ALIGN 65536 /* * Compute the logical file offset where we cache the Merkle tree. * * @inode: inode of the verity file * * For the purposes of caching the Merkle tree pages, as required by * fs-verity, it is convenient to do size computations in terms of a file * offset, rather than in terms of page indices. * * Use 64K to be sure it's past the last page in the file, even with 64K pages. * That rounding operation itself can overflow loff_t, so we do it in u64 and * check. * * Returns the file offset on success, negative error code on failure. */ static loff_t merkle_file_pos(const struct inode *inode) { u64 sz = inode->i_size; u64 rounded = round_up(sz, MERKLE_START_ALIGN); if (rounded > inode->i_sb->s_maxbytes) return -EFBIG; return rounded; } /* * Drop all the items for this inode with this key_type. * * @inode: inode to drop items for * @key_type: type of items to drop (BTRFS_VERITY_DESC_ITEM or * BTRFS_VERITY_MERKLE_ITEM) * * Before doing a verity enable we cleanup any existing verity items. * This is also used to clean up if a verity enable failed half way through. * * Returns number of dropped items on success, negative error code on failure. */ static int drop_verity_items(struct btrfs_inode *inode, u8 key_type) { struct btrfs_trans_handle *trans; struct btrfs_root *root = inode->root; struct btrfs_path *path; struct btrfs_key key; int count = 0; int ret; path = btrfs_alloc_path(); if (!path) return -ENOMEM; while (1) { /* 1 for the item being dropped */ trans = btrfs_start_transaction(root, 1); if (IS_ERR(trans)) { ret = PTR_ERR(trans); goto out; } /* * Walk backwards through all the items until we find one that * isn't from our key type or objectid */ key.objectid = btrfs_ino(inode); key.type = key_type; key.offset = (u64)-1; ret = btrfs_search_slot(trans, root, &key, path, -1, 1); if (ret > 0) { ret = 0; /* No more keys of this type, we're done */ if (path->slots[0] == 0) break; path->slots[0]--; } else if (ret < 0) { btrfs_end_transaction(trans); goto out; } btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]); /* No more keys of this type, we're done */ if (key.objectid != btrfs_ino(inode) || key.type != key_type) break; /* * This shouldn't be a performance sensitive function because * it's not used as part of truncate. If it ever becomes * perf sensitive, change this to walk forward and bulk delete * items */ ret = btrfs_del_items(trans, root, path, path->slots[0], 1); if (ret) { btrfs_end_transaction(trans); goto out; } count++; btrfs_release_path(path); btrfs_end_transaction(trans); } ret = count; btrfs_end_transaction(trans); out: btrfs_free_path(path); return ret; } /* * Drop all verity items * * @inode: inode to drop verity items for * * In most contexts where we are dropping verity items, we want to do it for all * the types of verity items, not a particular one. * * Returns: 0 on success, negative error code on failure. */ int btrfs_drop_verity_items(struct btrfs_inode *inode) { int ret; ret = drop_verity_items(inode, BTRFS_VERITY_DESC_ITEM_KEY); if (ret < 0) return ret; ret = drop_verity_items(inode, BTRFS_VERITY_MERKLE_ITEM_KEY); if (ret < 0) return ret; return 0; } /* * Insert and write inode items with a given key type and offset. * * @inode: inode to insert for * @key_type: key type to insert * @offset: item offset to insert at * @src: source data to write * @len: length of source data to write * * Write len bytes from src into items of up to 2K length. * The inserted items will have key (ino, key_type, offset + off) where off is * consecutively increasing from 0 up to the last item ending at offset + len. * * Returns 0 on success and a negative error code on failure. */ static int write_key_bytes(struct btrfs_inode *inode, u8 key_type, u64 offset, const char *src, u64 len) { struct btrfs_trans_handle *trans; struct btrfs_path *path; struct btrfs_root *root = inode->root; struct extent_buffer *leaf; struct btrfs_key key; unsigned long copy_bytes; unsigned long src_offset = 0; void *data; int ret = 0; path = btrfs_alloc_path(); if (!path) return -ENOMEM; while (len > 0) { /* 1 for the new item being inserted */ trans = btrfs_start_transaction(root, 1); if (IS_ERR(trans)) { ret = PTR_ERR(trans); break; } key.objectid = btrfs_ino(inode); key.type = key_type; key.offset = offset; /* * Insert 2K at a time mostly to be friendly for smaller leaf * size filesystems */ copy_bytes = min_t(u64, len, 2048); ret = btrfs_insert_empty_item(trans, root, path, &key, copy_bytes); if (ret) { btrfs_end_transaction(trans); break; } leaf = path->nodes[0]; data = btrfs_item_ptr(leaf, path->slots[0], void); write_extent_buffer(leaf, src + src_offset, (unsigned long)data, copy_bytes); offset += copy_bytes; src_offset += copy_bytes; len -= copy_bytes; btrfs_release_path(path); btrfs_end_transaction(trans); } btrfs_free_path(path); return ret; } /* * Read inode items of the given key type and offset from the btree. * * @inode: inode to read items of * @key_type: key type to read * @offset: item offset to read from * @dest: Buffer to read into. This parameter has slightly tricky * semantics. If it is NULL, the function will not do any copying * and will just return the size of all the items up to len bytes. * If dest_page is passed, then the function will kmap_local the * page and ignore dest, but it must still be non-NULL to avoid the * counting-only behavior. * @len: length in bytes to read * @dest_page: copy into this page instead of the dest buffer * * Helper function to read items from the btree. This returns the number of * bytes read or < 0 for errors. We can return short reads if the items don't * exist on disk or aren't big enough to fill the desired length. Supports * reading into a provided buffer (dest) or into the page cache * * Returns number of bytes read or a negative error code on failure. */ static int read_key_bytes(struct btrfs_inode *inode, u8 key_type, u64 offset, char *dest, u64 len, struct page *dest_page) { struct btrfs_path *path; struct btrfs_root *root = inode->root; struct extent_buffer *leaf; struct btrfs_key key; u64 item_end; u64 copy_end; int copied = 0; u32 copy_offset; unsigned long copy_bytes; unsigned long dest_offset = 0; void *data; char *kaddr = dest; int ret; path = btrfs_alloc_path(); if (!path) return -ENOMEM; if (dest_page) path->reada = READA_FORWARD; key.objectid = btrfs_ino(inode); key.type = key_type; key.offset = offset; ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); if (ret < 0) { goto out; } else if (ret > 0) { ret = 0; if (path->slots[0] == 0) goto out; path->slots[0]--; } while (len > 0) { leaf = path->nodes[0]; btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); if (key.objectid != btrfs_ino(inode) || key.type != key_type) break; item_end = btrfs_item_size(leaf, path->slots[0]) + key.offset; if (copied > 0) { /* * Once we've copied something, we want all of the items * to be sequential */ if (key.offset != offset) break; } else { /* * Our initial offset might be in the middle of an * item. Make sure it all makes sense. */ if (key.offset > offset) break; if (item_end <= offset) break; } /* desc = NULL to just sum all the item lengths */ if (!dest) copy_end = item_end; else copy_end = min(offset + len, item_end); /* Number of bytes in this item we want to copy */ copy_bytes = copy_end - offset; /* Offset from the start of item for copying */ copy_offset = offset - key.offset; if (dest) { if (dest_page) kaddr = kmap_local_page(dest_page); data = btrfs_item_ptr(leaf, path->slots[0], void); read_extent_buffer(leaf, kaddr + dest_offset, (unsigned long)data + copy_offset, copy_bytes); if (dest_page) kunmap_local(kaddr); } offset += copy_bytes; dest_offset += copy_bytes; len -= copy_bytes; copied += copy_bytes; path->slots[0]++; if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) { /* * We've reached the last slot in this leaf and we need * to go to the next leaf. */ ret = btrfs_next_leaf(root, path); if (ret < 0) { break; } else if (ret > 0) { ret = 0; break; } } } out: btrfs_free_path(path); if (!ret) ret = copied; return ret; } /* * Delete an fsverity orphan * * @trans: transaction to do the delete in * @inode: inode to orphan * * Capture verity orphan specific logic that is repeated in the couple places * we delete verity orphans. Specifically, handling ENOENT and ignoring inodes * with 0 links. * * Returns zero on success or a negative error code on failure. */ static int del_orphan(struct btrfs_trans_handle *trans, struct btrfs_inode *inode) { struct btrfs_root *root = inode->root; int ret; /* * If the inode has no links, it is either already unlinked, or was * created with O_TMPFILE. In either case, it should have an orphan from * that other operation. Rather than reference count the orphans, we * simply ignore them here, because we only invoke the verity path in * the orphan logic when i_nlink is 1. */ if (!inode->vfs_inode.i_nlink) return 0; ret = btrfs_del_orphan_item(trans, root, btrfs_ino(inode)); if (ret == -ENOENT) ret = 0; return ret; } /* * Rollback in-progress verity if we encounter an error. * * @inode: inode verity had an error for * * We try to handle recoverable errors while enabling verity by rolling it back * and just failing the operation, rather than having an fs level error no * matter what. However, any error in rollback is unrecoverable. * * Returns 0 on success, negative error code on failure. */ static int rollback_verity(struct btrfs_inode *inode) { struct btrfs_trans_handle *trans = NULL; struct btrfs_root *root = inode->root; int ret; ASSERT(inode_is_locked(&inode->vfs_inode)); truncate_inode_pages(inode->vfs_inode.i_mapping, inode->vfs_inode.i_size); clear_bit(BTRFS_INODE_VERITY_IN_PROGRESS, &inode->runtime_flags); ret = btrfs_drop_verity_items(inode); if (ret) { btrfs_handle_fs_error(root->fs_info, ret, "failed to drop verity items in rollback %llu", (u64)inode->vfs_inode.i_ino); goto out; } /* * 1 for updating the inode flag * 1 for deleting the orphan */ trans = btrfs_start_transaction(root, 2); if (IS_ERR(trans)) { ret = PTR_ERR(trans); trans = NULL; btrfs_handle_fs_error(root->fs_info, ret, "failed to start transaction in verity rollback %llu", (u64)inode->vfs_inode.i_ino); goto out; } inode->ro_flags &= ~BTRFS_INODE_RO_VERITY; btrfs_sync_inode_flags_to_i_flags(&inode->vfs_inode); ret = btrfs_update_inode(trans, inode); if (ret) { btrfs_abort_transaction(trans, ret); goto out; } ret = del_orphan(trans, inode); if (ret) { btrfs_abort_transaction(trans, ret); goto out; } out: if (trans) btrfs_end_transaction(trans); return ret; } /* * Finalize making the file a valid verity file * * @inode: inode to be marked as verity * @desc: contents of the verity descriptor to write (not NULL) * @desc_size: size of the verity descriptor * * Do the actual work of finalizing verity after successfully writing the Merkle * tree: * * - write out the descriptor items * - mark the inode with the verity flag * - delete the orphan item * - mark the ro compat bit * - clear the in progress bit * * Returns 0 on success, negative error code on failure. */ static int finish_verity(struct btrfs_inode *inode, const void *desc, size_t desc_size) { struct btrfs_trans_handle *trans = NULL; struct btrfs_root *root = inode->root; struct btrfs_verity_descriptor_item item; int ret; /* Write out the descriptor item */ memset(&item, 0, sizeof(item)); btrfs_set_stack_verity_descriptor_size(&item, desc_size); ret = write_key_bytes(inode, BTRFS_VERITY_DESC_ITEM_KEY, 0, (const char *)&item, sizeof(item)); if (ret) goto out; /* Write out the descriptor itself */ ret = write_key_bytes(inode, BTRFS_VERITY_DESC_ITEM_KEY, 1, desc, desc_size); if (ret) goto out; /* * 1 for updating the inode flag * 1 for deleting the orphan */ trans = btrfs_start_transaction(root, 2); if (IS_ERR(trans)) { ret = PTR_ERR(trans); goto out; } inode->ro_flags |= BTRFS_INODE_RO_VERITY; btrfs_sync_inode_flags_to_i_flags(&inode->vfs_inode); ret = btrfs_update_inode(trans, inode); if (ret) goto end_trans; ret = del_orphan(trans, inode); if (ret) goto end_trans; clear_bit(BTRFS_INODE_VERITY_IN_PROGRESS, &inode->runtime_flags); btrfs_set_fs_compat_ro(root->fs_info, VERITY); end_trans: btrfs_end_transaction(trans); out: return ret; } /* * fsverity op that begins enabling verity. * * @filp: file to enable verity on * * Begin enabling fsverity for the file. We drop any existing verity items, add * an orphan and set the in progress bit. * * Returns 0 on success, negative error code on failure. */ static int btrfs_begin_enable_verity(struct file *filp) { struct btrfs_inode *inode = BTRFS_I(file_inode(filp)); struct btrfs_root *root = inode->root; struct btrfs_trans_handle *trans; int ret; ASSERT(inode_is_locked(file_inode(filp))); if (test_bit(BTRFS_INODE_VERITY_IN_PROGRESS, &inode->runtime_flags)) return -EBUSY; /* * This should almost never do anything, but theoretically, it's * possible that we failed to enable verity on a file, then were * interrupted or failed while rolling back, failed to cleanup the * orphan, and finally attempt to enable verity again. */ ret = btrfs_drop_verity_items(inode); if (ret) return ret; /* 1 for the orphan item */ trans = btrfs_start_transaction(root, 1); if (IS_ERR(trans)) return PTR_ERR(trans); ret = btrfs_orphan_add(trans, inode); if (!ret) set_bit(BTRFS_INODE_VERITY_IN_PROGRESS, &inode->runtime_flags); btrfs_end_transaction(trans); return 0; } /* * fsverity op that ends enabling verity. * * @filp: file we are finishing enabling verity on * @desc: verity descriptor to write out (NULL in error conditions) * @desc_size: size of the verity descriptor (variable with signatures) * @merkle_tree_size: size of the merkle tree in bytes * * If desc is null, then VFS is signaling an error occurred during verity * enable, and we should try to rollback. Otherwise, attempt to finish verity. * * Returns 0 on success, negative error code on error. */ static int btrfs_end_enable_verity(struct file *filp, const void *desc, size_t desc_size, u64 merkle_tree_size) { struct btrfs_inode *inode = BTRFS_I(file_inode(filp)); int ret = 0; int rollback_ret; ASSERT(inode_is_locked(file_inode(filp))); if (desc == NULL) goto rollback; ret = finish_verity(inode, desc, desc_size); if (ret) goto rollback; return ret; rollback: rollback_ret = rollback_verity(inode); if (rollback_ret) btrfs_err(inode->root->fs_info, "failed to rollback verity items: %d", rollback_ret); return ret; } /* * fsverity op that gets the struct fsverity_descriptor. * * @inode: inode to get the descriptor of * @buf: output buffer for the descriptor contents * @buf_size: size of the output buffer. 0 to query the size * * fsverity does a two pass setup for reading the descriptor, in the first pass * it calls with buf_size = 0 to query the size of the descriptor, and then in * the second pass it actually reads the descriptor off disk. * * Returns the size on success or a negative error code on failure. */ int btrfs_get_verity_descriptor(struct inode *inode, void *buf, size_t buf_size) { u64 true_size; int ret = 0; struct btrfs_verity_descriptor_item item; memset(&item, 0, sizeof(item)); ret = read_key_bytes(BTRFS_I(inode), BTRFS_VERITY_DESC_ITEM_KEY, 0, (char *)&item, sizeof(item), NULL); if (ret < 0) return ret; if (item.reserved[0] != 0 || item.reserved[1] != 0) return -EUCLEAN; true_size = btrfs_stack_verity_descriptor_size(&item); if (true_size > INT_MAX) return -EUCLEAN; if (buf_size == 0) return true_size; if (buf_size < true_size) return -ERANGE; ret = read_key_bytes(BTRFS_I(inode), BTRFS_VERITY_DESC_ITEM_KEY, 1, buf, buf_size, NULL); if (ret < 0) return ret; if (ret != true_size) return -EIO; return true_size; } /* * fsverity op that reads and caches a merkle tree page. * * @inode: inode to read a merkle tree page for * @index: page index relative to the start of the merkle tree * @num_ra_pages: number of pages to readahead. Optional, we ignore it * * The Merkle tree is stored in the filesystem btree, but its pages are cached * with a logical position past EOF in the inode's mapping. * * Returns the page we read, or an ERR_PTR on error. */ static struct page *btrfs_read_merkle_tree_page(struct inode *inode, pgoff_t index, unsigned long num_ra_pages) { struct folio *folio; u64 off = (u64)index << PAGE_SHIFT; loff_t merkle_pos = merkle_file_pos(inode); int ret; if (merkle_pos < 0) return ERR_PTR(merkle_pos); if (merkle_pos > inode->i_sb->s_maxbytes - off - PAGE_SIZE) return ERR_PTR(-EFBIG); index += merkle_pos >> PAGE_SHIFT; again: folio = __filemap_get_folio(inode->i_mapping, index, FGP_ACCESSED, 0); if (!IS_ERR(folio)) { if (folio_test_uptodate(folio)) goto out; folio_lock(folio); /* If it's not uptodate after we have the lock, we got a read error. */ if (!folio_test_uptodate(folio)) { folio_unlock(folio); folio_put(folio); return ERR_PTR(-EIO); } folio_unlock(folio); goto out; } folio = filemap_alloc_folio(mapping_gfp_constraint(inode->i_mapping, ~__GFP_FS), 0); if (!folio) return ERR_PTR(-ENOMEM); ret = filemap_add_folio(inode->i_mapping, folio, index, GFP_NOFS); if (ret) { folio_put(folio); /* Did someone else insert a folio here? */ if (ret == -EEXIST) goto again; return ERR_PTR(ret); } /* * Merkle item keys are indexed from byte 0 in the merkle tree. * They have the form: * * [ inode objectid, BTRFS_MERKLE_ITEM_KEY, offset in bytes ] */ ret = read_key_bytes(BTRFS_I(inode), BTRFS_VERITY_MERKLE_ITEM_KEY, off, folio_address(folio), PAGE_SIZE, &folio->page); if (ret < 0) { folio_put(folio); return ERR_PTR(ret); } if (ret < PAGE_SIZE) folio_zero_segment(folio, ret, PAGE_SIZE); folio_mark_uptodate(folio); folio_unlock(folio); out: return folio_file_page(folio, index); } /* * fsverity op that writes a Merkle tree block into the btree. * * @inode: inode to write a Merkle tree block for * @buf: Merkle tree block to write * @pos: the position of the block in the Merkle tree (in bytes) * @size: the Merkle tree block size (in bytes) * * Returns 0 on success or negative error code on failure */ static int btrfs_write_merkle_tree_block(struct inode *inode, const void *buf, u64 pos, unsigned int size) { loff_t merkle_pos = merkle_file_pos(inode); if (merkle_pos < 0) return merkle_pos; if (merkle_pos > inode->i_sb->s_maxbytes - pos - size) return -EFBIG; return write_key_bytes(BTRFS_I(inode), BTRFS_VERITY_MERKLE_ITEM_KEY, pos, buf, size); } const struct fsverity_operations btrfs_verityops = { .begin_enable_verity = btrfs_begin_enable_verity, .end_enable_verity = btrfs_end_enable_verity, .get_verity_descriptor = btrfs_get_verity_descriptor, .read_merkle_tree_page = btrfs_read_merkle_tree_page, .write_merkle_tree_block = btrfs_write_merkle_tree_block, };
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1