Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Chao Yu | 1848 | 47.05% | 44 | 26.99% |
Jaegeuk Kim | 1154 | 29.38% | 81 | 49.69% |
Huajun Li | 677 | 17.24% | 2 | 1.23% |
Eric Biggers | 73 | 1.86% | 7 | 4.29% |
Kinglong Mee | 33 | 0.84% | 1 | 0.61% |
Daniel Rosenberg | 21 | 0.53% | 1 | 0.61% |
Yunlei He | 17 | 0.43% | 1 | 0.61% |
Shuoran Liu | 13 | 0.33% | 1 | 0.61% |
Jack Qiu | 11 | 0.28% | 2 | 1.23% |
Tiezhu Yang | 8 | 0.20% | 1 | 0.61% |
Yi Chen | 6 | 0.15% | 1 | 0.61% |
Michael Christie | 6 | 0.15% | 1 | 0.61% |
Al Viro | 6 | 0.15% | 1 | 0.61% |
Jeff Layton | 5 | 0.13% | 2 | 1.23% |
Colin Ian King | 5 | 0.13% | 1 | 0.61% |
Tomohiro Kusumi | 5 | 0.13% | 1 | 0.61% |
Weizhao Ouyang | 4 | 0.10% | 1 | 0.61% |
Wanpeng Li | 4 | 0.10% | 1 | 0.61% |
Kirill A. Shutemov | 4 | 0.10% | 1 | 0.61% |
Daeho Jeong | 4 | 0.10% | 1 | 0.61% |
Joe Perches | 4 | 0.10% | 1 | 0.61% |
Namjae Jeon | 3 | 0.08% | 1 | 0.61% |
Nicholas Krause | 3 | 0.08% | 1 | 0.61% |
Peter Zijlstra | 3 | 0.08% | 1 | 0.61% |
Deepa Dinamani | 3 | 0.08% | 1 | 0.61% |
Mark Fasheh | 3 | 0.08% | 1 | 0.61% |
Christoph Hellwig | 1 | 0.03% | 1 | 0.61% |
Tim Murray | 1 | 0.03% | 1 | 0.61% |
Yunlong Song | 1 | 0.03% | 1 | 0.61% |
Chandan Rajendra | 1 | 0.03% | 1 | 0.61% |
Matthew Wilcox | 1 | 0.03% | 1 | 0.61% |
Total | 3928 | 163 |
// SPDX-License-Identifier: GPL-2.0 /* * fs/f2fs/inline.c * Copyright (c) 2013, Intel Corporation * Authors: Huajun Li <huajun.li@intel.com> * Haicheng Li <haicheng.li@intel.com> */ #include <linux/fs.h> #include <linux/f2fs_fs.h> #include <linux/fiemap.h> #include "f2fs.h" #include "node.h" #include <trace/events/f2fs.h> static bool support_inline_data(struct inode *inode) { if (f2fs_is_atomic_file(inode)) return false; if (!S_ISREG(inode->i_mode) && !S_ISLNK(inode->i_mode)) return false; if (i_size_read(inode) > MAX_INLINE_DATA(inode)) return false; return true; } bool f2fs_may_inline_data(struct inode *inode) { if (!support_inline_data(inode)) return false; return !f2fs_post_read_required(inode); } bool f2fs_sanity_check_inline_data(struct inode *inode) { if (!f2fs_has_inline_data(inode)) return false; if (!support_inline_data(inode)) return true; /* * used by sanity_check_inode(), when disk layout fields has not * been synchronized to inmem fields. */ return (S_ISREG(inode->i_mode) && (file_is_encrypt(inode) || file_is_verity(inode) || (F2FS_I(inode)->i_flags & F2FS_COMPR_FL))); } bool f2fs_may_inline_dentry(struct inode *inode) { if (!test_opt(F2FS_I_SB(inode), INLINE_DENTRY)) return false; if (!S_ISDIR(inode->i_mode)) return false; return true; } void f2fs_do_read_inline_data(struct page *page, struct page *ipage) { struct inode *inode = page->mapping->host; if (PageUptodate(page)) return; f2fs_bug_on(F2FS_P_SB(page), page->index); zero_user_segment(page, MAX_INLINE_DATA(inode), PAGE_SIZE); /* Copy the whole inline data block */ memcpy_to_page(page, 0, inline_data_addr(inode, ipage), MAX_INLINE_DATA(inode)); if (!PageUptodate(page)) SetPageUptodate(page); } void f2fs_truncate_inline_inode(struct inode *inode, struct page *ipage, u64 from) { void *addr; if (from >= MAX_INLINE_DATA(inode)) return; addr = inline_data_addr(inode, ipage); f2fs_wait_on_page_writeback(ipage, NODE, true, true); memset(addr + from, 0, MAX_INLINE_DATA(inode) - from); set_page_dirty(ipage); if (from == 0) clear_inode_flag(inode, FI_DATA_EXIST); } int f2fs_read_inline_data(struct inode *inode, struct page *page) { struct page *ipage; ipage = f2fs_get_node_page(F2FS_I_SB(inode), inode->i_ino); if (IS_ERR(ipage)) { unlock_page(page); return PTR_ERR(ipage); } if (!f2fs_has_inline_data(inode)) { f2fs_put_page(ipage, 1); return -EAGAIN; } if (page->index) zero_user_segment(page, 0, PAGE_SIZE); else f2fs_do_read_inline_data(page, ipage); if (!PageUptodate(page)) SetPageUptodate(page); f2fs_put_page(ipage, 1); unlock_page(page); return 0; } int f2fs_convert_inline_page(struct dnode_of_data *dn, struct page *page) { struct f2fs_io_info fio = { .sbi = F2FS_I_SB(dn->inode), .ino = dn->inode->i_ino, .type = DATA, .op = REQ_OP_WRITE, .op_flags = REQ_SYNC | REQ_PRIO, .page = page, .encrypted_page = NULL, .io_type = FS_DATA_IO, }; struct node_info ni; int dirty, err; if (!f2fs_exist_data(dn->inode)) goto clear_out; err = f2fs_reserve_block(dn, 0); if (err) return err; err = f2fs_get_node_info(fio.sbi, dn->nid, &ni, false); if (err) { f2fs_truncate_data_blocks_range(dn, 1); f2fs_put_dnode(dn); return err; } fio.version = ni.version; if (unlikely(dn->data_blkaddr != NEW_ADDR)) { f2fs_put_dnode(dn); set_sbi_flag(fio.sbi, SBI_NEED_FSCK); f2fs_warn(fio.sbi, "%s: corrupted inline inode ino=%lx, i_addr[0]:0x%x, run fsck to fix.", __func__, dn->inode->i_ino, dn->data_blkaddr); f2fs_handle_error(fio.sbi, ERROR_INVALID_BLKADDR); return -EFSCORRUPTED; } f2fs_bug_on(F2FS_P_SB(page), PageWriteback(page)); f2fs_do_read_inline_data(page, dn->inode_page); set_page_dirty(page); /* clear dirty state */ dirty = clear_page_dirty_for_io(page); /* write data page to try to make data consistent */ set_page_writeback(page); fio.old_blkaddr = dn->data_blkaddr; set_inode_flag(dn->inode, FI_HOT_DATA); f2fs_outplace_write_data(dn, &fio); f2fs_wait_on_page_writeback(page, DATA, true, true); if (dirty) { inode_dec_dirty_pages(dn->inode); f2fs_remove_dirty_inode(dn->inode); } /* this converted inline_data should be recovered. */ set_inode_flag(dn->inode, FI_APPEND_WRITE); /* clear inline data and flag after data writeback */ f2fs_truncate_inline_inode(dn->inode, dn->inode_page, 0); clear_page_private_inline(dn->inode_page); clear_out: stat_dec_inline_inode(dn->inode); clear_inode_flag(dn->inode, FI_INLINE_DATA); f2fs_put_dnode(dn); return 0; } int f2fs_convert_inline_inode(struct inode *inode) { struct f2fs_sb_info *sbi = F2FS_I_SB(inode); struct dnode_of_data dn; struct page *ipage, *page; int err = 0; if (!f2fs_has_inline_data(inode) || f2fs_hw_is_readonly(sbi) || f2fs_readonly(sbi->sb)) return 0; err = f2fs_dquot_initialize(inode); if (err) return err; page = f2fs_grab_cache_page(inode->i_mapping, 0, false); if (!page) return -ENOMEM; f2fs_lock_op(sbi); ipage = f2fs_get_node_page(sbi, inode->i_ino); if (IS_ERR(ipage)) { err = PTR_ERR(ipage); goto out; } set_new_dnode(&dn, inode, ipage, ipage, 0); if (f2fs_has_inline_data(inode)) err = f2fs_convert_inline_page(&dn, page); f2fs_put_dnode(&dn); out: f2fs_unlock_op(sbi); f2fs_put_page(page, 1); if (!err) f2fs_balance_fs(sbi, dn.node_changed); return err; } int f2fs_write_inline_data(struct inode *inode, struct page *page) { struct dnode_of_data dn; int err; set_new_dnode(&dn, inode, NULL, NULL, 0); err = f2fs_get_dnode_of_data(&dn, 0, LOOKUP_NODE); if (err) return err; if (!f2fs_has_inline_data(inode)) { f2fs_put_dnode(&dn); return -EAGAIN; } f2fs_bug_on(F2FS_I_SB(inode), page->index); f2fs_wait_on_page_writeback(dn.inode_page, NODE, true, true); memcpy_from_page(inline_data_addr(inode, dn.inode_page), page, 0, MAX_INLINE_DATA(inode)); set_page_dirty(dn.inode_page); f2fs_clear_page_cache_dirty_tag(page); set_inode_flag(inode, FI_APPEND_WRITE); set_inode_flag(inode, FI_DATA_EXIST); clear_page_private_inline(dn.inode_page); f2fs_put_dnode(&dn); return 0; } int f2fs_recover_inline_data(struct inode *inode, struct page *npage) { struct f2fs_sb_info *sbi = F2FS_I_SB(inode); struct f2fs_inode *ri = NULL; void *src_addr, *dst_addr; struct page *ipage; /* * The inline_data recovery policy is as follows. * [prev.] [next] of inline_data flag * o o -> recover inline_data * o x -> remove inline_data, and then recover data blocks * x o -> remove data blocks, and then recover inline_data * x x -> recover data blocks */ if (IS_INODE(npage)) ri = F2FS_INODE(npage); if (f2fs_has_inline_data(inode) && ri && (ri->i_inline & F2FS_INLINE_DATA)) { process_inline: ipage = f2fs_get_node_page(sbi, inode->i_ino); if (IS_ERR(ipage)) return PTR_ERR(ipage); f2fs_wait_on_page_writeback(ipage, NODE, true, true); src_addr = inline_data_addr(inode, npage); dst_addr = inline_data_addr(inode, ipage); memcpy(dst_addr, src_addr, MAX_INLINE_DATA(inode)); set_inode_flag(inode, FI_INLINE_DATA); set_inode_flag(inode, FI_DATA_EXIST); set_page_dirty(ipage); f2fs_put_page(ipage, 1); return 1; } if (f2fs_has_inline_data(inode)) { ipage = f2fs_get_node_page(sbi, inode->i_ino); if (IS_ERR(ipage)) return PTR_ERR(ipage); f2fs_truncate_inline_inode(inode, ipage, 0); stat_dec_inline_inode(inode); clear_inode_flag(inode, FI_INLINE_DATA); f2fs_put_page(ipage, 1); } else if (ri && (ri->i_inline & F2FS_INLINE_DATA)) { int ret; ret = f2fs_truncate_blocks(inode, 0, false); if (ret) return ret; stat_inc_inline_inode(inode); goto process_inline; } return 0; } struct f2fs_dir_entry *f2fs_find_in_inline_dir(struct inode *dir, const struct f2fs_filename *fname, struct page **res_page) { struct f2fs_sb_info *sbi = F2FS_SB(dir->i_sb); struct f2fs_dir_entry *de; struct f2fs_dentry_ptr d; struct page *ipage; void *inline_dentry; ipage = f2fs_get_node_page(sbi, dir->i_ino); if (IS_ERR(ipage)) { *res_page = ipage; return NULL; } inline_dentry = inline_data_addr(dir, ipage); make_dentry_ptr_inline(dir, &d, inline_dentry); de = f2fs_find_target_dentry(&d, fname, NULL); unlock_page(ipage); if (IS_ERR(de)) { *res_page = ERR_CAST(de); de = NULL; } if (de) *res_page = ipage; else f2fs_put_page(ipage, 0); return de; } int f2fs_make_empty_inline_dir(struct inode *inode, struct inode *parent, struct page *ipage) { struct f2fs_dentry_ptr d; void *inline_dentry; inline_dentry = inline_data_addr(inode, ipage); make_dentry_ptr_inline(inode, &d, inline_dentry); f2fs_do_make_empty_dir(inode, parent, &d); set_page_dirty(ipage); /* update i_size to MAX_INLINE_DATA */ if (i_size_read(inode) < MAX_INLINE_DATA(inode)) f2fs_i_size_write(inode, MAX_INLINE_DATA(inode)); return 0; } /* * NOTE: ipage is grabbed by caller, but if any error occurs, we should * release ipage in this function. */ static int f2fs_move_inline_dirents(struct inode *dir, struct page *ipage, void *inline_dentry) { struct page *page; struct dnode_of_data dn; struct f2fs_dentry_block *dentry_blk; struct f2fs_dentry_ptr src, dst; int err; page = f2fs_grab_cache_page(dir->i_mapping, 0, true); if (!page) { f2fs_put_page(ipage, 1); return -ENOMEM; } set_new_dnode(&dn, dir, ipage, NULL, 0); err = f2fs_reserve_block(&dn, 0); if (err) goto out; if (unlikely(dn.data_blkaddr != NEW_ADDR)) { f2fs_put_dnode(&dn); set_sbi_flag(F2FS_P_SB(page), SBI_NEED_FSCK); f2fs_warn(F2FS_P_SB(page), "%s: corrupted inline inode ino=%lx, i_addr[0]:0x%x, run fsck to fix.", __func__, dir->i_ino, dn.data_blkaddr); f2fs_handle_error(F2FS_P_SB(page), ERROR_INVALID_BLKADDR); err = -EFSCORRUPTED; goto out; } f2fs_wait_on_page_writeback(page, DATA, true, true); dentry_blk = page_address(page); /* * Start by zeroing the full block, to ensure that all unused space is * zeroed and no uninitialized memory is leaked to disk. */ memset(dentry_blk, 0, F2FS_BLKSIZE); make_dentry_ptr_inline(dir, &src, inline_dentry); make_dentry_ptr_block(dir, &dst, dentry_blk); /* copy data from inline dentry block to new dentry block */ memcpy(dst.bitmap, src.bitmap, src.nr_bitmap); memcpy(dst.dentry, src.dentry, SIZE_OF_DIR_ENTRY * src.max); memcpy(dst.filename, src.filename, src.max * F2FS_SLOT_LEN); if (!PageUptodate(page)) SetPageUptodate(page); set_page_dirty(page); /* clear inline dir and flag after data writeback */ f2fs_truncate_inline_inode(dir, ipage, 0); stat_dec_inline_dir(dir); clear_inode_flag(dir, FI_INLINE_DENTRY); /* * should retrieve reserved space which was used to keep * inline_dentry's structure for backward compatibility. */ if (!f2fs_sb_has_flexible_inline_xattr(F2FS_I_SB(dir)) && !f2fs_has_inline_xattr(dir)) F2FS_I(dir)->i_inline_xattr_size = 0; f2fs_i_depth_write(dir, 1); if (i_size_read(dir) < PAGE_SIZE) f2fs_i_size_write(dir, PAGE_SIZE); out: f2fs_put_page(page, 1); return err; } static int f2fs_add_inline_entries(struct inode *dir, void *inline_dentry) { struct f2fs_dentry_ptr d; unsigned long bit_pos = 0; int err = 0; make_dentry_ptr_inline(dir, &d, inline_dentry); while (bit_pos < d.max) { struct f2fs_dir_entry *de; struct f2fs_filename fname; nid_t ino; umode_t fake_mode; if (!test_bit_le(bit_pos, d.bitmap)) { bit_pos++; continue; } de = &d.dentry[bit_pos]; if (unlikely(!de->name_len)) { bit_pos++; continue; } /* * We only need the disk_name and hash to move the dentry. * We don't need the original or casefolded filenames. */ memset(&fname, 0, sizeof(fname)); fname.disk_name.name = d.filename[bit_pos]; fname.disk_name.len = le16_to_cpu(de->name_len); fname.hash = de->hash_code; ino = le32_to_cpu(de->ino); fake_mode = fs_ftype_to_dtype(de->file_type) << S_DT_SHIFT; err = f2fs_add_regular_entry(dir, &fname, NULL, ino, fake_mode); if (err) goto punch_dentry_pages; bit_pos += GET_DENTRY_SLOTS(le16_to_cpu(de->name_len)); } return 0; punch_dentry_pages: truncate_inode_pages(&dir->i_data, 0); f2fs_truncate_blocks(dir, 0, false); f2fs_remove_dirty_inode(dir); return err; } static int f2fs_move_rehashed_dirents(struct inode *dir, struct page *ipage, void *inline_dentry) { void *backup_dentry; int err; backup_dentry = f2fs_kmalloc(F2FS_I_SB(dir), MAX_INLINE_DATA(dir), GFP_F2FS_ZERO); if (!backup_dentry) { f2fs_put_page(ipage, 1); return -ENOMEM; } memcpy(backup_dentry, inline_dentry, MAX_INLINE_DATA(dir)); f2fs_truncate_inline_inode(dir, ipage, 0); unlock_page(ipage); err = f2fs_add_inline_entries(dir, backup_dentry); if (err) goto recover; lock_page(ipage); stat_dec_inline_dir(dir); clear_inode_flag(dir, FI_INLINE_DENTRY); /* * should retrieve reserved space which was used to keep * inline_dentry's structure for backward compatibility. */ if (!f2fs_sb_has_flexible_inline_xattr(F2FS_I_SB(dir)) && !f2fs_has_inline_xattr(dir)) F2FS_I(dir)->i_inline_xattr_size = 0; kfree(backup_dentry); return 0; recover: lock_page(ipage); f2fs_wait_on_page_writeback(ipage, NODE, true, true); memcpy(inline_dentry, backup_dentry, MAX_INLINE_DATA(dir)); f2fs_i_depth_write(dir, 0); f2fs_i_size_write(dir, MAX_INLINE_DATA(dir)); set_page_dirty(ipage); f2fs_put_page(ipage, 1); kfree(backup_dentry); return err; } static int do_convert_inline_dir(struct inode *dir, struct page *ipage, void *inline_dentry) { if (!F2FS_I(dir)->i_dir_level) return f2fs_move_inline_dirents(dir, ipage, inline_dentry); else return f2fs_move_rehashed_dirents(dir, ipage, inline_dentry); } int f2fs_try_convert_inline_dir(struct inode *dir, struct dentry *dentry) { struct f2fs_sb_info *sbi = F2FS_I_SB(dir); struct page *ipage; struct f2fs_filename fname; void *inline_dentry = NULL; int err = 0; if (!f2fs_has_inline_dentry(dir)) return 0; f2fs_lock_op(sbi); err = f2fs_setup_filename(dir, &dentry->d_name, 0, &fname); if (err) goto out; ipage = f2fs_get_node_page(sbi, dir->i_ino); if (IS_ERR(ipage)) { err = PTR_ERR(ipage); goto out_fname; } if (f2fs_has_enough_room(dir, ipage, &fname)) { f2fs_put_page(ipage, 1); goto out_fname; } inline_dentry = inline_data_addr(dir, ipage); err = do_convert_inline_dir(dir, ipage, inline_dentry); if (!err) f2fs_put_page(ipage, 1); out_fname: f2fs_free_filename(&fname); out: f2fs_unlock_op(sbi); return err; } int f2fs_add_inline_entry(struct inode *dir, const struct f2fs_filename *fname, struct inode *inode, nid_t ino, umode_t mode) { struct f2fs_sb_info *sbi = F2FS_I_SB(dir); struct page *ipage; unsigned int bit_pos; void *inline_dentry = NULL; struct f2fs_dentry_ptr d; int slots = GET_DENTRY_SLOTS(fname->disk_name.len); struct page *page = NULL; int err = 0; ipage = f2fs_get_node_page(sbi, dir->i_ino); if (IS_ERR(ipage)) return PTR_ERR(ipage); inline_dentry = inline_data_addr(dir, ipage); make_dentry_ptr_inline(dir, &d, inline_dentry); bit_pos = f2fs_room_for_filename(d.bitmap, slots, d.max); if (bit_pos >= d.max) { err = do_convert_inline_dir(dir, ipage, inline_dentry); if (err) return err; err = -EAGAIN; goto out; } if (inode) { f2fs_down_write_nested(&F2FS_I(inode)->i_sem, SINGLE_DEPTH_NESTING); page = f2fs_init_inode_metadata(inode, dir, fname, ipage); if (IS_ERR(page)) { err = PTR_ERR(page); goto fail; } } f2fs_wait_on_page_writeback(ipage, NODE, true, true); f2fs_update_dentry(ino, mode, &d, &fname->disk_name, fname->hash, bit_pos); set_page_dirty(ipage); /* we don't need to mark_inode_dirty now */ if (inode) { f2fs_i_pino_write(inode, dir->i_ino); /* synchronize inode page's data from inode cache */ if (is_inode_flag_set(inode, FI_NEW_INODE)) f2fs_update_inode(inode, page); f2fs_put_page(page, 1); } f2fs_update_parent_metadata(dir, inode, 0); fail: if (inode) f2fs_up_write(&F2FS_I(inode)->i_sem); out: f2fs_put_page(ipage, 1); return err; } void f2fs_delete_inline_entry(struct f2fs_dir_entry *dentry, struct page *page, struct inode *dir, struct inode *inode) { struct f2fs_dentry_ptr d; void *inline_dentry; int slots = GET_DENTRY_SLOTS(le16_to_cpu(dentry->name_len)); unsigned int bit_pos; int i; lock_page(page); f2fs_wait_on_page_writeback(page, NODE, true, true); inline_dentry = inline_data_addr(dir, page); make_dentry_ptr_inline(dir, &d, inline_dentry); bit_pos = dentry - d.dentry; for (i = 0; i < slots; i++) __clear_bit_le(bit_pos + i, d.bitmap); set_page_dirty(page); f2fs_put_page(page, 1); inode_set_mtime_to_ts(dir, inode_set_ctime_current(dir)); f2fs_mark_inode_dirty_sync(dir, false); if (inode) f2fs_drop_nlink(dir, inode); } bool f2fs_empty_inline_dir(struct inode *dir) { struct f2fs_sb_info *sbi = F2FS_I_SB(dir); struct page *ipage; unsigned int bit_pos = 2; void *inline_dentry; struct f2fs_dentry_ptr d; ipage = f2fs_get_node_page(sbi, dir->i_ino); if (IS_ERR(ipage)) return false; inline_dentry = inline_data_addr(dir, ipage); make_dentry_ptr_inline(dir, &d, inline_dentry); bit_pos = find_next_bit_le(d.bitmap, d.max, bit_pos); f2fs_put_page(ipage, 1); if (bit_pos < d.max) return false; return true; } int f2fs_read_inline_dir(struct file *file, struct dir_context *ctx, struct fscrypt_str *fstr) { struct inode *inode = file_inode(file); struct page *ipage = NULL; struct f2fs_dentry_ptr d; void *inline_dentry = NULL; int err; make_dentry_ptr_inline(inode, &d, inline_dentry); if (ctx->pos == d.max) return 0; ipage = f2fs_get_node_page(F2FS_I_SB(inode), inode->i_ino); if (IS_ERR(ipage)) return PTR_ERR(ipage); /* * f2fs_readdir was protected by inode.i_rwsem, it is safe to access * ipage without page's lock held. */ unlock_page(ipage); inline_dentry = inline_data_addr(inode, ipage); make_dentry_ptr_inline(inode, &d, inline_dentry); err = f2fs_fill_dentries(ctx, &d, 0, fstr); if (!err) ctx->pos = d.max; f2fs_put_page(ipage, 0); return err < 0 ? err : 0; } int f2fs_inline_data_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo, __u64 start, __u64 len) { __u64 byteaddr, ilen; __u32 flags = FIEMAP_EXTENT_DATA_INLINE | FIEMAP_EXTENT_NOT_ALIGNED | FIEMAP_EXTENT_LAST; struct node_info ni; struct page *ipage; int err = 0; ipage = f2fs_get_node_page(F2FS_I_SB(inode), inode->i_ino); if (IS_ERR(ipage)) return PTR_ERR(ipage); if ((S_ISREG(inode->i_mode) || S_ISLNK(inode->i_mode)) && !f2fs_has_inline_data(inode)) { err = -EAGAIN; goto out; } if (S_ISDIR(inode->i_mode) && !f2fs_has_inline_dentry(inode)) { err = -EAGAIN; goto out; } ilen = min_t(size_t, MAX_INLINE_DATA(inode), i_size_read(inode)); if (start >= ilen) goto out; if (start + len < ilen) ilen = start + len; ilen -= start; err = f2fs_get_node_info(F2FS_I_SB(inode), inode->i_ino, &ni, false); if (err) goto out; byteaddr = (__u64)ni.blk_addr << inode->i_sb->s_blocksize_bits; byteaddr += (char *)inline_data_addr(inode, ipage) - (char *)F2FS_INODE(ipage); err = fiemap_fill_next_extent(fieinfo, start, byteaddr, ilen, flags); trace_f2fs_fiemap(inode, start, byteaddr, ilen, flags, err); out: f2fs_put_page(ipage, 1); return err; }
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1