Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Christoph Hellwig | 1198 | 39.34% | 27 | 32.93% |
Darrick J. Wong | 1060 | 34.81% | 2 | 2.44% |
Jens Axboe | 223 | 7.32% | 7 | 8.54% |
Andreas Gruenbacher | 152 | 4.99% | 6 | 7.32% |
Jan Kara | 68 | 2.23% | 3 | 3.66% |
Goldwyn Rodrigues | 54 | 1.77% | 3 | 3.66% |
Naohiro Aota | 54 | 1.77% | 1 | 1.22% |
Eric Biggers | 35 | 1.15% | 1 | 1.22% |
David Chinner | 35 | 1.15% | 5 | 6.10% |
Hsiang Kao | 25 | 0.82% | 1 | 1.22% |
Qian Cai | 22 | 0.72% | 1 | 1.22% |
Ritesh Harjani | 20 | 0.66% | 1 | 1.22% |
Al Viro | 15 | 0.49% | 4 | 4.88% |
Keith Busch | 14 | 0.46% | 1 | 1.22% |
Pavel Begunkov | 10 | 0.33% | 1 | 1.22% |
Ming Lei | 10 | 0.33% | 2 | 2.44% |
Linus Torvalds | 9 | 0.30% | 3 | 3.66% |
Tejun Heo | 7 | 0.23% | 1 | 1.22% |
Jan Stancek | 6 | 0.20% | 1 | 1.22% |
Chandan Rajendra | 6 | 0.20% | 2 | 2.44% |
Linus Torvalds (pre-git) | 4 | 0.13% | 2 | 2.44% |
Andrew Morton | 4 | 0.13% | 2 | 2.44% |
Bart Van Assche | 4 | 0.13% | 1 | 1.22% |
Nicholas Piggin | 4 | 0.13% | 1 | 1.22% |
Fabian Frederick | 3 | 0.10% | 1 | 1.22% |
Matthew Bobrowski | 2 | 0.07% | 1 | 1.22% |
yangerkun | 1 | 0.03% | 1 | 1.22% |
Total | 3045 | 82 |
// SPDX-License-Identifier: GPL-2.0 /* * Copyright (C) 2010 Red Hat, Inc. * Copyright (c) 2016-2021 Christoph Hellwig. */ #include <linux/module.h> #include <linux/compiler.h> #include <linux/fs.h> #include <linux/fscrypt.h> #include <linux/pagemap.h> #include <linux/iomap.h> #include <linux/backing-dev.h> #include <linux/uio.h> #include <linux/task_io_accounting_ops.h> #include "trace.h" #include "../internal.h" /* * Private flags for iomap_dio, must not overlap with the public ones in * iomap.h: */ #define IOMAP_DIO_CALLER_COMP (1U << 26) #define IOMAP_DIO_INLINE_COMP (1U << 27) #define IOMAP_DIO_WRITE_THROUGH (1U << 28) #define IOMAP_DIO_NEED_SYNC (1U << 29) #define IOMAP_DIO_WRITE (1U << 30) #define IOMAP_DIO_DIRTY (1U << 31) struct iomap_dio { struct kiocb *iocb; const struct iomap_dio_ops *dops; loff_t i_size; loff_t size; atomic_t ref; unsigned flags; int error; size_t done_before; bool wait_for_completion; union { /* used during submission and for synchronous completion: */ struct { struct iov_iter *iter; struct task_struct *waiter; } submit; /* used for aio completion: */ struct { struct work_struct work; } aio; }; }; static struct bio *iomap_dio_alloc_bio(const struct iomap_iter *iter, struct iomap_dio *dio, unsigned short nr_vecs, blk_opf_t opf) { if (dio->dops && dio->dops->bio_set) return bio_alloc_bioset(iter->iomap.bdev, nr_vecs, opf, GFP_KERNEL, dio->dops->bio_set); return bio_alloc(iter->iomap.bdev, nr_vecs, opf, GFP_KERNEL); } static void iomap_dio_submit_bio(const struct iomap_iter *iter, struct iomap_dio *dio, struct bio *bio, loff_t pos) { struct kiocb *iocb = dio->iocb; atomic_inc(&dio->ref); /* Sync dio can't be polled reliably */ if ((iocb->ki_flags & IOCB_HIPRI) && !is_sync_kiocb(iocb)) { bio_set_polled(bio, iocb); WRITE_ONCE(iocb->private, bio); } if (dio->dops && dio->dops->submit_io) dio->dops->submit_io(iter, bio, pos); else submit_bio(bio); } ssize_t iomap_dio_complete(struct iomap_dio *dio) { const struct iomap_dio_ops *dops = dio->dops; struct kiocb *iocb = dio->iocb; loff_t offset = iocb->ki_pos; ssize_t ret = dio->error; if (dops && dops->end_io) ret = dops->end_io(iocb, dio->size, ret, dio->flags); if (likely(!ret)) { ret = dio->size; /* check for short read */ if (offset + ret > dio->i_size && !(dio->flags & IOMAP_DIO_WRITE)) ret = dio->i_size - offset; } /* * Try again to invalidate clean pages which might have been cached by * non-direct readahead, or faulted in by get_user_pages() if the source * of the write was an mmap'ed region of the file we're writing. Either * one is a pretty crazy thing to do, so we don't support it 100%. If * this invalidation fails, tough, the write still worked... * * And this page cache invalidation has to be after ->end_io(), as some * filesystems convert unwritten extents to real allocations in * ->end_io() when necessary, otherwise a racing buffer read would cache * zeros from unwritten extents. */ if (!dio->error && dio->size && (dio->flags & IOMAP_DIO_WRITE)) kiocb_invalidate_post_direct_write(iocb, dio->size); inode_dio_end(file_inode(iocb->ki_filp)); if (ret > 0) { iocb->ki_pos += ret; /* * If this is a DSYNC write, make sure we push it to stable * storage now that we've written data. */ if (dio->flags & IOMAP_DIO_NEED_SYNC) ret = generic_write_sync(iocb, ret); if (ret > 0) ret += dio->done_before; } trace_iomap_dio_complete(iocb, dio->error, ret); kfree(dio); return ret; } EXPORT_SYMBOL_GPL(iomap_dio_complete); static ssize_t iomap_dio_deferred_complete(void *data) { return iomap_dio_complete(data); } static void iomap_dio_complete_work(struct work_struct *work) { struct iomap_dio *dio = container_of(work, struct iomap_dio, aio.work); struct kiocb *iocb = dio->iocb; iocb->ki_complete(iocb, iomap_dio_complete(dio)); } /* * Set an error in the dio if none is set yet. We have to use cmpxchg * as the submission context and the completion context(s) can race to * update the error. */ static inline void iomap_dio_set_error(struct iomap_dio *dio, int ret) { cmpxchg(&dio->error, 0, ret); } void iomap_dio_bio_end_io(struct bio *bio) { struct iomap_dio *dio = bio->bi_private; bool should_dirty = (dio->flags & IOMAP_DIO_DIRTY); struct kiocb *iocb = dio->iocb; if (bio->bi_status) iomap_dio_set_error(dio, blk_status_to_errno(bio->bi_status)); if (!atomic_dec_and_test(&dio->ref)) goto release_bio; /* * Synchronous dio, task itself will handle any completion work * that needs after IO. All we need to do is wake the task. */ if (dio->wait_for_completion) { struct task_struct *waiter = dio->submit.waiter; WRITE_ONCE(dio->submit.waiter, NULL); blk_wake_io_task(waiter); goto release_bio; } /* * Flagged with IOMAP_DIO_INLINE_COMP, we can complete it inline */ if (dio->flags & IOMAP_DIO_INLINE_COMP) { WRITE_ONCE(iocb->private, NULL); iomap_dio_complete_work(&dio->aio.work); goto release_bio; } /* * If this dio is flagged with IOMAP_DIO_CALLER_COMP, then schedule * our completion that way to avoid an async punt to a workqueue. */ if (dio->flags & IOMAP_DIO_CALLER_COMP) { /* only polled IO cares about private cleared */ iocb->private = dio; iocb->dio_complete = iomap_dio_deferred_complete; /* * Invoke ->ki_complete() directly. We've assigned our * dio_complete callback handler, and since the issuer set * IOCB_DIO_CALLER_COMP, we know their ki_complete handler will * notice ->dio_complete being set and will defer calling that * handler until it can be done from a safe task context. * * Note that the 'res' being passed in here is not important * for this case. The actual completion value of the request * will be gotten from dio_complete when that is run by the * issuer. */ iocb->ki_complete(iocb, 0); goto release_bio; } /* * Async DIO completion that requires filesystem level completion work * gets punted to a work queue to complete as the operation may require * more IO to be issued to finalise filesystem metadata changes or * guarantee data integrity. */ INIT_WORK(&dio->aio.work, iomap_dio_complete_work); queue_work(file_inode(iocb->ki_filp)->i_sb->s_dio_done_wq, &dio->aio.work); release_bio: if (should_dirty) { bio_check_pages_dirty(bio); } else { bio_release_pages(bio, false); bio_put(bio); } } EXPORT_SYMBOL_GPL(iomap_dio_bio_end_io); static void iomap_dio_zero(const struct iomap_iter *iter, struct iomap_dio *dio, loff_t pos, unsigned len) { struct inode *inode = file_inode(dio->iocb->ki_filp); struct page *page = ZERO_PAGE(0); struct bio *bio; bio = iomap_dio_alloc_bio(iter, dio, 1, REQ_OP_WRITE | REQ_SYNC | REQ_IDLE); fscrypt_set_bio_crypt_ctx(bio, inode, pos >> inode->i_blkbits, GFP_KERNEL); bio->bi_iter.bi_sector = iomap_sector(&iter->iomap, pos); bio->bi_private = dio; bio->bi_end_io = iomap_dio_bio_end_io; __bio_add_page(bio, page, len, 0); iomap_dio_submit_bio(iter, dio, bio, pos); } /* * Figure out the bio's operation flags from the dio request, the * mapping, and whether or not we want FUA. Note that we can end up * clearing the WRITE_THROUGH flag in the dio request. */ static inline blk_opf_t iomap_dio_bio_opflags(struct iomap_dio *dio, const struct iomap *iomap, bool use_fua) { blk_opf_t opflags = REQ_SYNC | REQ_IDLE; if (!(dio->flags & IOMAP_DIO_WRITE)) return REQ_OP_READ; opflags |= REQ_OP_WRITE; if (use_fua) opflags |= REQ_FUA; else dio->flags &= ~IOMAP_DIO_WRITE_THROUGH; return opflags; } static loff_t iomap_dio_bio_iter(const struct iomap_iter *iter, struct iomap_dio *dio) { const struct iomap *iomap = &iter->iomap; struct inode *inode = iter->inode; unsigned int fs_block_size = i_blocksize(inode), pad; loff_t length = iomap_length(iter); loff_t pos = iter->pos; blk_opf_t bio_opf; struct bio *bio; bool need_zeroout = false; bool use_fua = false; int nr_pages, ret = 0; size_t copied = 0; size_t orig_count; if ((pos | length) & (bdev_logical_block_size(iomap->bdev) - 1) || !bdev_iter_is_aligned(iomap->bdev, dio->submit.iter)) return -EINVAL; if (iomap->type == IOMAP_UNWRITTEN) { dio->flags |= IOMAP_DIO_UNWRITTEN; need_zeroout = true; } if (iomap->flags & IOMAP_F_SHARED) dio->flags |= IOMAP_DIO_COW; if (iomap->flags & IOMAP_F_NEW) { need_zeroout = true; } else if (iomap->type == IOMAP_MAPPED) { /* * Use a FUA write if we need datasync semantics, this is a pure * data IO that doesn't require any metadata updates (including * after IO completion such as unwritten extent conversion) and * the underlying device either supports FUA or doesn't have * a volatile write cache. This allows us to avoid cache flushes * on IO completion. If we can't use writethrough and need to * sync, disable in-task completions as dio completion will * need to call generic_write_sync() which will do a blocking * fsync / cache flush call. */ if (!(iomap->flags & (IOMAP_F_SHARED|IOMAP_F_DIRTY)) && (dio->flags & IOMAP_DIO_WRITE_THROUGH) && (bdev_fua(iomap->bdev) || !bdev_write_cache(iomap->bdev))) use_fua = true; else if (dio->flags & IOMAP_DIO_NEED_SYNC) dio->flags &= ~IOMAP_DIO_CALLER_COMP; } /* * Save the original count and trim the iter to just the extent we * are operating on right now. The iter will be re-expanded once * we are done. */ orig_count = iov_iter_count(dio->submit.iter); iov_iter_truncate(dio->submit.iter, length); if (!iov_iter_count(dio->submit.iter)) goto out; /* * We can only do deferred completion for pure overwrites that * don't require additional IO at completion. This rules out * writes that need zeroing or extent conversion, extend * the file size, or issue journal IO or cache flushes * during completion processing. */ if (need_zeroout || ((dio->flags & IOMAP_DIO_NEED_SYNC) && !use_fua) || ((dio->flags & IOMAP_DIO_WRITE) && pos >= i_size_read(inode))) dio->flags &= ~IOMAP_DIO_CALLER_COMP; /* * The rules for polled IO completions follow the guidelines as the * ones we set for inline and deferred completions. If none of those * are available for this IO, clear the polled flag. */ if (!(dio->flags & (IOMAP_DIO_INLINE_COMP|IOMAP_DIO_CALLER_COMP))) dio->iocb->ki_flags &= ~IOCB_HIPRI; if (need_zeroout) { /* zero out from the start of the block to the write offset */ pad = pos & (fs_block_size - 1); if (pad) iomap_dio_zero(iter, dio, pos - pad, pad); } /* * Set the operation flags early so that bio_iov_iter_get_pages * can set up the page vector appropriately for a ZONE_APPEND * operation. */ bio_opf = iomap_dio_bio_opflags(dio, iomap, use_fua); nr_pages = bio_iov_vecs_to_alloc(dio->submit.iter, BIO_MAX_VECS); do { size_t n; if (dio->error) { iov_iter_revert(dio->submit.iter, copied); copied = ret = 0; goto out; } bio = iomap_dio_alloc_bio(iter, dio, nr_pages, bio_opf); fscrypt_set_bio_crypt_ctx(bio, inode, pos >> inode->i_blkbits, GFP_KERNEL); bio->bi_iter.bi_sector = iomap_sector(iomap, pos); bio->bi_ioprio = dio->iocb->ki_ioprio; bio->bi_private = dio; bio->bi_end_io = iomap_dio_bio_end_io; ret = bio_iov_iter_get_pages(bio, dio->submit.iter); if (unlikely(ret)) { /* * We have to stop part way through an IO. We must fall * through to the sub-block tail zeroing here, otherwise * this short IO may expose stale data in the tail of * the block we haven't written data to. */ bio_put(bio); goto zero_tail; } n = bio->bi_iter.bi_size; if (dio->flags & IOMAP_DIO_WRITE) { task_io_account_write(n); } else { if (dio->flags & IOMAP_DIO_DIRTY) bio_set_pages_dirty(bio); } dio->size += n; copied += n; nr_pages = bio_iov_vecs_to_alloc(dio->submit.iter, BIO_MAX_VECS); /* * We can only poll for single bio I/Os. */ if (nr_pages) dio->iocb->ki_flags &= ~IOCB_HIPRI; iomap_dio_submit_bio(iter, dio, bio, pos); pos += n; } while (nr_pages); /* * We need to zeroout the tail of a sub-block write if the extent type * requires zeroing or the write extends beyond EOF. If we don't zero * the block tail in the latter case, we can expose stale data via mmap * reads of the EOF block. */ zero_tail: if (need_zeroout || ((dio->flags & IOMAP_DIO_WRITE) && pos >= i_size_read(inode))) { /* zero out from the end of the write to the end of the block */ pad = pos & (fs_block_size - 1); if (pad) iomap_dio_zero(iter, dio, pos, fs_block_size - pad); } out: /* Undo iter limitation to current extent */ iov_iter_reexpand(dio->submit.iter, orig_count - copied); if (copied) return copied; return ret; } static loff_t iomap_dio_hole_iter(const struct iomap_iter *iter, struct iomap_dio *dio) { loff_t length = iov_iter_zero(iomap_length(iter), dio->submit.iter); dio->size += length; if (!length) return -EFAULT; return length; } static loff_t iomap_dio_inline_iter(const struct iomap_iter *iomi, struct iomap_dio *dio) { const struct iomap *iomap = &iomi->iomap; struct iov_iter *iter = dio->submit.iter; void *inline_data = iomap_inline_data(iomap, iomi->pos); loff_t length = iomap_length(iomi); loff_t pos = iomi->pos; size_t copied; if (WARN_ON_ONCE(!iomap_inline_data_valid(iomap))) return -EIO; if (dio->flags & IOMAP_DIO_WRITE) { loff_t size = iomi->inode->i_size; if (pos > size) memset(iomap_inline_data(iomap, size), 0, pos - size); copied = copy_from_iter(inline_data, length, iter); if (copied) { if (pos + copied > size) i_size_write(iomi->inode, pos + copied); mark_inode_dirty(iomi->inode); } } else { copied = copy_to_iter(inline_data, length, iter); } dio->size += copied; if (!copied) return -EFAULT; return copied; } static loff_t iomap_dio_iter(const struct iomap_iter *iter, struct iomap_dio *dio) { switch (iter->iomap.type) { case IOMAP_HOLE: if (WARN_ON_ONCE(dio->flags & IOMAP_DIO_WRITE)) return -EIO; return iomap_dio_hole_iter(iter, dio); case IOMAP_UNWRITTEN: if (!(dio->flags & IOMAP_DIO_WRITE)) return iomap_dio_hole_iter(iter, dio); return iomap_dio_bio_iter(iter, dio); case IOMAP_MAPPED: return iomap_dio_bio_iter(iter, dio); case IOMAP_INLINE: return iomap_dio_inline_iter(iter, dio); case IOMAP_DELALLOC: /* * DIO is not serialised against mmap() access at all, and so * if the page_mkwrite occurs between the writeback and the * iomap_iter() call in the DIO path, then it will see the * DELALLOC block that the page-mkwrite allocated. */ pr_warn_ratelimited("Direct I/O collision with buffered writes! File: %pD4 Comm: %.20s\n", dio->iocb->ki_filp, current->comm); return -EIO; default: WARN_ON_ONCE(1); return -EIO; } } /* * iomap_dio_rw() always completes O_[D]SYNC writes regardless of whether the IO * is being issued as AIO or not. This allows us to optimise pure data writes * to use REQ_FUA rather than requiring generic_write_sync() to issue a * REQ_FLUSH post write. This is slightly tricky because a single request here * can be mapped into multiple disjoint IOs and only a subset of the IOs issued * may be pure data writes. In that case, we still need to do a full data sync * completion. * * When page faults are disabled and @dio_flags includes IOMAP_DIO_PARTIAL, * __iomap_dio_rw can return a partial result if it encounters a non-resident * page in @iter after preparing a transfer. In that case, the non-resident * pages can be faulted in and the request resumed with @done_before set to the * number of bytes previously transferred. The request will then complete with * the correct total number of bytes transferred; this is essential for * completing partial requests asynchronously. * * Returns -ENOTBLK In case of a page invalidation invalidation failure for * writes. The callers needs to fall back to buffered I/O in this case. */ struct iomap_dio * __iomap_dio_rw(struct kiocb *iocb, struct iov_iter *iter, const struct iomap_ops *ops, const struct iomap_dio_ops *dops, unsigned int dio_flags, void *private, size_t done_before) { struct inode *inode = file_inode(iocb->ki_filp); struct iomap_iter iomi = { .inode = inode, .pos = iocb->ki_pos, .len = iov_iter_count(iter), .flags = IOMAP_DIRECT, .private = private, }; bool wait_for_completion = is_sync_kiocb(iocb) || (dio_flags & IOMAP_DIO_FORCE_WAIT); struct blk_plug plug; struct iomap_dio *dio; loff_t ret = 0; trace_iomap_dio_rw_begin(iocb, iter, dio_flags, done_before); if (!iomi.len) return NULL; dio = kmalloc(sizeof(*dio), GFP_KERNEL); if (!dio) return ERR_PTR(-ENOMEM); dio->iocb = iocb; atomic_set(&dio->ref, 1); dio->size = 0; dio->i_size = i_size_read(inode); dio->dops = dops; dio->error = 0; dio->flags = 0; dio->done_before = done_before; dio->submit.iter = iter; dio->submit.waiter = current; if (iocb->ki_flags & IOCB_NOWAIT) iomi.flags |= IOMAP_NOWAIT; if (iov_iter_rw(iter) == READ) { /* reads can always complete inline */ dio->flags |= IOMAP_DIO_INLINE_COMP; if (iomi.pos >= dio->i_size) goto out_free_dio; if (user_backed_iter(iter)) dio->flags |= IOMAP_DIO_DIRTY; ret = kiocb_write_and_wait(iocb, iomi.len); if (ret) goto out_free_dio; } else { iomi.flags |= IOMAP_WRITE; dio->flags |= IOMAP_DIO_WRITE; /* * Flag as supporting deferred completions, if the issuer * groks it. This can avoid a workqueue punt for writes. * We may later clear this flag if we need to do other IO * as part of this IO completion. */ if (iocb->ki_flags & IOCB_DIO_CALLER_COMP) dio->flags |= IOMAP_DIO_CALLER_COMP; if (dio_flags & IOMAP_DIO_OVERWRITE_ONLY) { ret = -EAGAIN; if (iomi.pos >= dio->i_size || iomi.pos + iomi.len > dio->i_size) goto out_free_dio; iomi.flags |= IOMAP_OVERWRITE_ONLY; } /* for data sync or sync, we need sync completion processing */ if (iocb_is_dsync(iocb)) { dio->flags |= IOMAP_DIO_NEED_SYNC; /* * For datasync only writes, we optimistically try using * WRITE_THROUGH for this IO. This flag requires either * FUA writes through the device's write cache, or a * normal write to a device without a volatile write * cache. For the former, Any non-FUA write that occurs * will clear this flag, hence we know before completion * whether a cache flush is necessary. */ if (!(iocb->ki_flags & IOCB_SYNC)) dio->flags |= IOMAP_DIO_WRITE_THROUGH; } /* * Try to invalidate cache pages for the range we are writing. * If this invalidation fails, let the caller fall back to * buffered I/O. */ ret = kiocb_invalidate_pages(iocb, iomi.len); if (ret) { if (ret != -EAGAIN) { trace_iomap_dio_invalidate_fail(inode, iomi.pos, iomi.len); ret = -ENOTBLK; } goto out_free_dio; } if (!wait_for_completion && !inode->i_sb->s_dio_done_wq) { ret = sb_init_dio_done_wq(inode->i_sb); if (ret < 0) goto out_free_dio; } } inode_dio_begin(inode); blk_start_plug(&plug); while ((ret = iomap_iter(&iomi, ops)) > 0) { iomi.processed = iomap_dio_iter(&iomi, dio); /* * We can only poll for single bio I/Os. */ iocb->ki_flags &= ~IOCB_HIPRI; } blk_finish_plug(&plug); /* * We only report that we've read data up to i_size. * Revert iter to a state corresponding to that as some callers (such * as the splice code) rely on it. */ if (iov_iter_rw(iter) == READ && iomi.pos >= dio->i_size) iov_iter_revert(iter, iomi.pos - dio->i_size); if (ret == -EFAULT && dio->size && (dio_flags & IOMAP_DIO_PARTIAL)) { if (!(iocb->ki_flags & IOCB_NOWAIT)) wait_for_completion = true; ret = 0; } /* magic error code to fall back to buffered I/O */ if (ret == -ENOTBLK) { wait_for_completion = true; ret = 0; } if (ret < 0) iomap_dio_set_error(dio, ret); /* * If all the writes we issued were already written through to the * media, we don't need to flush the cache on IO completion. Clear the * sync flag for this case. */ if (dio->flags & IOMAP_DIO_WRITE_THROUGH) dio->flags &= ~IOMAP_DIO_NEED_SYNC; /* * We are about to drop our additional submission reference, which * might be the last reference to the dio. There are three different * ways we can progress here: * * (a) If this is the last reference we will always complete and free * the dio ourselves. * (b) If this is not the last reference, and we serve an asynchronous * iocb, we must never touch the dio after the decrement, the * I/O completion handler will complete and free it. * (c) If this is not the last reference, but we serve a synchronous * iocb, the I/O completion handler will wake us up on the drop * of the final reference, and we will complete and free it here * after we got woken by the I/O completion handler. */ dio->wait_for_completion = wait_for_completion; if (!atomic_dec_and_test(&dio->ref)) { if (!wait_for_completion) { trace_iomap_dio_rw_queued(inode, iomi.pos, iomi.len); return ERR_PTR(-EIOCBQUEUED); } for (;;) { set_current_state(TASK_UNINTERRUPTIBLE); if (!READ_ONCE(dio->submit.waiter)) break; blk_io_schedule(); } __set_current_state(TASK_RUNNING); } return dio; out_free_dio: kfree(dio); if (ret) return ERR_PTR(ret); return NULL; } EXPORT_SYMBOL_GPL(__iomap_dio_rw); ssize_t iomap_dio_rw(struct kiocb *iocb, struct iov_iter *iter, const struct iomap_ops *ops, const struct iomap_dio_ops *dops, unsigned int dio_flags, void *private, size_t done_before) { struct iomap_dio *dio; dio = __iomap_dio_rw(iocb, iter, ops, dops, dio_flags, private, done_before); if (IS_ERR_OR_NULL(dio)) return PTR_ERR_OR_ZERO(dio); return iomap_dio_complete(dio); } EXPORT_SYMBOL_GPL(iomap_dio_rw);
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1