Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Ryusuke Konishi | 5608 | 91.51% | 65 | 48.87% |
Matthew Wilcox | 100 | 1.63% | 7 | 5.26% |
Al Viro | 52 | 0.85% | 8 | 6.02% |
Christoph Hellwig | 50 | 0.82% | 8 | 6.02% |
Andreas Rohner | 47 | 0.77% | 2 | 1.50% |
Vyacheslav Dubeyko | 44 | 0.72% | 2 | 1.50% |
Jeff Layton | 44 | 0.72% | 2 | 1.50% |
Marco Stornelli | 42 | 0.69% | 1 | 0.75% |
Christian Brauner | 22 | 0.36% | 7 | 5.26% |
Eric W. Biedermann | 14 | 0.23% | 1 | 0.75% |
David Howells | 9 | 0.15% | 2 | 1.50% |
Andrew Morton | 9 | 0.15% | 4 | 3.01% |
Eric Biggers | 8 | 0.13% | 1 | 0.75% |
Miklos Szeredi | 7 | 0.11% | 2 | 1.50% |
Fabian Frederick | 6 | 0.10% | 1 | 0.75% |
Linus Torvalds | 6 | 0.10% | 2 | 1.50% |
Michal Hocko | 6 | 0.10% | 1 | 0.75% |
Joe Perches | 6 | 0.10% | 1 | 0.75% |
Alexey Dobriyan | 6 | 0.10% | 2 | 1.50% |
Deepa Dinamani | 6 | 0.10% | 1 | 0.75% |
Hisashi Hifumi | 5 | 0.08% | 1 | 0.75% |
Jan Kara | 4 | 0.07% | 2 | 1.50% |
Omar Sandoval | 4 | 0.07% | 1 | 0.75% |
Koji Sato | 4 | 0.07% | 1 | 0.75% |
Dmitriy Monakhov | 4 | 0.07% | 1 | 0.75% |
Avi Kivity | 3 | 0.05% | 1 | 0.75% |
Mark Fasheh | 3 | 0.05% | 1 | 0.75% |
Li Yang | 3 | 0.05% | 1 | 0.75% |
Jiro SEKIBA | 2 | 0.03% | 1 | 0.75% |
Johannes Weiner | 2 | 0.03% | 1 | 0.75% |
Nicolas Kaiser | 1 | 0.02% | 1 | 0.75% |
Kirill A. Shutemov | 1 | 0.02% | 1 | 0.75% |
Total | 6128 | 133 |
// SPDX-License-Identifier: GPL-2.0+ /* * NILFS inode operations. * * Copyright (C) 2005-2008 Nippon Telegraph and Telephone Corporation. * * Written by Ryusuke Konishi. * */ #include <linux/buffer_head.h> #include <linux/gfp.h> #include <linux/mpage.h> #include <linux/pagemap.h> #include <linux/writeback.h> #include <linux/uio.h> #include <linux/fiemap.h> #include "nilfs.h" #include "btnode.h" #include "segment.h" #include "page.h" #include "mdt.h" #include "cpfile.h" #include "ifile.h" /** * struct nilfs_iget_args - arguments used during comparison between inodes * @ino: inode number * @cno: checkpoint number * @root: pointer on NILFS root object (mounted checkpoint) * @for_gc: inode for GC flag * @for_btnc: inode for B-tree node cache flag * @for_shadow: inode for shadowed page cache flag */ struct nilfs_iget_args { u64 ino; __u64 cno; struct nilfs_root *root; bool for_gc; bool for_btnc; bool for_shadow; }; static int nilfs_iget_test(struct inode *inode, void *opaque); void nilfs_inode_add_blocks(struct inode *inode, int n) { struct nilfs_root *root = NILFS_I(inode)->i_root; inode_add_bytes(inode, i_blocksize(inode) * n); if (root) atomic64_add(n, &root->blocks_count); } void nilfs_inode_sub_blocks(struct inode *inode, int n) { struct nilfs_root *root = NILFS_I(inode)->i_root; inode_sub_bytes(inode, i_blocksize(inode) * n); if (root) atomic64_sub(n, &root->blocks_count); } /** * nilfs_get_block() - get a file block on the filesystem (callback function) * @inode: inode struct of the target file * @blkoff: file block number * @bh_result: buffer head to be mapped on * @create: indicate whether allocating the block or not when it has not * been allocated yet. * * This function does not issue actual read request of the specified data * block. It is done by VFS. */ int nilfs_get_block(struct inode *inode, sector_t blkoff, struct buffer_head *bh_result, int create) { struct nilfs_inode_info *ii = NILFS_I(inode); struct the_nilfs *nilfs = inode->i_sb->s_fs_info; __u64 blknum = 0; int err = 0, ret; unsigned int maxblocks = bh_result->b_size >> inode->i_blkbits; down_read(&NILFS_MDT(nilfs->ns_dat)->mi_sem); ret = nilfs_bmap_lookup_contig(ii->i_bmap, blkoff, &blknum, maxblocks); up_read(&NILFS_MDT(nilfs->ns_dat)->mi_sem); if (ret >= 0) { /* found */ map_bh(bh_result, inode->i_sb, blknum); if (ret > 0) bh_result->b_size = (ret << inode->i_blkbits); goto out; } /* data block was not found */ if (ret == -ENOENT && create) { struct nilfs_transaction_info ti; bh_result->b_blocknr = 0; err = nilfs_transaction_begin(inode->i_sb, &ti, 1); if (unlikely(err)) goto out; err = nilfs_bmap_insert(ii->i_bmap, blkoff, (unsigned long)bh_result); if (unlikely(err != 0)) { if (err == -EEXIST) { /* * The get_block() function could be called * from multiple callers for an inode. * However, the page having this block must * be locked in this case. */ nilfs_warn(inode->i_sb, "%s (ino=%lu): a race condition while inserting a data block at offset=%llu", __func__, inode->i_ino, (unsigned long long)blkoff); err = 0; } nilfs_transaction_abort(inode->i_sb); goto out; } nilfs_mark_inode_dirty_sync(inode); nilfs_transaction_commit(inode->i_sb); /* never fails */ /* Error handling should be detailed */ set_buffer_new(bh_result); set_buffer_delay(bh_result); map_bh(bh_result, inode->i_sb, 0); /* Disk block number must be changed to proper value */ } else if (ret == -ENOENT) { /* * not found is not error (e.g. hole); must return without * the mapped state flag. */ ; } else { err = ret; } out: return err; } /** * nilfs_read_folio() - implement read_folio() method of nilfs_aops {} * address_space_operations. * @file: file struct of the file to be read * @folio: the folio to be read */ static int nilfs_read_folio(struct file *file, struct folio *folio) { return mpage_read_folio(folio, nilfs_get_block); } static void nilfs_readahead(struct readahead_control *rac) { mpage_readahead(rac, nilfs_get_block); } static int nilfs_writepages(struct address_space *mapping, struct writeback_control *wbc) { struct inode *inode = mapping->host; int err = 0; if (sb_rdonly(inode->i_sb)) { nilfs_clear_dirty_pages(mapping, false); return -EROFS; } if (wbc->sync_mode == WB_SYNC_ALL) err = nilfs_construct_dsync_segment(inode->i_sb, inode, wbc->range_start, wbc->range_end); return err; } static int nilfs_writepage(struct page *page, struct writeback_control *wbc) { struct folio *folio = page_folio(page); struct inode *inode = folio->mapping->host; int err; if (sb_rdonly(inode->i_sb)) { /* * It means that filesystem was remounted in read-only * mode because of error or metadata corruption. But we * have dirty pages that try to be flushed in background. * So, here we simply discard this dirty page. */ nilfs_clear_folio_dirty(folio, false); folio_unlock(folio); return -EROFS; } folio_redirty_for_writepage(wbc, folio); folio_unlock(folio); if (wbc->sync_mode == WB_SYNC_ALL) { err = nilfs_construct_segment(inode->i_sb); if (unlikely(err)) return err; } else if (wbc->for_reclaim) nilfs_flush_segment(inode->i_sb, inode->i_ino); return 0; } static bool nilfs_dirty_folio(struct address_space *mapping, struct folio *folio) { struct inode *inode = mapping->host; struct buffer_head *head; unsigned int nr_dirty = 0; bool ret = filemap_dirty_folio(mapping, folio); /* * The page may not be locked, eg if called from try_to_unmap_one() */ spin_lock(&mapping->i_private_lock); head = folio_buffers(folio); if (head) { struct buffer_head *bh = head; do { /* Do not mark hole blocks dirty */ if (buffer_dirty(bh) || !buffer_mapped(bh)) continue; set_buffer_dirty(bh); nr_dirty++; } while (bh = bh->b_this_page, bh != head); } else if (ret) { nr_dirty = 1 << (folio_shift(folio) - inode->i_blkbits); } spin_unlock(&mapping->i_private_lock); if (nr_dirty) nilfs_set_file_dirty(inode, nr_dirty); return ret; } void nilfs_write_failed(struct address_space *mapping, loff_t to) { struct inode *inode = mapping->host; if (to > inode->i_size) { truncate_pagecache(inode, inode->i_size); nilfs_truncate(inode); } } static int nilfs_write_begin(struct file *file, struct address_space *mapping, loff_t pos, unsigned len, struct page **pagep, void **fsdata) { struct inode *inode = mapping->host; int err = nilfs_transaction_begin(inode->i_sb, NULL, 1); if (unlikely(err)) return err; err = block_write_begin(mapping, pos, len, pagep, nilfs_get_block); if (unlikely(err)) { nilfs_write_failed(mapping, pos + len); nilfs_transaction_abort(inode->i_sb); } return err; } static int nilfs_write_end(struct file *file, struct address_space *mapping, loff_t pos, unsigned len, unsigned copied, struct page *page, void *fsdata) { struct inode *inode = mapping->host; unsigned int start = pos & (PAGE_SIZE - 1); unsigned int nr_dirty; int err; nr_dirty = nilfs_page_count_clean_buffers(page, start, start + copied); copied = generic_write_end(file, mapping, pos, len, copied, page, fsdata); nilfs_set_file_dirty(inode, nr_dirty); err = nilfs_transaction_commit(inode->i_sb); return err ? : copied; } static ssize_t nilfs_direct_IO(struct kiocb *iocb, struct iov_iter *iter) { struct inode *inode = file_inode(iocb->ki_filp); if (iov_iter_rw(iter) == WRITE) return 0; /* Needs synchronization with the cleaner */ return blockdev_direct_IO(iocb, inode, iter, nilfs_get_block); } const struct address_space_operations nilfs_aops = { .writepage = nilfs_writepage, .read_folio = nilfs_read_folio, .writepages = nilfs_writepages, .dirty_folio = nilfs_dirty_folio, .readahead = nilfs_readahead, .write_begin = nilfs_write_begin, .write_end = nilfs_write_end, .invalidate_folio = block_invalidate_folio, .direct_IO = nilfs_direct_IO, .is_partially_uptodate = block_is_partially_uptodate, }; static int nilfs_insert_inode_locked(struct inode *inode, struct nilfs_root *root, unsigned long ino) { struct nilfs_iget_args args = { .ino = ino, .root = root, .cno = 0, .for_gc = false, .for_btnc = false, .for_shadow = false }; return insert_inode_locked4(inode, ino, nilfs_iget_test, &args); } struct inode *nilfs_new_inode(struct inode *dir, umode_t mode) { struct super_block *sb = dir->i_sb; struct the_nilfs *nilfs = sb->s_fs_info; struct inode *inode; struct nilfs_inode_info *ii; struct nilfs_root *root; struct buffer_head *bh; int err = -ENOMEM; ino_t ino; inode = new_inode(sb); if (unlikely(!inode)) goto failed; mapping_set_gfp_mask(inode->i_mapping, mapping_gfp_constraint(inode->i_mapping, ~__GFP_FS)); root = NILFS_I(dir)->i_root; ii = NILFS_I(inode); ii->i_state = BIT(NILFS_I_NEW); ii->i_root = root; err = nilfs_ifile_create_inode(root->ifile, &ino, &bh); if (unlikely(err)) goto failed_ifile_create_inode; /* reference count of i_bh inherits from nilfs_mdt_read_block() */ if (unlikely(ino < NILFS_USER_INO)) { nilfs_warn(sb, "inode bitmap is inconsistent for reserved inodes"); do { brelse(bh); err = nilfs_ifile_create_inode(root->ifile, &ino, &bh); if (unlikely(err)) goto failed_ifile_create_inode; } while (ino < NILFS_USER_INO); nilfs_info(sb, "repaired inode bitmap for reserved inodes"); } ii->i_bh = bh; atomic64_inc(&root->inodes_count); inode_init_owner(&nop_mnt_idmap, inode, dir, mode); inode->i_ino = ino; simple_inode_init_ts(inode); if (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode)) { err = nilfs_bmap_read(ii->i_bmap, NULL); if (err < 0) goto failed_after_creation; set_bit(NILFS_I_BMAP, &ii->i_state); /* No lock is needed; iget() ensures it. */ } ii->i_flags = nilfs_mask_flags( mode, NILFS_I(dir)->i_flags & NILFS_FL_INHERITED); /* ii->i_file_acl = 0; */ /* ii->i_dir_acl = 0; */ ii->i_dir_start_lookup = 0; nilfs_set_inode_flags(inode); spin_lock(&nilfs->ns_next_gen_lock); inode->i_generation = nilfs->ns_next_generation++; spin_unlock(&nilfs->ns_next_gen_lock); if (nilfs_insert_inode_locked(inode, root, ino) < 0) { err = -EIO; goto failed_after_creation; } err = nilfs_init_acl(inode, dir); if (unlikely(err)) /* * Never occur. When supporting nilfs_init_acl(), * proper cancellation of above jobs should be considered. */ goto failed_after_creation; return inode; failed_after_creation: clear_nlink(inode); if (inode->i_state & I_NEW) unlock_new_inode(inode); iput(inode); /* * raw_inode will be deleted through * nilfs_evict_inode(). */ goto failed; failed_ifile_create_inode: make_bad_inode(inode); iput(inode); failed: return ERR_PTR(err); } void nilfs_set_inode_flags(struct inode *inode) { unsigned int flags = NILFS_I(inode)->i_flags; unsigned int new_fl = 0; if (flags & FS_SYNC_FL) new_fl |= S_SYNC; if (flags & FS_APPEND_FL) new_fl |= S_APPEND; if (flags & FS_IMMUTABLE_FL) new_fl |= S_IMMUTABLE; if (flags & FS_NOATIME_FL) new_fl |= S_NOATIME; if (flags & FS_DIRSYNC_FL) new_fl |= S_DIRSYNC; inode_set_flags(inode, new_fl, S_SYNC | S_APPEND | S_IMMUTABLE | S_NOATIME | S_DIRSYNC); } int nilfs_read_inode_common(struct inode *inode, struct nilfs_inode *raw_inode) { struct nilfs_inode_info *ii = NILFS_I(inode); int err; inode->i_mode = le16_to_cpu(raw_inode->i_mode); i_uid_write(inode, le32_to_cpu(raw_inode->i_uid)); i_gid_write(inode, le32_to_cpu(raw_inode->i_gid)); set_nlink(inode, le16_to_cpu(raw_inode->i_links_count)); inode->i_size = le64_to_cpu(raw_inode->i_size); inode_set_atime(inode, le64_to_cpu(raw_inode->i_mtime), le32_to_cpu(raw_inode->i_mtime_nsec)); inode_set_ctime(inode, le64_to_cpu(raw_inode->i_ctime), le32_to_cpu(raw_inode->i_ctime_nsec)); inode_set_mtime(inode, le64_to_cpu(raw_inode->i_mtime), le32_to_cpu(raw_inode->i_mtime_nsec)); if (nilfs_is_metadata_file_inode(inode) && !S_ISREG(inode->i_mode)) return -EIO; /* this inode is for metadata and corrupted */ if (inode->i_nlink == 0) return -ESTALE; /* this inode is deleted */ inode->i_blocks = le64_to_cpu(raw_inode->i_blocks); ii->i_flags = le32_to_cpu(raw_inode->i_flags); #if 0 ii->i_file_acl = le32_to_cpu(raw_inode->i_file_acl); ii->i_dir_acl = S_ISREG(inode->i_mode) ? 0 : le32_to_cpu(raw_inode->i_dir_acl); #endif ii->i_dir_start_lookup = 0; inode->i_generation = le32_to_cpu(raw_inode->i_generation); if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) || S_ISLNK(inode->i_mode)) { err = nilfs_bmap_read(ii->i_bmap, raw_inode); if (err < 0) return err; set_bit(NILFS_I_BMAP, &ii->i_state); /* No lock is needed; iget() ensures it. */ } return 0; } static int __nilfs_read_inode(struct super_block *sb, struct nilfs_root *root, unsigned long ino, struct inode *inode) { struct the_nilfs *nilfs = sb->s_fs_info; struct buffer_head *bh; struct nilfs_inode *raw_inode; int err; down_read(&NILFS_MDT(nilfs->ns_dat)->mi_sem); err = nilfs_ifile_get_inode_block(root->ifile, ino, &bh); if (unlikely(err)) goto bad_inode; raw_inode = nilfs_ifile_map_inode(root->ifile, ino, bh); err = nilfs_read_inode_common(inode, raw_inode); if (err) goto failed_unmap; if (S_ISREG(inode->i_mode)) { inode->i_op = &nilfs_file_inode_operations; inode->i_fop = &nilfs_file_operations; inode->i_mapping->a_ops = &nilfs_aops; } else if (S_ISDIR(inode->i_mode)) { inode->i_op = &nilfs_dir_inode_operations; inode->i_fop = &nilfs_dir_operations; inode->i_mapping->a_ops = &nilfs_aops; } else if (S_ISLNK(inode->i_mode)) { inode->i_op = &nilfs_symlink_inode_operations; inode_nohighmem(inode); inode->i_mapping->a_ops = &nilfs_aops; } else { inode->i_op = &nilfs_special_inode_operations; init_special_inode( inode, inode->i_mode, huge_decode_dev(le64_to_cpu(raw_inode->i_device_code))); } nilfs_ifile_unmap_inode(root->ifile, ino, bh); brelse(bh); up_read(&NILFS_MDT(nilfs->ns_dat)->mi_sem); nilfs_set_inode_flags(inode); mapping_set_gfp_mask(inode->i_mapping, mapping_gfp_constraint(inode->i_mapping, ~__GFP_FS)); return 0; failed_unmap: nilfs_ifile_unmap_inode(root->ifile, ino, bh); brelse(bh); bad_inode: up_read(&NILFS_MDT(nilfs->ns_dat)->mi_sem); return err; } static int nilfs_iget_test(struct inode *inode, void *opaque) { struct nilfs_iget_args *args = opaque; struct nilfs_inode_info *ii; if (args->ino != inode->i_ino || args->root != NILFS_I(inode)->i_root) return 0; ii = NILFS_I(inode); if (test_bit(NILFS_I_BTNC, &ii->i_state)) { if (!args->for_btnc) return 0; } else if (args->for_btnc) { return 0; } if (test_bit(NILFS_I_SHADOW, &ii->i_state)) { if (!args->for_shadow) return 0; } else if (args->for_shadow) { return 0; } if (!test_bit(NILFS_I_GCINODE, &ii->i_state)) return !args->for_gc; return args->for_gc && args->cno == ii->i_cno; } static int nilfs_iget_set(struct inode *inode, void *opaque) { struct nilfs_iget_args *args = opaque; inode->i_ino = args->ino; NILFS_I(inode)->i_cno = args->cno; NILFS_I(inode)->i_root = args->root; if (args->root && args->ino == NILFS_ROOT_INO) nilfs_get_root(args->root); if (args->for_gc) NILFS_I(inode)->i_state = BIT(NILFS_I_GCINODE); if (args->for_btnc) NILFS_I(inode)->i_state |= BIT(NILFS_I_BTNC); if (args->for_shadow) NILFS_I(inode)->i_state |= BIT(NILFS_I_SHADOW); return 0; } struct inode *nilfs_ilookup(struct super_block *sb, struct nilfs_root *root, unsigned long ino) { struct nilfs_iget_args args = { .ino = ino, .root = root, .cno = 0, .for_gc = false, .for_btnc = false, .for_shadow = false }; return ilookup5(sb, ino, nilfs_iget_test, &args); } struct inode *nilfs_iget_locked(struct super_block *sb, struct nilfs_root *root, unsigned long ino) { struct nilfs_iget_args args = { .ino = ino, .root = root, .cno = 0, .for_gc = false, .for_btnc = false, .for_shadow = false }; return iget5_locked(sb, ino, nilfs_iget_test, nilfs_iget_set, &args); } struct inode *nilfs_iget(struct super_block *sb, struct nilfs_root *root, unsigned long ino) { struct inode *inode; int err; inode = nilfs_iget_locked(sb, root, ino); if (unlikely(!inode)) return ERR_PTR(-ENOMEM); if (!(inode->i_state & I_NEW)) return inode; err = __nilfs_read_inode(sb, root, ino, inode); if (unlikely(err)) { iget_failed(inode); return ERR_PTR(err); } unlock_new_inode(inode); return inode; } struct inode *nilfs_iget_for_gc(struct super_block *sb, unsigned long ino, __u64 cno) { struct nilfs_iget_args args = { .ino = ino, .root = NULL, .cno = cno, .for_gc = true, .for_btnc = false, .for_shadow = false }; struct inode *inode; int err; inode = iget5_locked(sb, ino, nilfs_iget_test, nilfs_iget_set, &args); if (unlikely(!inode)) return ERR_PTR(-ENOMEM); if (!(inode->i_state & I_NEW)) return inode; err = nilfs_init_gcinode(inode); if (unlikely(err)) { iget_failed(inode); return ERR_PTR(err); } unlock_new_inode(inode); return inode; } /** * nilfs_attach_btree_node_cache - attach a B-tree node cache to the inode * @inode: inode object * * nilfs_attach_btree_node_cache() attaches a B-tree node cache to @inode, * or does nothing if the inode already has it. This function allocates * an additional inode to maintain page cache of B-tree nodes one-on-one. * * Return Value: On success, 0 is returned. On errors, one of the following * negative error code is returned. * * %-ENOMEM - Insufficient memory available. */ int nilfs_attach_btree_node_cache(struct inode *inode) { struct nilfs_inode_info *ii = NILFS_I(inode); struct inode *btnc_inode; struct nilfs_iget_args args; if (ii->i_assoc_inode) return 0; args.ino = inode->i_ino; args.root = ii->i_root; args.cno = ii->i_cno; args.for_gc = test_bit(NILFS_I_GCINODE, &ii->i_state) != 0; args.for_btnc = true; args.for_shadow = test_bit(NILFS_I_SHADOW, &ii->i_state) != 0; btnc_inode = iget5_locked(inode->i_sb, inode->i_ino, nilfs_iget_test, nilfs_iget_set, &args); if (unlikely(!btnc_inode)) return -ENOMEM; if (btnc_inode->i_state & I_NEW) { nilfs_init_btnc_inode(btnc_inode); unlock_new_inode(btnc_inode); } NILFS_I(btnc_inode)->i_assoc_inode = inode; NILFS_I(btnc_inode)->i_bmap = ii->i_bmap; ii->i_assoc_inode = btnc_inode; return 0; } /** * nilfs_detach_btree_node_cache - detach the B-tree node cache from the inode * @inode: inode object * * nilfs_detach_btree_node_cache() detaches the B-tree node cache and its * holder inode bound to @inode, or does nothing if @inode doesn't have it. */ void nilfs_detach_btree_node_cache(struct inode *inode) { struct nilfs_inode_info *ii = NILFS_I(inode); struct inode *btnc_inode = ii->i_assoc_inode; if (btnc_inode) { NILFS_I(btnc_inode)->i_assoc_inode = NULL; ii->i_assoc_inode = NULL; iput(btnc_inode); } } /** * nilfs_iget_for_shadow - obtain inode for shadow mapping * @inode: inode object that uses shadow mapping * * nilfs_iget_for_shadow() allocates a pair of inodes that holds page * caches for shadow mapping. The page cache for data pages is set up * in one inode and the one for b-tree node pages is set up in the * other inode, which is attached to the former inode. * * Return Value: On success, a pointer to the inode for data pages is * returned. On errors, one of the following negative error code is returned * in a pointer type. * * %-ENOMEM - Insufficient memory available. */ struct inode *nilfs_iget_for_shadow(struct inode *inode) { struct nilfs_iget_args args = { .ino = inode->i_ino, .root = NULL, .cno = 0, .for_gc = false, .for_btnc = false, .for_shadow = true }; struct inode *s_inode; int err; s_inode = iget5_locked(inode->i_sb, inode->i_ino, nilfs_iget_test, nilfs_iget_set, &args); if (unlikely(!s_inode)) return ERR_PTR(-ENOMEM); if (!(s_inode->i_state & I_NEW)) return inode; NILFS_I(s_inode)->i_flags = 0; memset(NILFS_I(s_inode)->i_bmap, 0, sizeof(struct nilfs_bmap)); mapping_set_gfp_mask(s_inode->i_mapping, GFP_NOFS); err = nilfs_attach_btree_node_cache(s_inode); if (unlikely(err)) { iget_failed(s_inode); return ERR_PTR(err); } unlock_new_inode(s_inode); return s_inode; } void nilfs_write_inode_common(struct inode *inode, struct nilfs_inode *raw_inode, int has_bmap) { struct nilfs_inode_info *ii = NILFS_I(inode); raw_inode->i_mode = cpu_to_le16(inode->i_mode); raw_inode->i_uid = cpu_to_le32(i_uid_read(inode)); raw_inode->i_gid = cpu_to_le32(i_gid_read(inode)); raw_inode->i_links_count = cpu_to_le16(inode->i_nlink); raw_inode->i_size = cpu_to_le64(inode->i_size); raw_inode->i_ctime = cpu_to_le64(inode_get_ctime_sec(inode)); raw_inode->i_mtime = cpu_to_le64(inode_get_mtime_sec(inode)); raw_inode->i_ctime_nsec = cpu_to_le32(inode_get_ctime_nsec(inode)); raw_inode->i_mtime_nsec = cpu_to_le32(inode_get_mtime_nsec(inode)); raw_inode->i_blocks = cpu_to_le64(inode->i_blocks); raw_inode->i_flags = cpu_to_le32(ii->i_flags); raw_inode->i_generation = cpu_to_le32(inode->i_generation); if (NILFS_ROOT_METADATA_FILE(inode->i_ino)) { struct the_nilfs *nilfs = inode->i_sb->s_fs_info; /* zero-fill unused portion in the case of super root block */ raw_inode->i_xattr = 0; raw_inode->i_pad = 0; memset((void *)raw_inode + sizeof(*raw_inode), 0, nilfs->ns_inode_size - sizeof(*raw_inode)); } if (has_bmap) nilfs_bmap_write(ii->i_bmap, raw_inode); else if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) raw_inode->i_device_code = cpu_to_le64(huge_encode_dev(inode->i_rdev)); /* * When extending inode, nilfs->ns_inode_size should be checked * for substitutions of appended fields. */ } void nilfs_update_inode(struct inode *inode, struct buffer_head *ibh, int flags) { ino_t ino = inode->i_ino; struct nilfs_inode_info *ii = NILFS_I(inode); struct inode *ifile = ii->i_root->ifile; struct nilfs_inode *raw_inode; raw_inode = nilfs_ifile_map_inode(ifile, ino, ibh); if (test_and_clear_bit(NILFS_I_NEW, &ii->i_state)) memset(raw_inode, 0, NILFS_MDT(ifile)->mi_entry_size); if (flags & I_DIRTY_DATASYNC) set_bit(NILFS_I_INODE_SYNC, &ii->i_state); nilfs_write_inode_common(inode, raw_inode, 0); /* * XXX: call with has_bmap = 0 is a workaround to avoid * deadlock of bmap. This delays update of i_bmap to just * before writing. */ nilfs_ifile_unmap_inode(ifile, ino, ibh); } #define NILFS_MAX_TRUNCATE_BLOCKS 16384 /* 64MB for 4KB block */ static void nilfs_truncate_bmap(struct nilfs_inode_info *ii, unsigned long from) { __u64 b; int ret; if (!test_bit(NILFS_I_BMAP, &ii->i_state)) return; repeat: ret = nilfs_bmap_last_key(ii->i_bmap, &b); if (ret == -ENOENT) return; else if (ret < 0) goto failed; if (b < from) return; b -= min_t(__u64, NILFS_MAX_TRUNCATE_BLOCKS, b - from); ret = nilfs_bmap_truncate(ii->i_bmap, b); nilfs_relax_pressure_in_lock(ii->vfs_inode.i_sb); if (!ret || (ret == -ENOMEM && nilfs_bmap_truncate(ii->i_bmap, b) == 0)) goto repeat; failed: nilfs_warn(ii->vfs_inode.i_sb, "error %d truncating bmap (ino=%lu)", ret, ii->vfs_inode.i_ino); } void nilfs_truncate(struct inode *inode) { unsigned long blkoff; unsigned int blocksize; struct nilfs_transaction_info ti; struct super_block *sb = inode->i_sb; struct nilfs_inode_info *ii = NILFS_I(inode); if (!test_bit(NILFS_I_BMAP, &ii->i_state)) return; if (IS_APPEND(inode) || IS_IMMUTABLE(inode)) return; blocksize = sb->s_blocksize; blkoff = (inode->i_size + blocksize - 1) >> sb->s_blocksize_bits; nilfs_transaction_begin(sb, &ti, 0); /* never fails */ block_truncate_page(inode->i_mapping, inode->i_size, nilfs_get_block); nilfs_truncate_bmap(ii, blkoff); inode_set_mtime_to_ts(inode, inode_set_ctime_current(inode)); if (IS_SYNC(inode)) nilfs_set_transaction_flag(NILFS_TI_SYNC); nilfs_mark_inode_dirty(inode); nilfs_set_file_dirty(inode, 0); nilfs_transaction_commit(sb); /* * May construct a logical segment and may fail in sync mode. * But truncate has no return value. */ } static void nilfs_clear_inode(struct inode *inode) { struct nilfs_inode_info *ii = NILFS_I(inode); /* * Free resources allocated in nilfs_read_inode(), here. */ BUG_ON(!list_empty(&ii->i_dirty)); brelse(ii->i_bh); ii->i_bh = NULL; if (nilfs_is_metadata_file_inode(inode)) nilfs_mdt_clear(inode); if (test_bit(NILFS_I_BMAP, &ii->i_state)) nilfs_bmap_clear(ii->i_bmap); if (!test_bit(NILFS_I_BTNC, &ii->i_state)) nilfs_detach_btree_node_cache(inode); if (ii->i_root && inode->i_ino == NILFS_ROOT_INO) nilfs_put_root(ii->i_root); } void nilfs_evict_inode(struct inode *inode) { struct nilfs_transaction_info ti; struct super_block *sb = inode->i_sb; struct nilfs_inode_info *ii = NILFS_I(inode); struct the_nilfs *nilfs; int ret; if (inode->i_nlink || !ii->i_root || unlikely(is_bad_inode(inode))) { truncate_inode_pages_final(&inode->i_data); clear_inode(inode); nilfs_clear_inode(inode); return; } nilfs_transaction_begin(sb, &ti, 0); /* never fails */ truncate_inode_pages_final(&inode->i_data); nilfs = sb->s_fs_info; if (unlikely(sb_rdonly(sb) || !nilfs->ns_writer)) { /* * If this inode is about to be disposed after the file system * has been degraded to read-only due to file system corruption * or after the writer has been detached, do not make any * changes that cause writes, just clear it. * Do this check after read-locking ns_segctor_sem by * nilfs_transaction_begin() in order to avoid a race with * the writer detach operation. */ clear_inode(inode); nilfs_clear_inode(inode); nilfs_transaction_abort(sb); return; } /* TODO: some of the following operations may fail. */ nilfs_truncate_bmap(ii, 0); nilfs_mark_inode_dirty(inode); clear_inode(inode); ret = nilfs_ifile_delete_inode(ii->i_root->ifile, inode->i_ino); if (!ret) atomic64_dec(&ii->i_root->inodes_count); nilfs_clear_inode(inode); if (IS_SYNC(inode)) nilfs_set_transaction_flag(NILFS_TI_SYNC); nilfs_transaction_commit(sb); /* * May construct a logical segment and may fail in sync mode. * But delete_inode has no return value. */ } int nilfs_setattr(struct mnt_idmap *idmap, struct dentry *dentry, struct iattr *iattr) { struct nilfs_transaction_info ti; struct inode *inode = d_inode(dentry); struct super_block *sb = inode->i_sb; int err; err = setattr_prepare(&nop_mnt_idmap, dentry, iattr); if (err) return err; err = nilfs_transaction_begin(sb, &ti, 0); if (unlikely(err)) return err; if ((iattr->ia_valid & ATTR_SIZE) && iattr->ia_size != i_size_read(inode)) { inode_dio_wait(inode); truncate_setsize(inode, iattr->ia_size); nilfs_truncate(inode); } setattr_copy(&nop_mnt_idmap, inode, iattr); mark_inode_dirty(inode); if (iattr->ia_valid & ATTR_MODE) { err = nilfs_acl_chmod(inode); if (unlikely(err)) goto out_err; } return nilfs_transaction_commit(sb); out_err: nilfs_transaction_abort(sb); return err; } int nilfs_permission(struct mnt_idmap *idmap, struct inode *inode, int mask) { struct nilfs_root *root = NILFS_I(inode)->i_root; if ((mask & MAY_WRITE) && root && root->cno != NILFS_CPTREE_CURRENT_CNO) return -EROFS; /* snapshot is not writable */ return generic_permission(&nop_mnt_idmap, inode, mask); } int nilfs_load_inode_block(struct inode *inode, struct buffer_head **pbh) { struct the_nilfs *nilfs = inode->i_sb->s_fs_info; struct nilfs_inode_info *ii = NILFS_I(inode); int err; spin_lock(&nilfs->ns_inode_lock); if (ii->i_bh == NULL || unlikely(!buffer_uptodate(ii->i_bh))) { spin_unlock(&nilfs->ns_inode_lock); err = nilfs_ifile_get_inode_block(ii->i_root->ifile, inode->i_ino, pbh); if (unlikely(err)) return err; spin_lock(&nilfs->ns_inode_lock); if (ii->i_bh == NULL) ii->i_bh = *pbh; else if (unlikely(!buffer_uptodate(ii->i_bh))) { __brelse(ii->i_bh); ii->i_bh = *pbh; } else { brelse(*pbh); *pbh = ii->i_bh; } } else *pbh = ii->i_bh; get_bh(*pbh); spin_unlock(&nilfs->ns_inode_lock); return 0; } int nilfs_inode_dirty(struct inode *inode) { struct nilfs_inode_info *ii = NILFS_I(inode); struct the_nilfs *nilfs = inode->i_sb->s_fs_info; int ret = 0; if (!list_empty(&ii->i_dirty)) { spin_lock(&nilfs->ns_inode_lock); ret = test_bit(NILFS_I_DIRTY, &ii->i_state) || test_bit(NILFS_I_BUSY, &ii->i_state); spin_unlock(&nilfs->ns_inode_lock); } return ret; } int nilfs_set_file_dirty(struct inode *inode, unsigned int nr_dirty) { struct nilfs_inode_info *ii = NILFS_I(inode); struct the_nilfs *nilfs = inode->i_sb->s_fs_info; atomic_add(nr_dirty, &nilfs->ns_ndirtyblks); if (test_and_set_bit(NILFS_I_DIRTY, &ii->i_state)) return 0; spin_lock(&nilfs->ns_inode_lock); if (!test_bit(NILFS_I_QUEUED, &ii->i_state) && !test_bit(NILFS_I_BUSY, &ii->i_state)) { /* * Because this routine may race with nilfs_dispose_list(), * we have to check NILFS_I_QUEUED here, too. */ if (list_empty(&ii->i_dirty) && igrab(inode) == NULL) { /* * This will happen when somebody is freeing * this inode. */ nilfs_warn(inode->i_sb, "cannot set file dirty (ino=%lu): the file is being freed", inode->i_ino); spin_unlock(&nilfs->ns_inode_lock); return -EINVAL; /* * NILFS_I_DIRTY may remain for * freeing inode. */ } list_move_tail(&ii->i_dirty, &nilfs->ns_dirty_files); set_bit(NILFS_I_QUEUED, &ii->i_state); } spin_unlock(&nilfs->ns_inode_lock); return 0; } int __nilfs_mark_inode_dirty(struct inode *inode, int flags) { struct the_nilfs *nilfs = inode->i_sb->s_fs_info; struct buffer_head *ibh; int err; /* * Do not dirty inodes after the log writer has been detached * and its nilfs_root struct has been freed. */ if (unlikely(nilfs_purging(nilfs))) return 0; err = nilfs_load_inode_block(inode, &ibh); if (unlikely(err)) { nilfs_warn(inode->i_sb, "cannot mark inode dirty (ino=%lu): error %d loading inode block", inode->i_ino, err); return err; } nilfs_update_inode(inode, ibh, flags); mark_buffer_dirty(ibh); nilfs_mdt_mark_dirty(NILFS_I(inode)->i_root->ifile); brelse(ibh); return 0; } /** * nilfs_dirty_inode - reflect changes on given inode to an inode block. * @inode: inode of the file to be registered. * @flags: flags to determine the dirty state of the inode * * nilfs_dirty_inode() loads a inode block containing the specified * @inode and copies data from a nilfs_inode to a corresponding inode * entry in the inode block. This operation is excluded from the segment * construction. This function can be called both as a single operation * and as a part of indivisible file operations. */ void nilfs_dirty_inode(struct inode *inode, int flags) { struct nilfs_transaction_info ti; struct nilfs_mdt_info *mdi = NILFS_MDT(inode); if (is_bad_inode(inode)) { nilfs_warn(inode->i_sb, "tried to mark bad_inode dirty. ignored."); dump_stack(); return; } if (mdi) { nilfs_mdt_mark_dirty(inode); return; } nilfs_transaction_begin(inode->i_sb, &ti, 0); __nilfs_mark_inode_dirty(inode, flags); nilfs_transaction_commit(inode->i_sb); /* never fails */ } int nilfs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo, __u64 start, __u64 len) { struct the_nilfs *nilfs = inode->i_sb->s_fs_info; __u64 logical = 0, phys = 0, size = 0; __u32 flags = 0; loff_t isize; sector_t blkoff, end_blkoff; sector_t delalloc_blkoff; unsigned long delalloc_blklen; unsigned int blkbits = inode->i_blkbits; int ret, n; ret = fiemap_prep(inode, fieinfo, start, &len, 0); if (ret) return ret; inode_lock(inode); isize = i_size_read(inode); blkoff = start >> blkbits; end_blkoff = (start + len - 1) >> blkbits; delalloc_blklen = nilfs_find_uncommitted_extent(inode, blkoff, &delalloc_blkoff); do { __u64 blkphy; unsigned int maxblocks; if (delalloc_blklen && blkoff == delalloc_blkoff) { if (size) { /* End of the current extent */ ret = fiemap_fill_next_extent( fieinfo, logical, phys, size, flags); if (ret) break; } if (blkoff > end_blkoff) break; flags = FIEMAP_EXTENT_MERGED | FIEMAP_EXTENT_DELALLOC; logical = blkoff << blkbits; phys = 0; size = delalloc_blklen << blkbits; blkoff = delalloc_blkoff + delalloc_blklen; delalloc_blklen = nilfs_find_uncommitted_extent( inode, blkoff, &delalloc_blkoff); continue; } /* * Limit the number of blocks that we look up so as * not to get into the next delayed allocation extent. */ maxblocks = INT_MAX; if (delalloc_blklen) maxblocks = min_t(sector_t, delalloc_blkoff - blkoff, maxblocks); blkphy = 0; down_read(&NILFS_MDT(nilfs->ns_dat)->mi_sem); n = nilfs_bmap_lookup_contig( NILFS_I(inode)->i_bmap, blkoff, &blkphy, maxblocks); up_read(&NILFS_MDT(nilfs->ns_dat)->mi_sem); if (n < 0) { int past_eof; if (unlikely(n != -ENOENT)) break; /* error */ /* HOLE */ blkoff++; past_eof = ((blkoff << blkbits) >= isize); if (size) { /* End of the current extent */ if (past_eof) flags |= FIEMAP_EXTENT_LAST; ret = fiemap_fill_next_extent( fieinfo, logical, phys, size, flags); if (ret) break; size = 0; } if (blkoff > end_blkoff || past_eof) break; } else { if (size) { if (phys && blkphy << blkbits == phys + size) { /* The current extent goes on */ size += n << blkbits; } else { /* Terminate the current extent */ ret = fiemap_fill_next_extent( fieinfo, logical, phys, size, flags); if (ret || blkoff > end_blkoff) break; /* Start another extent */ flags = FIEMAP_EXTENT_MERGED; logical = blkoff << blkbits; phys = blkphy << blkbits; size = n << blkbits; } } else { /* Start a new extent */ flags = FIEMAP_EXTENT_MERGED; logical = blkoff << blkbits; phys = blkphy << blkbits; size = n << blkbits; } blkoff += n; } cond_resched(); } while (true); /* If ret is 1 then we just hit the end of the extent array */ if (ret == 1) ret = 0; inode_unlock(inode); return ret; }
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1