Contributors: 27
Author Tokens Token Proportion Commits Commit Proportion
Christoph Hellwig 8061 63.23% 28 17.61%
David Chinner 3420 26.83% 50 31.45%
Darrick J. Wong 454 3.56% 26 16.35%
Nathan Scott 228 1.79% 11 6.92%
Brian Foster 128 1.00% 8 5.03%
Zhang Tianci 89 0.70% 1 0.63%
Alex Elder 87 0.68% 1 0.63%
Barry Naujok 54 0.42% 2 1.26%
Glen Overby 49 0.38% 2 1.26%
Russell Cattelan 37 0.29% 2 1.26%
Eric Sandeen 32 0.25% 6 3.77%
Carlos Maiolino 21 0.16% 4 2.52%
Allison Henderson 17 0.13% 1 0.63%
Mark Tinguely 11 0.09% 2 1.26%
Linus Torvalds (pre-git) 10 0.08% 3 1.89%
Qian Cai 10 0.08% 1 0.63%
Shida Zhang 9 0.07% 1 0.63%
Yingping Lu 7 0.05% 1 0.63%
Lachlan McIlroy 5 0.04% 1 0.63%
Fabian Frederick 4 0.03% 1 0.63%
Matt Mackall 4 0.03% 1 0.63%
Yang Guang 4 0.03% 1 0.63%
Gustavo A. R. Silva 2 0.02% 1 0.63%
Michael Hayes 2 0.02% 1 0.63%
Tetsuo Handa 1 0.01% 1 0.63%
David S. Miller 1 0.01% 1 0.63%
Ingo Molnar 1 0.01% 1 0.63%
Total 12748 159


// SPDX-License-Identifier: GPL-2.0
/*
 * Copyright (c) 2000-2005 Silicon Graphics, Inc.
 * Copyright (c) 2013 Red Hat, Inc.
 * All Rights Reserved.
 */
#include "xfs.h"
#include "xfs_fs.h"
#include "xfs_shared.h"
#include "xfs_format.h"
#include "xfs_log_format.h"
#include "xfs_trans_resv.h"
#include "xfs_bit.h"
#include "xfs_mount.h"
#include "xfs_inode.h"
#include "xfs_dir2.h"
#include "xfs_dir2_priv.h"
#include "xfs_trans.h"
#include "xfs_bmap.h"
#include "xfs_attr_leaf.h"
#include "xfs_error.h"
#include "xfs_trace.h"
#include "xfs_buf_item.h"
#include "xfs_log.h"
#include "xfs_errortag.h"

/*
 * xfs_da_btree.c
 *
 * Routines to implement directories as Btrees of hashed names.
 */

/*========================================================================
 * Function prototypes for the kernel.
 *========================================================================*/

/*
 * Routines used for growing the Btree.
 */
STATIC int xfs_da3_root_split(xfs_da_state_t *state,
					    xfs_da_state_blk_t *existing_root,
					    xfs_da_state_blk_t *new_child);
STATIC int xfs_da3_node_split(xfs_da_state_t *state,
					    xfs_da_state_blk_t *existing_blk,
					    xfs_da_state_blk_t *split_blk,
					    xfs_da_state_blk_t *blk_to_add,
					    int treelevel,
					    int *result);
STATIC void xfs_da3_node_rebalance(xfs_da_state_t *state,
					 xfs_da_state_blk_t *node_blk_1,
					 xfs_da_state_blk_t *node_blk_2);
STATIC void xfs_da3_node_add(xfs_da_state_t *state,
				   xfs_da_state_blk_t *old_node_blk,
				   xfs_da_state_blk_t *new_node_blk);

/*
 * Routines used for shrinking the Btree.
 */
STATIC int xfs_da3_root_join(xfs_da_state_t *state,
					   xfs_da_state_blk_t *root_blk);
STATIC int xfs_da3_node_toosmall(xfs_da_state_t *state, int *retval);
STATIC void xfs_da3_node_remove(xfs_da_state_t *state,
					      xfs_da_state_blk_t *drop_blk);
STATIC void xfs_da3_node_unbalance(xfs_da_state_t *state,
					 xfs_da_state_blk_t *src_node_blk,
					 xfs_da_state_blk_t *dst_node_blk);

/*
 * Utility routines.
 */
STATIC int	xfs_da3_blk_unlink(xfs_da_state_t *state,
				  xfs_da_state_blk_t *drop_blk,
				  xfs_da_state_blk_t *save_blk);


struct kmem_cache	*xfs_da_state_cache;	/* anchor for dir/attr state */

/*
 * Allocate a dir-state structure.
 * We don't put them on the stack since they're large.
 */
struct xfs_da_state *
xfs_da_state_alloc(
	struct xfs_da_args	*args)
{
	struct xfs_da_state	*state;

	state = kmem_cache_zalloc(xfs_da_state_cache, GFP_NOFS | __GFP_NOFAIL);
	state->args = args;
	state->mp = args->dp->i_mount;
	return state;
}

/*
 * Kill the altpath contents of a da-state structure.
 */
STATIC void
xfs_da_state_kill_altpath(xfs_da_state_t *state)
{
	int	i;

	for (i = 0; i < state->altpath.active; i++)
		state->altpath.blk[i].bp = NULL;
	state->altpath.active = 0;
}

/*
 * Free a da-state structure.
 */
void
xfs_da_state_free(xfs_da_state_t *state)
{
	xfs_da_state_kill_altpath(state);
#ifdef DEBUG
	memset((char *)state, 0, sizeof(*state));
#endif /* DEBUG */
	kmem_cache_free(xfs_da_state_cache, state);
}

void
xfs_da_state_reset(
	struct xfs_da_state	*state,
	struct xfs_da_args	*args)
{
	xfs_da_state_kill_altpath(state);
	memset(state, 0, sizeof(struct xfs_da_state));
	state->args = args;
	state->mp = state->args->dp->i_mount;
}

static inline int xfs_dabuf_nfsb(struct xfs_mount *mp, int whichfork)
{
	if (whichfork == XFS_DATA_FORK)
		return mp->m_dir_geo->fsbcount;
	return mp->m_attr_geo->fsbcount;
}

void
xfs_da3_node_hdr_from_disk(
	struct xfs_mount		*mp,
	struct xfs_da3_icnode_hdr	*to,
	struct xfs_da_intnode		*from)
{
	if (xfs_has_crc(mp)) {
		struct xfs_da3_intnode	*from3 = (struct xfs_da3_intnode *)from;

		to->forw = be32_to_cpu(from3->hdr.info.hdr.forw);
		to->back = be32_to_cpu(from3->hdr.info.hdr.back);
		to->magic = be16_to_cpu(from3->hdr.info.hdr.magic);
		to->count = be16_to_cpu(from3->hdr.__count);
		to->level = be16_to_cpu(from3->hdr.__level);
		to->btree = from3->__btree;
		ASSERT(to->magic == XFS_DA3_NODE_MAGIC);
	} else {
		to->forw = be32_to_cpu(from->hdr.info.forw);
		to->back = be32_to_cpu(from->hdr.info.back);
		to->magic = be16_to_cpu(from->hdr.info.magic);
		to->count = be16_to_cpu(from->hdr.__count);
		to->level = be16_to_cpu(from->hdr.__level);
		to->btree = from->__btree;
		ASSERT(to->magic == XFS_DA_NODE_MAGIC);
	}
}

void
xfs_da3_node_hdr_to_disk(
	struct xfs_mount		*mp,
	struct xfs_da_intnode		*to,
	struct xfs_da3_icnode_hdr	*from)
{
	if (xfs_has_crc(mp)) {
		struct xfs_da3_intnode	*to3 = (struct xfs_da3_intnode *)to;

		ASSERT(from->magic == XFS_DA3_NODE_MAGIC);
		to3->hdr.info.hdr.forw = cpu_to_be32(from->forw);
		to3->hdr.info.hdr.back = cpu_to_be32(from->back);
		to3->hdr.info.hdr.magic = cpu_to_be16(from->magic);
		to3->hdr.__count = cpu_to_be16(from->count);
		to3->hdr.__level = cpu_to_be16(from->level);
	} else {
		ASSERT(from->magic == XFS_DA_NODE_MAGIC);
		to->hdr.info.forw = cpu_to_be32(from->forw);
		to->hdr.info.back = cpu_to_be32(from->back);
		to->hdr.info.magic = cpu_to_be16(from->magic);
		to->hdr.__count = cpu_to_be16(from->count);
		to->hdr.__level = cpu_to_be16(from->level);
	}
}

/*
 * Verify an xfs_da3_blkinfo structure. Note that the da3 fields are only
 * accessible on v5 filesystems. This header format is common across da node,
 * attr leaf and dir leaf blocks.
 */
xfs_failaddr_t
xfs_da3_blkinfo_verify(
	struct xfs_buf		*bp,
	struct xfs_da3_blkinfo	*hdr3)
{
	struct xfs_mount	*mp = bp->b_mount;
	struct xfs_da_blkinfo	*hdr = &hdr3->hdr;

	if (!xfs_verify_magic16(bp, hdr->magic))
		return __this_address;

	if (xfs_has_crc(mp)) {
		if (!uuid_equal(&hdr3->uuid, &mp->m_sb.sb_meta_uuid))
			return __this_address;
		if (be64_to_cpu(hdr3->blkno) != xfs_buf_daddr(bp))
			return __this_address;
		if (!xfs_log_check_lsn(mp, be64_to_cpu(hdr3->lsn)))
			return __this_address;
	}

	return NULL;
}

static xfs_failaddr_t
xfs_da3_node_verify(
	struct xfs_buf		*bp)
{
	struct xfs_mount	*mp = bp->b_mount;
	struct xfs_da_intnode	*hdr = bp->b_addr;
	struct xfs_da3_icnode_hdr ichdr;
	xfs_failaddr_t		fa;

	xfs_da3_node_hdr_from_disk(mp, &ichdr, hdr);

	fa = xfs_da3_blkinfo_verify(bp, bp->b_addr);
	if (fa)
		return fa;

	if (ichdr.level == 0)
		return __this_address;
	if (ichdr.level > XFS_DA_NODE_MAXDEPTH)
		return __this_address;
	if (ichdr.count == 0)
		return __this_address;

	/*
	 * we don't know if the node is for and attribute or directory tree,
	 * so only fail if the count is outside both bounds
	 */
	if (ichdr.count > mp->m_dir_geo->node_ents &&
	    ichdr.count > mp->m_attr_geo->node_ents)
		return __this_address;

	/* XXX: hash order check? */

	return NULL;
}

static void
xfs_da3_node_write_verify(
	struct xfs_buf	*bp)
{
	struct xfs_mount	*mp = bp->b_mount;
	struct xfs_buf_log_item	*bip = bp->b_log_item;
	struct xfs_da3_node_hdr *hdr3 = bp->b_addr;
	xfs_failaddr_t		fa;

	fa = xfs_da3_node_verify(bp);
	if (fa) {
		xfs_verifier_error(bp, -EFSCORRUPTED, fa);
		return;
	}

	if (!xfs_has_crc(mp))
		return;

	if (bip)
		hdr3->info.lsn = cpu_to_be64(bip->bli_item.li_lsn);

	xfs_buf_update_cksum(bp, XFS_DA3_NODE_CRC_OFF);
}

/*
 * leaf/node format detection on trees is sketchy, so a node read can be done on
 * leaf level blocks when detection identifies the tree as a node format tree
 * incorrectly. In this case, we need to swap the verifier to match the correct
 * format of the block being read.
 */
static void
xfs_da3_node_read_verify(
	struct xfs_buf		*bp)
{
	struct xfs_da_blkinfo	*info = bp->b_addr;
	xfs_failaddr_t		fa;

	switch (be16_to_cpu(info->magic)) {
		case XFS_DA3_NODE_MAGIC:
			if (!xfs_buf_verify_cksum(bp, XFS_DA3_NODE_CRC_OFF)) {
				xfs_verifier_error(bp, -EFSBADCRC,
						__this_address);
				break;
			}
			fallthrough;
		case XFS_DA_NODE_MAGIC:
			fa = xfs_da3_node_verify(bp);
			if (fa)
				xfs_verifier_error(bp, -EFSCORRUPTED, fa);
			return;
		case XFS_ATTR_LEAF_MAGIC:
		case XFS_ATTR3_LEAF_MAGIC:
			bp->b_ops = &xfs_attr3_leaf_buf_ops;
			bp->b_ops->verify_read(bp);
			return;
		case XFS_DIR2_LEAFN_MAGIC:
		case XFS_DIR3_LEAFN_MAGIC:
			bp->b_ops = &xfs_dir3_leafn_buf_ops;
			bp->b_ops->verify_read(bp);
			return;
		default:
			xfs_verifier_error(bp, -EFSCORRUPTED, __this_address);
			break;
	}
}

/* Verify the structure of a da3 block. */
static xfs_failaddr_t
xfs_da3_node_verify_struct(
	struct xfs_buf		*bp)
{
	struct xfs_da_blkinfo	*info = bp->b_addr;

	switch (be16_to_cpu(info->magic)) {
	case XFS_DA3_NODE_MAGIC:
	case XFS_DA_NODE_MAGIC:
		return xfs_da3_node_verify(bp);
	case XFS_ATTR_LEAF_MAGIC:
	case XFS_ATTR3_LEAF_MAGIC:
		bp->b_ops = &xfs_attr3_leaf_buf_ops;
		return bp->b_ops->verify_struct(bp);
	case XFS_DIR2_LEAFN_MAGIC:
	case XFS_DIR3_LEAFN_MAGIC:
		bp->b_ops = &xfs_dir3_leafn_buf_ops;
		return bp->b_ops->verify_struct(bp);
	default:
		return __this_address;
	}
}

const struct xfs_buf_ops xfs_da3_node_buf_ops = {
	.name = "xfs_da3_node",
	.magic16 = { cpu_to_be16(XFS_DA_NODE_MAGIC),
		     cpu_to_be16(XFS_DA3_NODE_MAGIC) },
	.verify_read = xfs_da3_node_read_verify,
	.verify_write = xfs_da3_node_write_verify,
	.verify_struct = xfs_da3_node_verify_struct,
};

static int
xfs_da3_node_set_type(
	struct xfs_trans	*tp,
	struct xfs_buf		*bp)
{
	struct xfs_da_blkinfo	*info = bp->b_addr;

	switch (be16_to_cpu(info->magic)) {
	case XFS_DA_NODE_MAGIC:
	case XFS_DA3_NODE_MAGIC:
		xfs_trans_buf_set_type(tp, bp, XFS_BLFT_DA_NODE_BUF);
		return 0;
	case XFS_ATTR_LEAF_MAGIC:
	case XFS_ATTR3_LEAF_MAGIC:
		xfs_trans_buf_set_type(tp, bp, XFS_BLFT_ATTR_LEAF_BUF);
		return 0;
	case XFS_DIR2_LEAFN_MAGIC:
	case XFS_DIR3_LEAFN_MAGIC:
		xfs_trans_buf_set_type(tp, bp, XFS_BLFT_DIR_LEAFN_BUF);
		return 0;
	default:
		XFS_CORRUPTION_ERROR(__func__, XFS_ERRLEVEL_LOW, tp->t_mountp,
				info, sizeof(*info));
		xfs_trans_brelse(tp, bp);
		return -EFSCORRUPTED;
	}
}

int
xfs_da3_node_read(
	struct xfs_trans	*tp,
	struct xfs_inode	*dp,
	xfs_dablk_t		bno,
	struct xfs_buf		**bpp,
	int			whichfork)
{
	int			error;

	error = xfs_da_read_buf(tp, dp, bno, 0, bpp, whichfork,
			&xfs_da3_node_buf_ops);
	if (error || !*bpp || !tp)
		return error;
	return xfs_da3_node_set_type(tp, *bpp);
}

int
xfs_da3_node_read_mapped(
	struct xfs_trans	*tp,
	struct xfs_inode	*dp,
	xfs_daddr_t		mappedbno,
	struct xfs_buf		**bpp,
	int			whichfork)
{
	struct xfs_mount	*mp = dp->i_mount;
	int			error;

	error = xfs_trans_read_buf(mp, tp, mp->m_ddev_targp, mappedbno,
			XFS_FSB_TO_BB(mp, xfs_dabuf_nfsb(mp, whichfork)), 0,
			bpp, &xfs_da3_node_buf_ops);
	if (error || !*bpp)
		return error;

	if (whichfork == XFS_ATTR_FORK)
		xfs_buf_set_ref(*bpp, XFS_ATTR_BTREE_REF);
	else
		xfs_buf_set_ref(*bpp, XFS_DIR_BTREE_REF);

	if (!tp)
		return 0;
	return xfs_da3_node_set_type(tp, *bpp);
}

/*
 * Copy src directory/attr leaf/node buffer to the dst.
 * For v5 file systems make sure the right blkno is stamped in.
 */
void
xfs_da_buf_copy(
	struct xfs_buf *dst,
	struct xfs_buf *src,
	size_t size)
{
	struct xfs_da3_blkinfo *da3 = dst->b_addr;

	memcpy(dst->b_addr, src->b_addr, size);
	dst->b_ops = src->b_ops;
	xfs_trans_buf_copy_type(dst, src);
	if (xfs_has_crc(dst->b_mount))
		da3->blkno = cpu_to_be64(xfs_buf_daddr(dst));
}

/*========================================================================
 * Routines used for growing the Btree.
 *========================================================================*/

/*
 * Create the initial contents of an intermediate node.
 */
int
xfs_da3_node_create(
	struct xfs_da_args	*args,
	xfs_dablk_t		blkno,
	int			level,
	struct xfs_buf		**bpp,
	int			whichfork)
{
	struct xfs_da_intnode	*node;
	struct xfs_trans	*tp = args->trans;
	struct xfs_mount	*mp = tp->t_mountp;
	struct xfs_da3_icnode_hdr ichdr = {0};
	struct xfs_buf		*bp;
	int			error;
	struct xfs_inode	*dp = args->dp;

	trace_xfs_da_node_create(args);
	ASSERT(level <= XFS_DA_NODE_MAXDEPTH);

	error = xfs_da_get_buf(tp, dp, blkno, &bp, whichfork);
	if (error)
		return error;
	bp->b_ops = &xfs_da3_node_buf_ops;
	xfs_trans_buf_set_type(tp, bp, XFS_BLFT_DA_NODE_BUF);
	node = bp->b_addr;

	if (xfs_has_crc(mp)) {
		struct xfs_da3_node_hdr *hdr3 = bp->b_addr;

		memset(hdr3, 0, sizeof(struct xfs_da3_node_hdr));
		ichdr.magic = XFS_DA3_NODE_MAGIC;
		hdr3->info.blkno = cpu_to_be64(xfs_buf_daddr(bp));
		hdr3->info.owner = cpu_to_be64(args->dp->i_ino);
		uuid_copy(&hdr3->info.uuid, &mp->m_sb.sb_meta_uuid);
	} else {
		ichdr.magic = XFS_DA_NODE_MAGIC;
	}
	ichdr.level = level;

	xfs_da3_node_hdr_to_disk(dp->i_mount, node, &ichdr);
	xfs_trans_log_buf(tp, bp,
		XFS_DA_LOGRANGE(node, &node->hdr, args->geo->node_hdr_size));

	*bpp = bp;
	return 0;
}

/*
 * Split a leaf node, rebalance, then possibly split
 * intermediate nodes, rebalance, etc.
 */
int							/* error */
xfs_da3_split(
	struct xfs_da_state	*state)
{
	struct xfs_da_state_blk	*oldblk;
	struct xfs_da_state_blk	*newblk;
	struct xfs_da_state_blk	*addblk;
	struct xfs_da_intnode	*node;
	int			max;
	int			action = 0;
	int			error;
	int			i;

	trace_xfs_da_split(state->args);

	if (XFS_TEST_ERROR(false, state->mp, XFS_ERRTAG_DA_LEAF_SPLIT))
		return -EIO;

	/*
	 * Walk back up the tree splitting/inserting/adjusting as necessary.
	 * If we need to insert and there isn't room, split the node, then
	 * decide which fragment to insert the new block from below into.
	 * Note that we may split the root this way, but we need more fixup.
	 */
	max = state->path.active - 1;
	ASSERT((max >= 0) && (max < XFS_DA_NODE_MAXDEPTH));
	ASSERT(state->path.blk[max].magic == XFS_ATTR_LEAF_MAGIC ||
	       state->path.blk[max].magic == XFS_DIR2_LEAFN_MAGIC);

	addblk = &state->path.blk[max];		/* initial dummy value */
	for (i = max; (i >= 0) && addblk; state->path.active--, i--) {
		oldblk = &state->path.blk[i];
		newblk = &state->altpath.blk[i];

		/*
		 * If a leaf node then
		 *     Allocate a new leaf node, then rebalance across them.
		 * else if an intermediate node then
		 *     We split on the last layer, must we split the node?
		 */
		switch (oldblk->magic) {
		case XFS_ATTR_LEAF_MAGIC:
			error = xfs_attr3_leaf_split(state, oldblk, newblk);
			if ((error != 0) && (error != -ENOSPC)) {
				return error;	/* GROT: attr is inconsistent */
			}
			if (!error) {
				addblk = newblk;
				break;
			}
			/*
			 * Entry wouldn't fit, split the leaf again. The new
			 * extrablk will be consumed by xfs_da3_node_split if
			 * the node is split.
			 */
			state->extravalid = 1;
			if (state->inleaf) {
				state->extraafter = 0;	/* before newblk */
				trace_xfs_attr_leaf_split_before(state->args);
				error = xfs_attr3_leaf_split(state, oldblk,
							    &state->extrablk);
			} else {
				state->extraafter = 1;	/* after newblk */
				trace_xfs_attr_leaf_split_after(state->args);
				error = xfs_attr3_leaf_split(state, newblk,
							    &state->extrablk);
			}
			if (error)
				return error;	/* GROT: attr inconsistent */
			addblk = newblk;
			break;
		case XFS_DIR2_LEAFN_MAGIC:
			error = xfs_dir2_leafn_split(state, oldblk, newblk);
			if (error)
				return error;
			addblk = newblk;
			break;
		case XFS_DA_NODE_MAGIC:
			error = xfs_da3_node_split(state, oldblk, newblk, addblk,
							 max - i, &action);
			addblk->bp = NULL;
			if (error)
				return error;	/* GROT: dir is inconsistent */
			/*
			 * Record the newly split block for the next time thru?
			 */
			if (action)
				addblk = newblk;
			else
				addblk = NULL;
			break;
		}

		/*
		 * Update the btree to show the new hashval for this child.
		 */
		xfs_da3_fixhashpath(state, &state->path);
	}
	if (!addblk)
		return 0;

	/*
	 * xfs_da3_node_split() should have consumed any extra blocks we added
	 * during a double leaf split in the attr fork. This is guaranteed as
	 * we can't be here if the attr fork only has a single leaf block.
	 */
	ASSERT(state->extravalid == 0 ||
	       state->path.blk[max].magic == XFS_DIR2_LEAFN_MAGIC);

	/*
	 * Split the root node.
	 */
	ASSERT(state->path.active == 0);
	oldblk = &state->path.blk[0];
	error = xfs_da3_root_split(state, oldblk, addblk);
	if (error)
		goto out;

	/*
	 * Update pointers to the node which used to be block 0 and just got
	 * bumped because of the addition of a new root node.  Note that the
	 * original block 0 could be at any position in the list of blocks in
	 * the tree.
	 *
	 * Note: the magic numbers and sibling pointers are in the same physical
	 * place for both v2 and v3 headers (by design). Hence it doesn't matter
	 * which version of the xfs_da_intnode structure we use here as the
	 * result will be the same using either structure.
	 */
	node = oldblk->bp->b_addr;
	if (node->hdr.info.forw) {
		if (be32_to_cpu(node->hdr.info.forw) != addblk->blkno) {
			xfs_buf_mark_corrupt(oldblk->bp);
			error = -EFSCORRUPTED;
			goto out;
		}
		node = addblk->bp->b_addr;
		node->hdr.info.back = cpu_to_be32(oldblk->blkno);
		xfs_trans_log_buf(state->args->trans, addblk->bp,
				  XFS_DA_LOGRANGE(node, &node->hdr.info,
				  sizeof(node->hdr.info)));
	}
	node = oldblk->bp->b_addr;
	if (node->hdr.info.back) {
		if (be32_to_cpu(node->hdr.info.back) != addblk->blkno) {
			xfs_buf_mark_corrupt(oldblk->bp);
			error = -EFSCORRUPTED;
			goto out;
		}
		node = addblk->bp->b_addr;
		node->hdr.info.forw = cpu_to_be32(oldblk->blkno);
		xfs_trans_log_buf(state->args->trans, addblk->bp,
				  XFS_DA_LOGRANGE(node, &node->hdr.info,
				  sizeof(node->hdr.info)));
	}
out:
	addblk->bp = NULL;
	return error;
}

/*
 * Split the root.  We have to create a new root and point to the two
 * parts (the split old root) that we just created.  Copy block zero to
 * the EOF, extending the inode in process.
 */
STATIC int						/* error */
xfs_da3_root_split(
	struct xfs_da_state	*state,
	struct xfs_da_state_blk	*blk1,
	struct xfs_da_state_blk	*blk2)
{
	struct xfs_da_intnode	*node;
	struct xfs_da_intnode	*oldroot;
	struct xfs_da_node_entry *btree;
	struct xfs_da3_icnode_hdr nodehdr;
	struct xfs_da_args	*args;
	struct xfs_buf		*bp;
	struct xfs_inode	*dp;
	struct xfs_trans	*tp;
	struct xfs_dir2_leaf	*leaf;
	xfs_dablk_t		blkno;
	int			level;
	int			error;
	int			size;

	trace_xfs_da_root_split(state->args);

	/*
	 * Copy the existing (incorrect) block from the root node position
	 * to a free space somewhere.
	 */
	args = state->args;
	error = xfs_da_grow_inode(args, &blkno);
	if (error)
		return error;

	dp = args->dp;
	tp = args->trans;
	error = xfs_da_get_buf(tp, dp, blkno, &bp, args->whichfork);
	if (error)
		return error;
	node = bp->b_addr;
	oldroot = blk1->bp->b_addr;
	if (oldroot->hdr.info.magic == cpu_to_be16(XFS_DA_NODE_MAGIC) ||
	    oldroot->hdr.info.magic == cpu_to_be16(XFS_DA3_NODE_MAGIC)) {
		struct xfs_da3_icnode_hdr icnodehdr;

		xfs_da3_node_hdr_from_disk(dp->i_mount, &icnodehdr, oldroot);
		btree = icnodehdr.btree;
		size = (int)((char *)&btree[icnodehdr.count] - (char *)oldroot);
		level = icnodehdr.level;
	} else {
		struct xfs_dir3_icleaf_hdr leafhdr;

		leaf = (xfs_dir2_leaf_t *)oldroot;
		xfs_dir2_leaf_hdr_from_disk(dp->i_mount, &leafhdr, leaf);

		ASSERT(leafhdr.magic == XFS_DIR2_LEAFN_MAGIC ||
		       leafhdr.magic == XFS_DIR3_LEAFN_MAGIC);
		size = (int)((char *)&leafhdr.ents[leafhdr.count] -
			(char *)leaf);
		level = 0;
	}

	/*
	 * Copy old root to new buffer and log it.
	 */
	xfs_da_buf_copy(bp, blk1->bp, size);
	xfs_trans_log_buf(tp, bp, 0, size - 1);

	/*
	 * Update blk1 to point to new buffer.
	 */
	blk1->bp = bp;
	blk1->blkno = blkno;

	/*
	 * Set up the new root node.
	 */
	error = xfs_da3_node_create(args,
		(args->whichfork == XFS_DATA_FORK) ? args->geo->leafblk : 0,
		level + 1, &bp, args->whichfork);
	if (error)
		return error;

	node = bp->b_addr;
	xfs_da3_node_hdr_from_disk(dp->i_mount, &nodehdr, node);
	btree = nodehdr.btree;
	btree[0].hashval = cpu_to_be32(blk1->hashval);
	btree[0].before = cpu_to_be32(blk1->blkno);
	btree[1].hashval = cpu_to_be32(blk2->hashval);
	btree[1].before = cpu_to_be32(blk2->blkno);
	nodehdr.count = 2;
	xfs_da3_node_hdr_to_disk(dp->i_mount, node, &nodehdr);

#ifdef DEBUG
	if (oldroot->hdr.info.magic == cpu_to_be16(XFS_DIR2_LEAFN_MAGIC) ||
	    oldroot->hdr.info.magic == cpu_to_be16(XFS_DIR3_LEAFN_MAGIC)) {
		ASSERT(blk1->blkno >= args->geo->leafblk &&
		       blk1->blkno < args->geo->freeblk);
		ASSERT(blk2->blkno >= args->geo->leafblk &&
		       blk2->blkno < args->geo->freeblk);
	}
#endif

	/* Header is already logged by xfs_da_node_create */
	xfs_trans_log_buf(tp, bp,
		XFS_DA_LOGRANGE(node, btree, sizeof(xfs_da_node_entry_t) * 2));

	return 0;
}

/*
 * Split the node, rebalance, then add the new entry.
 */
STATIC int						/* error */
xfs_da3_node_split(
	struct xfs_da_state	*state,
	struct xfs_da_state_blk	*oldblk,
	struct xfs_da_state_blk	*newblk,
	struct xfs_da_state_blk	*addblk,
	int			treelevel,
	int			*result)
{
	struct xfs_da_intnode	*node;
	struct xfs_da3_icnode_hdr nodehdr;
	xfs_dablk_t		blkno;
	int			newcount;
	int			error;
	int			useextra;
	struct xfs_inode	*dp = state->args->dp;

	trace_xfs_da_node_split(state->args);

	node = oldblk->bp->b_addr;
	xfs_da3_node_hdr_from_disk(dp->i_mount, &nodehdr, node);

	/*
	 * With V2 dirs the extra block is data or freespace.
	 */
	useextra = state->extravalid && state->args->whichfork == XFS_ATTR_FORK;
	newcount = 1 + useextra;
	/*
	 * Do we have to split the node?
	 */
	if (nodehdr.count + newcount > state->args->geo->node_ents) {
		/*
		 * Allocate a new node, add to the doubly linked chain of
		 * nodes, then move some of our excess entries into it.
		 */
		error = xfs_da_grow_inode(state->args, &blkno);
		if (error)
			return error;	/* GROT: dir is inconsistent */

		error = xfs_da3_node_create(state->args, blkno, treelevel,
					   &newblk->bp, state->args->whichfork);
		if (error)
			return error;	/* GROT: dir is inconsistent */
		newblk->blkno = blkno;
		newblk->magic = XFS_DA_NODE_MAGIC;
		xfs_da3_node_rebalance(state, oldblk, newblk);
		error = xfs_da3_blk_link(state, oldblk, newblk);
		if (error)
			return error;
		*result = 1;
	} else {
		*result = 0;
	}

	/*
	 * Insert the new entry(s) into the correct block
	 * (updating last hashval in the process).
	 *
	 * xfs_da3_node_add() inserts BEFORE the given index,
	 * and as a result of using node_lookup_int() we always
	 * point to a valid entry (not after one), but a split
	 * operation always results in a new block whose hashvals
	 * FOLLOW the current block.
	 *
	 * If we had double-split op below us, then add the extra block too.
	 */
	node = oldblk->bp->b_addr;
	xfs_da3_node_hdr_from_disk(dp->i_mount, &nodehdr, node);
	if (oldblk->index <= nodehdr.count) {
		oldblk->index++;
		xfs_da3_node_add(state, oldblk, addblk);
		if (useextra) {
			if (state->extraafter)
				oldblk->index++;
			xfs_da3_node_add(state, oldblk, &state->extrablk);
			state->extravalid = 0;
		}
	} else {
		newblk->index++;
		xfs_da3_node_add(state, newblk, addblk);
		if (useextra) {
			if (state->extraafter)
				newblk->index++;
			xfs_da3_node_add(state, newblk, &state->extrablk);
			state->extravalid = 0;
		}
	}

	return 0;
}

/*
 * Balance the btree elements between two intermediate nodes,
 * usually one full and one empty.
 *
 * NOTE: if blk2 is empty, then it will get the upper half of blk1.
 */
STATIC void
xfs_da3_node_rebalance(
	struct xfs_da_state	*state,
	struct xfs_da_state_blk	*blk1,
	struct xfs_da_state_blk	*blk2)
{
	struct xfs_da_intnode	*node1;
	struct xfs_da_intnode	*node2;
	struct xfs_da_node_entry *btree1;
	struct xfs_da_node_entry *btree2;
	struct xfs_da_node_entry *btree_s;
	struct xfs_da_node_entry *btree_d;
	struct xfs_da3_icnode_hdr nodehdr1;
	struct xfs_da3_icnode_hdr nodehdr2;
	struct xfs_trans	*tp;
	int			count;
	int			tmp;
	int			swap = 0;
	struct xfs_inode	*dp = state->args->dp;

	trace_xfs_da_node_rebalance(state->args);

	node1 = blk1->bp->b_addr;
	node2 = blk2->bp->b_addr;
	xfs_da3_node_hdr_from_disk(dp->i_mount, &nodehdr1, node1);
	xfs_da3_node_hdr_from_disk(dp->i_mount, &nodehdr2, node2);
	btree1 = nodehdr1.btree;
	btree2 = nodehdr2.btree;

	/*
	 * Figure out how many entries need to move, and in which direction.
	 * Swap the nodes around if that makes it simpler.
	 */
	if (nodehdr1.count > 0 && nodehdr2.count > 0 &&
	    ((be32_to_cpu(btree2[0].hashval) < be32_to_cpu(btree1[0].hashval)) ||
	     (be32_to_cpu(btree2[nodehdr2.count - 1].hashval) <
			be32_to_cpu(btree1[nodehdr1.count - 1].hashval)))) {
		swap(node1, node2);
		xfs_da3_node_hdr_from_disk(dp->i_mount, &nodehdr1, node1);
		xfs_da3_node_hdr_from_disk(dp->i_mount, &nodehdr2, node2);
		btree1 = nodehdr1.btree;
		btree2 = nodehdr2.btree;
		swap = 1;
	}

	count = (nodehdr1.count - nodehdr2.count) / 2;
	if (count == 0)
		return;
	tp = state->args->trans;
	/*
	 * Two cases: high-to-low and low-to-high.
	 */
	if (count > 0) {
		/*
		 * Move elements in node2 up to make a hole.
		 */
		tmp = nodehdr2.count;
		if (tmp > 0) {
			tmp *= (uint)sizeof(xfs_da_node_entry_t);
			btree_s = &btree2[0];
			btree_d = &btree2[count];
			memmove(btree_d, btree_s, tmp);
		}

		/*
		 * Move the req'd B-tree elements from high in node1 to
		 * low in node2.
		 */
		nodehdr2.count += count;
		tmp = count * (uint)sizeof(xfs_da_node_entry_t);
		btree_s = &btree1[nodehdr1.count - count];
		btree_d = &btree2[0];
		memcpy(btree_d, btree_s, tmp);
		nodehdr1.count -= count;
	} else {
		/*
		 * Move the req'd B-tree elements from low in node2 to
		 * high in node1.
		 */
		count = -count;
		tmp = count * (uint)sizeof(xfs_da_node_entry_t);
		btree_s = &btree2[0];
		btree_d = &btree1[nodehdr1.count];
		memcpy(btree_d, btree_s, tmp);
		nodehdr1.count += count;

		xfs_trans_log_buf(tp, blk1->bp,
			XFS_DA_LOGRANGE(node1, btree_d, tmp));

		/*
		 * Move elements in node2 down to fill the hole.
		 */
		tmp  = nodehdr2.count - count;
		tmp *= (uint)sizeof(xfs_da_node_entry_t);
		btree_s = &btree2[count];
		btree_d = &btree2[0];
		memmove(btree_d, btree_s, tmp);
		nodehdr2.count -= count;
	}

	/*
	 * Log header of node 1 and all current bits of node 2.
	 */
	xfs_da3_node_hdr_to_disk(dp->i_mount, node1, &nodehdr1);
	xfs_trans_log_buf(tp, blk1->bp,
		XFS_DA_LOGRANGE(node1, &node1->hdr,
				state->args->geo->node_hdr_size));

	xfs_da3_node_hdr_to_disk(dp->i_mount, node2, &nodehdr2);
	xfs_trans_log_buf(tp, blk2->bp,
		XFS_DA_LOGRANGE(node2, &node2->hdr,
				state->args->geo->node_hdr_size +
				(sizeof(btree2[0]) * nodehdr2.count)));

	/*
	 * Record the last hashval from each block for upward propagation.
	 * (note: don't use the swapped node pointers)
	 */
	if (swap) {
		node1 = blk1->bp->b_addr;
		node2 = blk2->bp->b_addr;
		xfs_da3_node_hdr_from_disk(dp->i_mount, &nodehdr1, node1);
		xfs_da3_node_hdr_from_disk(dp->i_mount, &nodehdr2, node2);
		btree1 = nodehdr1.btree;
		btree2 = nodehdr2.btree;
	}
	blk1->hashval = be32_to_cpu(btree1[nodehdr1.count - 1].hashval);
	blk2->hashval = be32_to_cpu(btree2[nodehdr2.count - 1].hashval);

	/*
	 * Adjust the expected index for insertion.
	 */
	if (blk1->index >= nodehdr1.count) {
		blk2->index = blk1->index - nodehdr1.count;
		blk1->index = nodehdr1.count + 1;	/* make it invalid */
	}
}

/*
 * Add a new entry to an intermediate node.
 */
STATIC void
xfs_da3_node_add(
	struct xfs_da_state	*state,
	struct xfs_da_state_blk	*oldblk,
	struct xfs_da_state_blk	*newblk)
{
	struct xfs_da_intnode	*node;
	struct xfs_da3_icnode_hdr nodehdr;
	struct xfs_da_node_entry *btree;
	int			tmp;
	struct xfs_inode	*dp = state->args->dp;

	trace_xfs_da_node_add(state->args);

	node = oldblk->bp->b_addr;
	xfs_da3_node_hdr_from_disk(dp->i_mount, &nodehdr, node);
	btree = nodehdr.btree;

	ASSERT(oldblk->index >= 0 && oldblk->index <= nodehdr.count);
	ASSERT(newblk->blkno != 0);
	if (state->args->whichfork == XFS_DATA_FORK)
		ASSERT(newblk->blkno >= state->args->geo->leafblk &&
		       newblk->blkno < state->args->geo->freeblk);

	/*
	 * We may need to make some room before we insert the new node.
	 */
	tmp = 0;
	if (oldblk->index < nodehdr.count) {
		tmp = (nodehdr.count - oldblk->index) * (uint)sizeof(*btree);
		memmove(&btree[oldblk->index + 1], &btree[oldblk->index], tmp);
	}
	btree[oldblk->index].hashval = cpu_to_be32(newblk->hashval);
	btree[oldblk->index].before = cpu_to_be32(newblk->blkno);
	xfs_trans_log_buf(state->args->trans, oldblk->bp,
		XFS_DA_LOGRANGE(node, &btree[oldblk->index],
				tmp + sizeof(*btree)));

	nodehdr.count += 1;
	xfs_da3_node_hdr_to_disk(dp->i_mount, node, &nodehdr);
	xfs_trans_log_buf(state->args->trans, oldblk->bp,
		XFS_DA_LOGRANGE(node, &node->hdr,
				state->args->geo->node_hdr_size));

	/*
	 * Copy the last hash value from the oldblk to propagate upwards.
	 */
	oldblk->hashval = be32_to_cpu(btree[nodehdr.count - 1].hashval);
}

/*========================================================================
 * Routines used for shrinking the Btree.
 *========================================================================*/

/*
 * Deallocate an empty leaf node, remove it from its parent,
 * possibly deallocating that block, etc...
 */
int
xfs_da3_join(
	struct xfs_da_state	*state)
{
	struct xfs_da_state_blk	*drop_blk;
	struct xfs_da_state_blk	*save_blk;
	int			action = 0;
	int			error;

	trace_xfs_da_join(state->args);

	drop_blk = &state->path.blk[ state->path.active-1 ];
	save_blk = &state->altpath.blk[ state->path.active-1 ];
	ASSERT(state->path.blk[0].magic == XFS_DA_NODE_MAGIC);
	ASSERT(drop_blk->magic == XFS_ATTR_LEAF_MAGIC ||
	       drop_blk->magic == XFS_DIR2_LEAFN_MAGIC);

	/*
	 * Walk back up the tree joining/deallocating as necessary.
	 * When we stop dropping blocks, break out.
	 */
	for (  ; state->path.active >= 2; drop_blk--, save_blk--,
		 state->path.active--) {
		/*
		 * See if we can combine the block with a neighbor.
		 *   (action == 0) => no options, just leave
		 *   (action == 1) => coalesce, then unlink
		 *   (action == 2) => block empty, unlink it
		 */
		switch (drop_blk->magic) {
		case XFS_ATTR_LEAF_MAGIC:
			error = xfs_attr3_leaf_toosmall(state, &action);
			if (error)
				return error;
			if (action == 0)
				return 0;
			xfs_attr3_leaf_unbalance(state, drop_blk, save_blk);
			break;
		case XFS_DIR2_LEAFN_MAGIC:
			error = xfs_dir2_leafn_toosmall(state, &action);
			if (error)
				return error;
			if (action == 0)
				return 0;
			xfs_dir2_leafn_unbalance(state, drop_blk, save_blk);
			break;
		case XFS_DA_NODE_MAGIC:
			/*
			 * Remove the offending node, fixup hashvals,
			 * check for a toosmall neighbor.
			 */
			xfs_da3_node_remove(state, drop_blk);
			xfs_da3_fixhashpath(state, &state->path);
			error = xfs_da3_node_toosmall(state, &action);
			if (error)
				return error;
			if (action == 0)
				return 0;
			xfs_da3_node_unbalance(state, drop_blk, save_blk);
			break;
		}
		xfs_da3_fixhashpath(state, &state->altpath);
		error = xfs_da3_blk_unlink(state, drop_blk, save_blk);
		xfs_da_state_kill_altpath(state);
		if (error)
			return error;
		error = xfs_da_shrink_inode(state->args, drop_blk->blkno,
							 drop_blk->bp);
		drop_blk->bp = NULL;
		if (error)
			return error;
	}
	/*
	 * We joined all the way to the top.  If it turns out that
	 * we only have one entry in the root, make the child block
	 * the new root.
	 */
	xfs_da3_node_remove(state, drop_blk);
	xfs_da3_fixhashpath(state, &state->path);
	error = xfs_da3_root_join(state, &state->path.blk[0]);
	return error;
}

#ifdef	DEBUG
static void
xfs_da_blkinfo_onlychild_validate(struct xfs_da_blkinfo *blkinfo, __u16 level)
{
	__be16	magic = blkinfo->magic;

	if (level == 1) {
		ASSERT(magic == cpu_to_be16(XFS_DIR2_LEAFN_MAGIC) ||
		       magic == cpu_to_be16(XFS_DIR3_LEAFN_MAGIC) ||
		       magic == cpu_to_be16(XFS_ATTR_LEAF_MAGIC) ||
		       magic == cpu_to_be16(XFS_ATTR3_LEAF_MAGIC));
	} else {
		ASSERT(magic == cpu_to_be16(XFS_DA_NODE_MAGIC) ||
		       magic == cpu_to_be16(XFS_DA3_NODE_MAGIC));
	}
	ASSERT(!blkinfo->forw);
	ASSERT(!blkinfo->back);
}
#else	/* !DEBUG */
#define	xfs_da_blkinfo_onlychild_validate(blkinfo, level)
#endif	/* !DEBUG */

/*
 * We have only one entry in the root.  Copy the only remaining child of
 * the old root to block 0 as the new root node.
 */
STATIC int
xfs_da3_root_join(
	struct xfs_da_state	*state,
	struct xfs_da_state_blk	*root_blk)
{
	struct xfs_da_intnode	*oldroot;
	struct xfs_da_args	*args;
	xfs_dablk_t		child;
	struct xfs_buf		*bp;
	struct xfs_da3_icnode_hdr oldroothdr;
	int			error;
	struct xfs_inode	*dp = state->args->dp;

	trace_xfs_da_root_join(state->args);

	ASSERT(root_blk->magic == XFS_DA_NODE_MAGIC);

	args = state->args;
	oldroot = root_blk->bp->b_addr;
	xfs_da3_node_hdr_from_disk(dp->i_mount, &oldroothdr, oldroot);
	ASSERT(oldroothdr.forw == 0);
	ASSERT(oldroothdr.back == 0);

	/*
	 * If the root has more than one child, then don't do anything.
	 */
	if (oldroothdr.count > 1)
		return 0;

	/*
	 * Read in the (only) child block, then copy those bytes into
	 * the root block's buffer and free the original child block.
	 */
	child = be32_to_cpu(oldroothdr.btree[0].before);
	ASSERT(child != 0);
	error = xfs_da3_node_read(args->trans, dp, child, &bp, args->whichfork);
	if (error)
		return error;
	xfs_da_blkinfo_onlychild_validate(bp->b_addr, oldroothdr.level);

	/*
	 * Copy child to root buffer and log it.
	 */
	xfs_da_buf_copy(root_blk->bp, bp, args->geo->blksize);
	xfs_trans_log_buf(args->trans, root_blk->bp, 0,
			  args->geo->blksize - 1);
	/*
	 * Now we can drop the child buffer.
	 */
	error = xfs_da_shrink_inode(args, child, bp);
	return error;
}

/*
 * Check a node block and its neighbors to see if the block should be
 * collapsed into one or the other neighbor.  Always keep the block
 * with the smaller block number.
 * If the current block is over 50% full, don't try to join it, return 0.
 * If the block is empty, fill in the state structure and return 2.
 * If it can be collapsed, fill in the state structure and return 1.
 * If nothing can be done, return 0.
 */
STATIC int
xfs_da3_node_toosmall(
	struct xfs_da_state	*state,
	int			*action)
{
	struct xfs_da_intnode	*node;
	struct xfs_da_state_blk	*blk;
	struct xfs_da_blkinfo	*info;
	xfs_dablk_t		blkno;
	struct xfs_buf		*bp;
	struct xfs_da3_icnode_hdr nodehdr;
	int			count;
	int			forward;
	int			error;
	int			retval;
	int			i;
	struct xfs_inode	*dp = state->args->dp;

	trace_xfs_da_node_toosmall(state->args);

	/*
	 * Check for the degenerate case of the block being over 50% full.
	 * If so, it's not worth even looking to see if we might be able
	 * to coalesce with a sibling.
	 */
	blk = &state->path.blk[ state->path.active-1 ];
	info = blk->bp->b_addr;
	node = (xfs_da_intnode_t *)info;
	xfs_da3_node_hdr_from_disk(dp->i_mount, &nodehdr, node);
	if (nodehdr.count > (state->args->geo->node_ents >> 1)) {
		*action = 0;	/* blk over 50%, don't try to join */
		return 0;	/* blk over 50%, don't try to join */
	}

	/*
	 * Check for the degenerate case of the block being empty.
	 * If the block is empty, we'll simply delete it, no need to
	 * coalesce it with a sibling block.  We choose (arbitrarily)
	 * to merge with the forward block unless it is NULL.
	 */
	if (nodehdr.count == 0) {
		/*
		 * Make altpath point to the block we want to keep and
		 * path point to the block we want to drop (this one).
		 */
		forward = (info->forw != 0);
		memcpy(&state->altpath, &state->path, sizeof(state->path));
		error = xfs_da3_path_shift(state, &state->altpath, forward,
						 0, &retval);
		if (error)
			return error;
		if (retval) {
			*action = 0;
		} else {
			*action = 2;
		}
		return 0;
	}

	/*
	 * Examine each sibling block to see if we can coalesce with
	 * at least 25% free space to spare.  We need to figure out
	 * whether to merge with the forward or the backward block.
	 * We prefer coalescing with the lower numbered sibling so as
	 * to shrink a directory over time.
	 */
	count  = state->args->geo->node_ents;
	count -= state->args->geo->node_ents >> 2;
	count -= nodehdr.count;

	/* start with smaller blk num */
	forward = nodehdr.forw < nodehdr.back;
	for (i = 0; i < 2; forward = !forward, i++) {
		struct xfs_da3_icnode_hdr thdr;
		if (forward)
			blkno = nodehdr.forw;
		else
			blkno = nodehdr.back;
		if (blkno == 0)
			continue;
		error = xfs_da3_node_read(state->args->trans, dp, blkno, &bp,
				state->args->whichfork);
		if (error)
			return error;

		node = bp->b_addr;
		xfs_da3_node_hdr_from_disk(dp->i_mount, &thdr, node);
		xfs_trans_brelse(state->args->trans, bp);

		if (count - thdr.count >= 0)
			break;	/* fits with at least 25% to spare */
	}
	if (i >= 2) {
		*action = 0;
		return 0;
	}

	/*
	 * Make altpath point to the block we want to keep (the lower
	 * numbered block) and path point to the block we want to drop.
	 */
	memcpy(&state->altpath, &state->path, sizeof(state->path));
	if (blkno < blk->blkno) {
		error = xfs_da3_path_shift(state, &state->altpath, forward,
						 0, &retval);
	} else {
		error = xfs_da3_path_shift(state, &state->path, forward,
						 0, &retval);
	}
	if (error)
		return error;
	if (retval) {
		*action = 0;
		return 0;
	}
	*action = 1;
	return 0;
}

/*
 * Pick up the last hashvalue from an intermediate node.
 */
STATIC uint
xfs_da3_node_lasthash(
	struct xfs_inode	*dp,
	struct xfs_buf		*bp,
	int			*count)
{
	struct xfs_da3_icnode_hdr nodehdr;

	xfs_da3_node_hdr_from_disk(dp->i_mount, &nodehdr, bp->b_addr);
	if (count)
		*count = nodehdr.count;
	if (!nodehdr.count)
		return 0;
	return be32_to_cpu(nodehdr.btree[nodehdr.count - 1].hashval);
}

/*
 * Walk back up the tree adjusting hash values as necessary,
 * when we stop making changes, return.
 */
void
xfs_da3_fixhashpath(
	struct xfs_da_state	*state,
	struct xfs_da_state_path *path)
{
	struct xfs_da_state_blk	*blk;
	struct xfs_da_intnode	*node;
	struct xfs_da_node_entry *btree;
	xfs_dahash_t		lasthash=0;
	int			level;
	int			count;
	struct xfs_inode	*dp = state->args->dp;

	trace_xfs_da_fixhashpath(state->args);

	level = path->active-1;
	blk = &path->blk[ level ];
	switch (blk->magic) {
	case XFS_ATTR_LEAF_MAGIC:
		lasthash = xfs_attr_leaf_lasthash(blk->bp, &count);
		if (count == 0)
			return;
		break;
	case XFS_DIR2_LEAFN_MAGIC:
		lasthash = xfs_dir2_leaf_lasthash(dp, blk->bp, &count);
		if (count == 0)
			return;
		break;
	case XFS_DA_NODE_MAGIC:
		lasthash = xfs_da3_node_lasthash(dp, blk->bp, &count);
		if (count == 0)
			return;
		break;
	}
	for (blk--, level--; level >= 0; blk--, level--) {
		struct xfs_da3_icnode_hdr nodehdr;

		node = blk->bp->b_addr;
		xfs_da3_node_hdr_from_disk(dp->i_mount, &nodehdr, node);
		btree = nodehdr.btree;
		if (be32_to_cpu(btree[blk->index].hashval) == lasthash)
			break;
		blk->hashval = lasthash;
		btree[blk->index].hashval = cpu_to_be32(lasthash);
		xfs_trans_log_buf(state->args->trans, blk->bp,
				  XFS_DA_LOGRANGE(node, &btree[blk->index],
						  sizeof(*btree)));

		lasthash = be32_to_cpu(btree[nodehdr.count - 1].hashval);
	}
}

/*
 * Remove an entry from an intermediate node.
 */
STATIC void
xfs_da3_node_remove(
	struct xfs_da_state	*state,
	struct xfs_da_state_blk	*drop_blk)
{
	struct xfs_da_intnode	*node;
	struct xfs_da3_icnode_hdr nodehdr;
	struct xfs_da_node_entry *btree;
	int			index;
	int			tmp;
	struct xfs_inode	*dp = state->args->dp;

	trace_xfs_da_node_remove(state->args);

	node = drop_blk->bp->b_addr;
	xfs_da3_node_hdr_from_disk(dp->i_mount, &nodehdr, node);
	ASSERT(drop_blk->index < nodehdr.count);
	ASSERT(drop_blk->index >= 0);

	/*
	 * Copy over the offending entry, or just zero it out.
	 */
	index = drop_blk->index;
	btree = nodehdr.btree;
	if (index < nodehdr.count - 1) {
		tmp  = nodehdr.count - index - 1;
		tmp *= (uint)sizeof(xfs_da_node_entry_t);
		memmove(&btree[index], &btree[index + 1], tmp);
		xfs_trans_log_buf(state->args->trans, drop_blk->bp,
		    XFS_DA_LOGRANGE(node, &btree[index], tmp));
		index = nodehdr.count - 1;
	}
	memset(&btree[index], 0, sizeof(xfs_da_node_entry_t));
	xfs_trans_log_buf(state->args->trans, drop_blk->bp,
	    XFS_DA_LOGRANGE(node, &btree[index], sizeof(btree[index])));
	nodehdr.count -= 1;
	xfs_da3_node_hdr_to_disk(dp->i_mount, node, &nodehdr);
	xfs_trans_log_buf(state->args->trans, drop_blk->bp,
	    XFS_DA_LOGRANGE(node, &node->hdr, state->args->geo->node_hdr_size));

	/*
	 * Copy the last hash value from the block to propagate upwards.
	 */
	drop_blk->hashval = be32_to_cpu(btree[index - 1].hashval);
}

/*
 * Unbalance the elements between two intermediate nodes,
 * move all Btree elements from one node into another.
 */
STATIC void
xfs_da3_node_unbalance(
	struct xfs_da_state	*state,
	struct xfs_da_state_blk	*drop_blk,
	struct xfs_da_state_blk	*save_blk)
{
	struct xfs_da_intnode	*drop_node;
	struct xfs_da_intnode	*save_node;
	struct xfs_da_node_entry *drop_btree;
	struct xfs_da_node_entry *save_btree;
	struct xfs_da3_icnode_hdr drop_hdr;
	struct xfs_da3_icnode_hdr save_hdr;
	struct xfs_trans	*tp;
	int			sindex;
	int			tmp;
	struct xfs_inode	*dp = state->args->dp;

	trace_xfs_da_node_unbalance(state->args);

	drop_node = drop_blk->bp->b_addr;
	save_node = save_blk->bp->b_addr;
	xfs_da3_node_hdr_from_disk(dp->i_mount, &drop_hdr, drop_node);
	xfs_da3_node_hdr_from_disk(dp->i_mount, &save_hdr, save_node);
	drop_btree = drop_hdr.btree;
	save_btree = save_hdr.btree;
	tp = state->args->trans;

	/*
	 * If the dying block has lower hashvals, then move all the
	 * elements in the remaining block up to make a hole.
	 */
	if ((be32_to_cpu(drop_btree[0].hashval) <
			be32_to_cpu(save_btree[0].hashval)) ||
	    (be32_to_cpu(drop_btree[drop_hdr.count - 1].hashval) <
			be32_to_cpu(save_btree[save_hdr.count - 1].hashval))) {
		/* XXX: check this - is memmove dst correct? */
		tmp = save_hdr.count * sizeof(xfs_da_node_entry_t);
		memmove(&save_btree[drop_hdr.count], &save_btree[0], tmp);

		sindex = 0;
		xfs_trans_log_buf(tp, save_blk->bp,
			XFS_DA_LOGRANGE(save_node, &save_btree[0],
				(save_hdr.count + drop_hdr.count) *
						sizeof(xfs_da_node_entry_t)));
	} else {
		sindex = save_hdr.count;
		xfs_trans_log_buf(tp, save_blk->bp,
			XFS_DA_LOGRANGE(save_node, &save_btree[sindex],
				drop_hdr.count * sizeof(xfs_da_node_entry_t)));
	}

	/*
	 * Move all the B-tree elements from drop_blk to save_blk.
	 */
	tmp = drop_hdr.count * (uint)sizeof(xfs_da_node_entry_t);
	memcpy(&save_btree[sindex], &drop_btree[0], tmp);
	save_hdr.count += drop_hdr.count;

	xfs_da3_node_hdr_to_disk(dp->i_mount, save_node, &save_hdr);
	xfs_trans_log_buf(tp, save_blk->bp,
		XFS_DA_LOGRANGE(save_node, &save_node->hdr,
				state->args->geo->node_hdr_size));

	/*
	 * Save the last hashval in the remaining block for upward propagation.
	 */
	save_blk->hashval = be32_to_cpu(save_btree[save_hdr.count - 1].hashval);
}

/*========================================================================
 * Routines used for finding things in the Btree.
 *========================================================================*/

/*
 * Walk down the Btree looking for a particular filename, filling
 * in the state structure as we go.
 *
 * We will set the state structure to point to each of the elements
 * in each of the nodes where either the hashval is or should be.
 *
 * We support duplicate hashval's so for each entry in the current
 * node that could contain the desired hashval, descend.  This is a
 * pruned depth-first tree search.
 */
int							/* error */
xfs_da3_node_lookup_int(
	struct xfs_da_state	*state,
	int			*result)
{
	struct xfs_da_state_blk	*blk;
	struct xfs_da_blkinfo	*curr;
	struct xfs_da_intnode	*node;
	struct xfs_da_node_entry *btree;
	struct xfs_da3_icnode_hdr nodehdr;
	struct xfs_da_args	*args;
	xfs_dablk_t		blkno;
	xfs_dahash_t		hashval;
	xfs_dahash_t		btreehashval;
	int			probe;
	int			span;
	int			max;
	int			error;
	int			retval;
	unsigned int		expected_level = 0;
	uint16_t		magic;
	struct xfs_inode	*dp = state->args->dp;

	args = state->args;

	/*
	 * Descend thru the B-tree searching each level for the right
	 * node to use, until the right hashval is found.
	 */
	blkno = args->geo->leafblk;
	for (blk = &state->path.blk[0], state->path.active = 1;
			 state->path.active <= XFS_DA_NODE_MAXDEPTH;
			 blk++, state->path.active++) {
		/*
		 * Read the next node down in the tree.
		 */
		blk->blkno = blkno;
		error = xfs_da3_node_read(args->trans, args->dp, blkno,
					&blk->bp, args->whichfork);
		if (error) {
			blk->blkno = 0;
			state->path.active--;
			return error;
		}
		curr = blk->bp->b_addr;
		magic = be16_to_cpu(curr->magic);

		if (magic == XFS_ATTR_LEAF_MAGIC ||
		    magic == XFS_ATTR3_LEAF_MAGIC) {
			blk->magic = XFS_ATTR_LEAF_MAGIC;
			blk->hashval = xfs_attr_leaf_lasthash(blk->bp, NULL);
			break;
		}

		if (magic == XFS_DIR2_LEAFN_MAGIC ||
		    magic == XFS_DIR3_LEAFN_MAGIC) {
			blk->magic = XFS_DIR2_LEAFN_MAGIC;
			blk->hashval = xfs_dir2_leaf_lasthash(args->dp,
							      blk->bp, NULL);
			break;
		}

		if (magic != XFS_DA_NODE_MAGIC && magic != XFS_DA3_NODE_MAGIC) {
			xfs_buf_mark_corrupt(blk->bp);
			return -EFSCORRUPTED;
		}

		blk->magic = XFS_DA_NODE_MAGIC;

		/*
		 * Search an intermediate node for a match.
		 */
		node = blk->bp->b_addr;
		xfs_da3_node_hdr_from_disk(dp->i_mount, &nodehdr, node);
		btree = nodehdr.btree;

		/* Tree taller than we can handle; bail out! */
		if (nodehdr.level >= XFS_DA_NODE_MAXDEPTH) {
			xfs_buf_mark_corrupt(blk->bp);
			return -EFSCORRUPTED;
		}

		/* Check the level from the root. */
		if (blkno == args->geo->leafblk)
			expected_level = nodehdr.level - 1;
		else if (expected_level != nodehdr.level) {
			xfs_buf_mark_corrupt(blk->bp);
			return -EFSCORRUPTED;
		} else
			expected_level--;

		max = nodehdr.count;
		blk->hashval = be32_to_cpu(btree[max - 1].hashval);

		/*
		 * Binary search.  (note: small blocks will skip loop)
		 */
		probe = span = max / 2;
		hashval = args->hashval;
		while (span > 4) {
			span /= 2;
			btreehashval = be32_to_cpu(btree[probe].hashval);
			if (btreehashval < hashval)
				probe += span;
			else if (btreehashval > hashval)
				probe -= span;
			else
				break;
		}
		ASSERT((probe >= 0) && (probe < max));
		ASSERT((span <= 4) ||
			(be32_to_cpu(btree[probe].hashval) == hashval));

		/*
		 * Since we may have duplicate hashval's, find the first
		 * matching hashval in the node.
		 */
		while (probe > 0 &&
		       be32_to_cpu(btree[probe].hashval) >= hashval) {
			probe--;
		}
		while (probe < max &&
		       be32_to_cpu(btree[probe].hashval) < hashval) {
			probe++;
		}

		/*
		 * Pick the right block to descend on.
		 */
		if (probe == max) {
			blk->index = max - 1;
			blkno = be32_to_cpu(btree[max - 1].before);
		} else {
			blk->index = probe;
			blkno = be32_to_cpu(btree[probe].before);
		}

		/* We can't point back to the root. */
		if (XFS_IS_CORRUPT(dp->i_mount, blkno == args->geo->leafblk))
			return -EFSCORRUPTED;
	}

	if (XFS_IS_CORRUPT(dp->i_mount, expected_level != 0))
		return -EFSCORRUPTED;

	/*
	 * A leaf block that ends in the hashval that we are interested in
	 * (final hashval == search hashval) means that the next block may
	 * contain more entries with the same hashval, shift upward to the
	 * next leaf and keep searching.
	 */
	for (;;) {
		if (blk->magic == XFS_DIR2_LEAFN_MAGIC) {
			retval = xfs_dir2_leafn_lookup_int(blk->bp, args,
							&blk->index, state);
		} else if (blk->magic == XFS_ATTR_LEAF_MAGIC) {
			retval = xfs_attr3_leaf_lookup_int(blk->bp, args);
			blk->index = args->index;
			args->blkno = blk->blkno;
		} else {
			ASSERT(0);
			return -EFSCORRUPTED;
		}
		if (((retval == -ENOENT) || (retval == -ENOATTR)) &&
		    (blk->hashval == args->hashval)) {
			error = xfs_da3_path_shift(state, &state->path, 1, 1,
							 &retval);
			if (error)
				return error;
			if (retval == 0) {
				continue;
			} else if (blk->magic == XFS_ATTR_LEAF_MAGIC) {
				/* path_shift() gives ENOENT */
				retval = -ENOATTR;
			}
		}
		break;
	}
	*result = retval;
	return 0;
}

/*========================================================================
 * Utility routines.
 *========================================================================*/

/*
 * Compare two intermediate nodes for "order".
 */
STATIC int
xfs_da3_node_order(
	struct xfs_inode *dp,
	struct xfs_buf	*node1_bp,
	struct xfs_buf	*node2_bp)
{
	struct xfs_da_intnode	*node1;
	struct xfs_da_intnode	*node2;
	struct xfs_da_node_entry *btree1;
	struct xfs_da_node_entry *btree2;
	struct xfs_da3_icnode_hdr node1hdr;
	struct xfs_da3_icnode_hdr node2hdr;

	node1 = node1_bp->b_addr;
	node2 = node2_bp->b_addr;
	xfs_da3_node_hdr_from_disk(dp->i_mount, &node1hdr, node1);
	xfs_da3_node_hdr_from_disk(dp->i_mount, &node2hdr, node2);
	btree1 = node1hdr.btree;
	btree2 = node2hdr.btree;

	if (node1hdr.count > 0 && node2hdr.count > 0 &&
	    ((be32_to_cpu(btree2[0].hashval) < be32_to_cpu(btree1[0].hashval)) ||
	     (be32_to_cpu(btree2[node2hdr.count - 1].hashval) <
	      be32_to_cpu(btree1[node1hdr.count - 1].hashval)))) {
		return 1;
	}
	return 0;
}

/*
 * Link a new block into a doubly linked list of blocks (of whatever type).
 */
int							/* error */
xfs_da3_blk_link(
	struct xfs_da_state	*state,
	struct xfs_da_state_blk	*old_blk,
	struct xfs_da_state_blk	*new_blk)
{
	struct xfs_da_blkinfo	*old_info;
	struct xfs_da_blkinfo	*new_info;
	struct xfs_da_blkinfo	*tmp_info;
	struct xfs_da_args	*args;
	struct xfs_buf		*bp;
	int			before = 0;
	int			error;
	struct xfs_inode	*dp = state->args->dp;

	/*
	 * Set up environment.
	 */
	args = state->args;
	ASSERT(args != NULL);
	old_info = old_blk->bp->b_addr;
	new_info = new_blk->bp->b_addr;
	ASSERT(old_blk->magic == XFS_DA_NODE_MAGIC ||
	       old_blk->magic == XFS_DIR2_LEAFN_MAGIC ||
	       old_blk->magic == XFS_ATTR_LEAF_MAGIC);

	switch (old_blk->magic) {
	case XFS_ATTR_LEAF_MAGIC:
		before = xfs_attr_leaf_order(old_blk->bp, new_blk->bp);
		break;
	case XFS_DIR2_LEAFN_MAGIC:
		before = xfs_dir2_leafn_order(dp, old_blk->bp, new_blk->bp);
		break;
	case XFS_DA_NODE_MAGIC:
		before = xfs_da3_node_order(dp, old_blk->bp, new_blk->bp);
		break;
	}

	/*
	 * Link blocks in appropriate order.
	 */
	if (before) {
		/*
		 * Link new block in before existing block.
		 */
		trace_xfs_da_link_before(args);
		new_info->forw = cpu_to_be32(old_blk->blkno);
		new_info->back = old_info->back;
		if (old_info->back) {
			error = xfs_da3_node_read(args->trans, dp,
						be32_to_cpu(old_info->back),
						&bp, args->whichfork);
			if (error)
				return error;
			ASSERT(bp != NULL);
			tmp_info = bp->b_addr;
			ASSERT(tmp_info->magic == old_info->magic);
			ASSERT(be32_to_cpu(tmp_info->forw) == old_blk->blkno);
			tmp_info->forw = cpu_to_be32(new_blk->blkno);
			xfs_trans_log_buf(args->trans, bp, 0, sizeof(*tmp_info)-1);
		}
		old_info->back = cpu_to_be32(new_blk->blkno);
	} else {
		/*
		 * Link new block in after existing block.
		 */
		trace_xfs_da_link_after(args);
		new_info->forw = old_info->forw;
		new_info->back = cpu_to_be32(old_blk->blkno);
		if (old_info->forw) {
			error = xfs_da3_node_read(args->trans, dp,
						be32_to_cpu(old_info->forw),
						&bp, args->whichfork);
			if (error)
				return error;
			ASSERT(bp != NULL);
			tmp_info = bp->b_addr;
			ASSERT(tmp_info->magic == old_info->magic);
			ASSERT(be32_to_cpu(tmp_info->back) == old_blk->blkno);
			tmp_info->back = cpu_to_be32(new_blk->blkno);
			xfs_trans_log_buf(args->trans, bp, 0, sizeof(*tmp_info)-1);
		}
		old_info->forw = cpu_to_be32(new_blk->blkno);
	}

	xfs_trans_log_buf(args->trans, old_blk->bp, 0, sizeof(*tmp_info) - 1);
	xfs_trans_log_buf(args->trans, new_blk->bp, 0, sizeof(*tmp_info) - 1);
	return 0;
}

/*
 * Unlink a block from a doubly linked list of blocks.
 */
STATIC int						/* error */
xfs_da3_blk_unlink(
	struct xfs_da_state	*state,
	struct xfs_da_state_blk	*drop_blk,
	struct xfs_da_state_blk	*save_blk)
{
	struct xfs_da_blkinfo	*drop_info;
	struct xfs_da_blkinfo	*save_info;
	struct xfs_da_blkinfo	*tmp_info;
	struct xfs_da_args	*args;
	struct xfs_buf		*bp;
	int			error;

	/*
	 * Set up environment.
	 */
	args = state->args;
	ASSERT(args != NULL);
	save_info = save_blk->bp->b_addr;
	drop_info = drop_blk->bp->b_addr;
	ASSERT(save_blk->magic == XFS_DA_NODE_MAGIC ||
	       save_blk->magic == XFS_DIR2_LEAFN_MAGIC ||
	       save_blk->magic == XFS_ATTR_LEAF_MAGIC);
	ASSERT(save_blk->magic == drop_blk->magic);
	ASSERT((be32_to_cpu(save_info->forw) == drop_blk->blkno) ||
	       (be32_to_cpu(save_info->back) == drop_blk->blkno));
	ASSERT((be32_to_cpu(drop_info->forw) == save_blk->blkno) ||
	       (be32_to_cpu(drop_info->back) == save_blk->blkno));

	/*
	 * Unlink the leaf block from the doubly linked chain of leaves.
	 */
	if (be32_to_cpu(save_info->back) == drop_blk->blkno) {
		trace_xfs_da_unlink_back(args);
		save_info->back = drop_info->back;
		if (drop_info->back) {
			error = xfs_da3_node_read(args->trans, args->dp,
						be32_to_cpu(drop_info->back),
						&bp, args->whichfork);
			if (error)
				return error;
			ASSERT(bp != NULL);
			tmp_info = bp->b_addr;
			ASSERT(tmp_info->magic == save_info->magic);
			ASSERT(be32_to_cpu(tmp_info->forw) == drop_blk->blkno);
			tmp_info->forw = cpu_to_be32(save_blk->blkno);
			xfs_trans_log_buf(args->trans, bp, 0,
						    sizeof(*tmp_info) - 1);
		}
	} else {
		trace_xfs_da_unlink_forward(args);
		save_info->forw = drop_info->forw;
		if (drop_info->forw) {
			error = xfs_da3_node_read(args->trans, args->dp,
						be32_to_cpu(drop_info->forw),
						&bp, args->whichfork);
			if (error)
				return error;
			ASSERT(bp != NULL);
			tmp_info = bp->b_addr;
			ASSERT(tmp_info->magic == save_info->magic);
			ASSERT(be32_to_cpu(tmp_info->back) == drop_blk->blkno);
			tmp_info->back = cpu_to_be32(save_blk->blkno);
			xfs_trans_log_buf(args->trans, bp, 0,
						    sizeof(*tmp_info) - 1);
		}
	}

	xfs_trans_log_buf(args->trans, save_blk->bp, 0, sizeof(*save_info) - 1);
	return 0;
}

/*
 * Move a path "forward" or "!forward" one block at the current level.
 *
 * This routine will adjust a "path" to point to the next block
 * "forward" (higher hashvalues) or "!forward" (lower hashvals) in the
 * Btree, including updating pointers to the intermediate nodes between
 * the new bottom and the root.
 */
int							/* error */
xfs_da3_path_shift(
	struct xfs_da_state	*state,
	struct xfs_da_state_path *path,
	int			forward,
	int			release,
	int			*result)
{
	struct xfs_da_state_blk	*blk;
	struct xfs_da_blkinfo	*info;
	struct xfs_da_args	*args;
	struct xfs_da_node_entry *btree;
	struct xfs_da3_icnode_hdr nodehdr;
	struct xfs_buf		*bp;
	xfs_dablk_t		blkno = 0;
	int			level;
	int			error;
	struct xfs_inode	*dp = state->args->dp;

	trace_xfs_da_path_shift(state->args);

	/*
	 * Roll up the Btree looking for the first block where our
	 * current index is not at the edge of the block.  Note that
	 * we skip the bottom layer because we want the sibling block.
	 */
	args = state->args;
	ASSERT(args != NULL);
	ASSERT(path != NULL);
	ASSERT((path->active > 0) && (path->active < XFS_DA_NODE_MAXDEPTH));
	level = (path->active-1) - 1;	/* skip bottom layer in path */
	for (; level >= 0; level--) {
		blk = &path->blk[level];
		xfs_da3_node_hdr_from_disk(dp->i_mount, &nodehdr,
					   blk->bp->b_addr);

		if (forward && (blk->index < nodehdr.count - 1)) {
			blk->index++;
			blkno = be32_to_cpu(nodehdr.btree[blk->index].before);
			break;
		} else if (!forward && (blk->index > 0)) {
			blk->index--;
			blkno = be32_to_cpu(nodehdr.btree[blk->index].before);
			break;
		}
	}
	if (level < 0) {
		*result = -ENOENT;	/* we're out of our tree */
		ASSERT(args->op_flags & XFS_DA_OP_OKNOENT);
		return 0;
	}

	/*
	 * Roll down the edge of the subtree until we reach the
	 * same depth we were at originally.
	 */
	for (blk++, level++; level < path->active; blk++, level++) {
		/*
		 * Read the next child block into a local buffer.
		 */
		error = xfs_da3_node_read(args->trans, dp, blkno, &bp,
					  args->whichfork);
		if (error)
			return error;

		/*
		 * Release the old block (if it's dirty, the trans doesn't
		 * actually let go) and swap the local buffer into the path
		 * structure. This ensures failure of the above read doesn't set
		 * a NULL buffer in an active slot in the path.
		 */
		if (release)
			xfs_trans_brelse(args->trans, blk->bp);
		blk->blkno = blkno;
		blk->bp = bp;

		info = blk->bp->b_addr;
		ASSERT(info->magic == cpu_to_be16(XFS_DA_NODE_MAGIC) ||
		       info->magic == cpu_to_be16(XFS_DA3_NODE_MAGIC) ||
		       info->magic == cpu_to_be16(XFS_DIR2_LEAFN_MAGIC) ||
		       info->magic == cpu_to_be16(XFS_DIR3_LEAFN_MAGIC) ||
		       info->magic == cpu_to_be16(XFS_ATTR_LEAF_MAGIC) ||
		       info->magic == cpu_to_be16(XFS_ATTR3_LEAF_MAGIC));


		/*
		 * Note: we flatten the magic number to a single type so we
		 * don't have to compare against crc/non-crc types elsewhere.
		 */
		switch (be16_to_cpu(info->magic)) {
		case XFS_DA_NODE_MAGIC:
		case XFS_DA3_NODE_MAGIC:
			blk->magic = XFS_DA_NODE_MAGIC;
			xfs_da3_node_hdr_from_disk(dp->i_mount, &nodehdr,
						   bp->b_addr);
			btree = nodehdr.btree;
			blk->hashval = be32_to_cpu(btree[nodehdr.count - 1].hashval);
			if (forward)
				blk->index = 0;
			else
				blk->index = nodehdr.count - 1;
			blkno = be32_to_cpu(btree[blk->index].before);
			break;
		case XFS_ATTR_LEAF_MAGIC:
		case XFS_ATTR3_LEAF_MAGIC:
			blk->magic = XFS_ATTR_LEAF_MAGIC;
			ASSERT(level == path->active-1);
			blk->index = 0;
			blk->hashval = xfs_attr_leaf_lasthash(blk->bp, NULL);
			break;
		case XFS_DIR2_LEAFN_MAGIC:
		case XFS_DIR3_LEAFN_MAGIC:
			blk->magic = XFS_DIR2_LEAFN_MAGIC;
			ASSERT(level == path->active-1);
			blk->index = 0;
			blk->hashval = xfs_dir2_leaf_lasthash(args->dp,
							      blk->bp, NULL);
			break;
		default:
			ASSERT(0);
			break;
		}
	}
	*result = 0;
	return 0;
}


/*========================================================================
 * Utility routines.
 *========================================================================*/

/*
 * Implement a simple hash on a character string.
 * Rotate the hash value by 7 bits, then XOR each character in.
 * This is implemented with some source-level loop unrolling.
 */
xfs_dahash_t
xfs_da_hashname(const uint8_t *name, int namelen)
{
	xfs_dahash_t hash;

	/*
	 * Do four characters at a time as long as we can.
	 */
	for (hash = 0; namelen >= 4; namelen -= 4, name += 4)
		hash = (name[0] << 21) ^ (name[1] << 14) ^ (name[2] << 7) ^
		       (name[3] << 0) ^ rol32(hash, 7 * 4);

	/*
	 * Now do the rest of the characters.
	 */
	switch (namelen) {
	case 3:
		return (name[0] << 14) ^ (name[1] << 7) ^ (name[2] << 0) ^
		       rol32(hash, 7 * 3);
	case 2:
		return (name[0] << 7) ^ (name[1] << 0) ^ rol32(hash, 7 * 2);
	case 1:
		return (name[0] << 0) ^ rol32(hash, 7 * 1);
	default: /* case 0: */
		return hash;
	}
}

enum xfs_dacmp
xfs_da_compname(
	struct xfs_da_args *args,
	const unsigned char *name,
	int		len)
{
	return (args->namelen == len && memcmp(args->name, name, len) == 0) ?
					XFS_CMP_EXACT : XFS_CMP_DIFFERENT;
}

int
xfs_da_grow_inode_int(
	struct xfs_da_args	*args,
	xfs_fileoff_t		*bno,
	int			count)
{
	struct xfs_trans	*tp = args->trans;
	struct xfs_inode	*dp = args->dp;
	int			w = args->whichfork;
	xfs_rfsblock_t		nblks = dp->i_nblocks;
	struct xfs_bmbt_irec	map, *mapp;
	int			nmap, error, got, i, mapi;

	/*
	 * Find a spot in the file space to put the new block.
	 */
	error = xfs_bmap_first_unused(tp, dp, count, bno, w);
	if (error)
		return error;

	/*
	 * Try mapping it in one filesystem block.
	 */
	nmap = 1;
	error = xfs_bmapi_write(tp, dp, *bno, count,
			xfs_bmapi_aflag(w)|XFS_BMAPI_METADATA|XFS_BMAPI_CONTIG,
			args->total, &map, &nmap);
	if (error)
		return error;

	ASSERT(nmap <= 1);
	if (nmap == 1) {
		mapp = &map;
		mapi = 1;
	} else if (nmap == 0 && count > 1) {
		xfs_fileoff_t		b;
		int			c;

		/*
		 * If we didn't get it and the block might work if fragmented,
		 * try without the CONTIG flag.  Loop until we get it all.
		 */
		mapp = kmem_alloc(sizeof(*mapp) * count, 0);
		for (b = *bno, mapi = 0; b < *bno + count; ) {
			c = (int)(*bno + count - b);
			nmap = min(XFS_BMAP_MAX_NMAP, c);
			error = xfs_bmapi_write(tp, dp, b, c,
					xfs_bmapi_aflag(w)|XFS_BMAPI_METADATA,
					args->total, &mapp[mapi], &nmap);
			if (error)
				goto out_free_map;
			if (nmap < 1)
				break;
			mapi += nmap;
			b = mapp[mapi - 1].br_startoff +
			    mapp[mapi - 1].br_blockcount;
		}
	} else {
		mapi = 0;
		mapp = NULL;
	}

	/*
	 * Count the blocks we got, make sure it matches the total.
	 */
	for (i = 0, got = 0; i < mapi; i++)
		got += mapp[i].br_blockcount;
	if (got != count || mapp[0].br_startoff != *bno ||
	    mapp[mapi - 1].br_startoff + mapp[mapi - 1].br_blockcount !=
	    *bno + count) {
		error = -ENOSPC;
		goto out_free_map;
	}

	/* account for newly allocated blocks in reserved blocks total */
	args->total -= dp->i_nblocks - nblks;

out_free_map:
	if (mapp != &map)
		kmem_free(mapp);
	return error;
}

/*
 * Add a block to the btree ahead of the file.
 * Return the new block number to the caller.
 */
int
xfs_da_grow_inode(
	struct xfs_da_args	*args,
	xfs_dablk_t		*new_blkno)
{
	xfs_fileoff_t		bno;
	int			error;

	trace_xfs_da_grow_inode(args);

	bno = args->geo->leafblk;
	error = xfs_da_grow_inode_int(args, &bno, args->geo->fsbcount);
	if (!error)
		*new_blkno = (xfs_dablk_t)bno;
	return error;
}

/*
 * Ick.  We need to always be able to remove a btree block, even
 * if there's no space reservation because the filesystem is full.
 * This is called if xfs_bunmapi on a btree block fails due to ENOSPC.
 * It swaps the target block with the last block in the file.  The
 * last block in the file can always be removed since it can't cause
 * a bmap btree split to do that.
 */
STATIC int
xfs_da3_swap_lastblock(
	struct xfs_da_args	*args,
	xfs_dablk_t		*dead_blknop,
	struct xfs_buf		**dead_bufp)
{
	struct xfs_da_blkinfo	*dead_info;
	struct xfs_da_blkinfo	*sib_info;
	struct xfs_da_intnode	*par_node;
	struct xfs_da_intnode	*dead_node;
	struct xfs_dir2_leaf	*dead_leaf2;
	struct xfs_da_node_entry *btree;
	struct xfs_da3_icnode_hdr par_hdr;
	struct xfs_inode	*dp;
	struct xfs_trans	*tp;
	struct xfs_mount	*mp;
	struct xfs_buf		*dead_buf;
	struct xfs_buf		*last_buf;
	struct xfs_buf		*sib_buf;
	struct xfs_buf		*par_buf;
	xfs_dahash_t		dead_hash;
	xfs_fileoff_t		lastoff;
	xfs_dablk_t		dead_blkno;
	xfs_dablk_t		last_blkno;
	xfs_dablk_t		sib_blkno;
	xfs_dablk_t		par_blkno;
	int			error;
	int			w;
	int			entno;
	int			level;
	int			dead_level;

	trace_xfs_da_swap_lastblock(args);

	dead_buf = *dead_bufp;
	dead_blkno = *dead_blknop;
	tp = args->trans;
	dp = args->dp;
	w = args->whichfork;
	ASSERT(w == XFS_DATA_FORK);
	mp = dp->i_mount;
	lastoff = args->geo->freeblk;
	error = xfs_bmap_last_before(tp, dp, &lastoff, w);
	if (error)
		return error;
	if (XFS_IS_CORRUPT(mp, lastoff == 0))
		return -EFSCORRUPTED;
	/*
	 * Read the last block in the btree space.
	 */
	last_blkno = (xfs_dablk_t)lastoff - args->geo->fsbcount;
	error = xfs_da3_node_read(tp, dp, last_blkno, &last_buf, w);
	if (error)
		return error;
	/*
	 * Copy the last block into the dead buffer and log it.
	 */
	xfs_da_buf_copy(dead_buf, last_buf, args->geo->blksize);
	xfs_trans_log_buf(tp, dead_buf, 0, args->geo->blksize - 1);
	dead_info = dead_buf->b_addr;

	/*
	 * Get values from the moved block.
	 */
	if (dead_info->magic == cpu_to_be16(XFS_DIR2_LEAFN_MAGIC) ||
	    dead_info->magic == cpu_to_be16(XFS_DIR3_LEAFN_MAGIC)) {
		struct xfs_dir3_icleaf_hdr leafhdr;
		struct xfs_dir2_leaf_entry *ents;

		dead_leaf2 = (xfs_dir2_leaf_t *)dead_info;
		xfs_dir2_leaf_hdr_from_disk(dp->i_mount, &leafhdr,
					    dead_leaf2);
		ents = leafhdr.ents;
		dead_level = 0;
		dead_hash = be32_to_cpu(ents[leafhdr.count - 1].hashval);
	} else {
		struct xfs_da3_icnode_hdr deadhdr;

		dead_node = (xfs_da_intnode_t *)dead_info;
		xfs_da3_node_hdr_from_disk(dp->i_mount, &deadhdr, dead_node);
		btree = deadhdr.btree;
		dead_level = deadhdr.level;
		dead_hash = be32_to_cpu(btree[deadhdr.count - 1].hashval);
	}
	sib_buf = par_buf = NULL;
	/*
	 * If the moved block has a left sibling, fix up the pointers.
	 */
	if ((sib_blkno = be32_to_cpu(dead_info->back))) {
		error = xfs_da3_node_read(tp, dp, sib_blkno, &sib_buf, w);
		if (error)
			goto done;
		sib_info = sib_buf->b_addr;
		if (XFS_IS_CORRUPT(mp,
				   be32_to_cpu(sib_info->forw) != last_blkno ||
				   sib_info->magic != dead_info->magic)) {
			error = -EFSCORRUPTED;
			goto done;
		}
		sib_info->forw = cpu_to_be32(dead_blkno);
		xfs_trans_log_buf(tp, sib_buf,
			XFS_DA_LOGRANGE(sib_info, &sib_info->forw,
					sizeof(sib_info->forw)));
		sib_buf = NULL;
	}
	/*
	 * If the moved block has a right sibling, fix up the pointers.
	 */
	if ((sib_blkno = be32_to_cpu(dead_info->forw))) {
		error = xfs_da3_node_read(tp, dp, sib_blkno, &sib_buf, w);
		if (error)
			goto done;
		sib_info = sib_buf->b_addr;
		if (XFS_IS_CORRUPT(mp,
				   be32_to_cpu(sib_info->back) != last_blkno ||
				   sib_info->magic != dead_info->magic)) {
			error = -EFSCORRUPTED;
			goto done;
		}
		sib_info->back = cpu_to_be32(dead_blkno);
		xfs_trans_log_buf(tp, sib_buf,
			XFS_DA_LOGRANGE(sib_info, &sib_info->back,
					sizeof(sib_info->back)));
		sib_buf = NULL;
	}
	par_blkno = args->geo->leafblk;
	level = -1;
	/*
	 * Walk down the tree looking for the parent of the moved block.
	 */
	for (;;) {
		error = xfs_da3_node_read(tp, dp, par_blkno, &par_buf, w);
		if (error)
			goto done;
		par_node = par_buf->b_addr;
		xfs_da3_node_hdr_from_disk(dp->i_mount, &par_hdr, par_node);
		if (XFS_IS_CORRUPT(mp,
				   level >= 0 && level != par_hdr.level + 1)) {
			error = -EFSCORRUPTED;
			goto done;
		}
		level = par_hdr.level;
		btree = par_hdr.btree;
		for (entno = 0;
		     entno < par_hdr.count &&
		     be32_to_cpu(btree[entno].hashval) < dead_hash;
		     entno++)
			continue;
		if (XFS_IS_CORRUPT(mp, entno == par_hdr.count)) {
			error = -EFSCORRUPTED;
			goto done;
		}
		par_blkno = be32_to_cpu(btree[entno].before);
		if (level == dead_level + 1)
			break;
		xfs_trans_brelse(tp, par_buf);
		par_buf = NULL;
	}
	/*
	 * We're in the right parent block.
	 * Look for the right entry.
	 */
	for (;;) {
		for (;
		     entno < par_hdr.count &&
		     be32_to_cpu(btree[entno].before) != last_blkno;
		     entno++)
			continue;
		if (entno < par_hdr.count)
			break;
		par_blkno = par_hdr.forw;
		xfs_trans_brelse(tp, par_buf);
		par_buf = NULL;
		if (XFS_IS_CORRUPT(mp, par_blkno == 0)) {
			error = -EFSCORRUPTED;
			goto done;
		}
		error = xfs_da3_node_read(tp, dp, par_blkno, &par_buf, w);
		if (error)
			goto done;
		par_node = par_buf->b_addr;
		xfs_da3_node_hdr_from_disk(dp->i_mount, &par_hdr, par_node);
		if (XFS_IS_CORRUPT(mp, par_hdr.level != level)) {
			error = -EFSCORRUPTED;
			goto done;
		}
		btree = par_hdr.btree;
		entno = 0;
	}
	/*
	 * Update the parent entry pointing to the moved block.
	 */
	btree[entno].before = cpu_to_be32(dead_blkno);
	xfs_trans_log_buf(tp, par_buf,
		XFS_DA_LOGRANGE(par_node, &btree[entno].before,
				sizeof(btree[entno].before)));
	*dead_blknop = last_blkno;
	*dead_bufp = last_buf;
	return 0;
done:
	if (par_buf)
		xfs_trans_brelse(tp, par_buf);
	if (sib_buf)
		xfs_trans_brelse(tp, sib_buf);
	xfs_trans_brelse(tp, last_buf);
	return error;
}

/*
 * Remove a btree block from a directory or attribute.
 */
int
xfs_da_shrink_inode(
	struct xfs_da_args	*args,
	xfs_dablk_t		dead_blkno,
	struct xfs_buf		*dead_buf)
{
	struct xfs_inode	*dp;
	int			done, error, w, count;
	struct xfs_trans	*tp;

	trace_xfs_da_shrink_inode(args);

	dp = args->dp;
	w = args->whichfork;
	tp = args->trans;
	count = args->geo->fsbcount;
	for (;;) {
		/*
		 * Remove extents.  If we get ENOSPC for a dir we have to move
		 * the last block to the place we want to kill.
		 */
		error = xfs_bunmapi(tp, dp, dead_blkno, count,
				    xfs_bmapi_aflag(w), 0, &done);
		if (error == -ENOSPC) {
			if (w != XFS_DATA_FORK)
				break;
			error = xfs_da3_swap_lastblock(args, &dead_blkno,
						      &dead_buf);
			if (error)
				break;
		} else {
			break;
		}
	}
	xfs_trans_binval(tp, dead_buf);
	return error;
}

static int
xfs_dabuf_map(
	struct xfs_inode	*dp,
	xfs_dablk_t		bno,
	unsigned int		flags,
	int			whichfork,
	struct xfs_buf_map	**mapp,
	int			*nmaps)
{
	struct xfs_mount	*mp = dp->i_mount;
	int			nfsb = xfs_dabuf_nfsb(mp, whichfork);
	struct xfs_bmbt_irec	irec, *irecs = &irec;
	struct xfs_buf_map	*map = *mapp;
	xfs_fileoff_t		off = bno;
	int			error = 0, nirecs, i;

	if (nfsb > 1)
		irecs = kmem_zalloc(sizeof(irec) * nfsb, KM_NOFS);

	nirecs = nfsb;
	error = xfs_bmapi_read(dp, bno, nfsb, irecs, &nirecs,
			xfs_bmapi_aflag(whichfork));
	if (error)
		goto out_free_irecs;

	/*
	 * Use the caller provided map for the single map case, else allocate a
	 * larger one that needs to be free by the caller.
	 */
	if (nirecs > 1) {
		map = kmem_zalloc(nirecs * sizeof(struct xfs_buf_map), KM_NOFS);
		if (!map) {
			error = -ENOMEM;
			goto out_free_irecs;
		}
		*mapp = map;
	}

	for (i = 0; i < nirecs; i++) {
		if (irecs[i].br_startblock == HOLESTARTBLOCK ||
		    irecs[i].br_startblock == DELAYSTARTBLOCK)
			goto invalid_mapping;
		if (off != irecs[i].br_startoff)
			goto invalid_mapping;

		map[i].bm_bn = XFS_FSB_TO_DADDR(mp, irecs[i].br_startblock);
		map[i].bm_len = XFS_FSB_TO_BB(mp, irecs[i].br_blockcount);
		off += irecs[i].br_blockcount;
	}

	if (off != bno + nfsb)
		goto invalid_mapping;

	*nmaps = nirecs;
out_free_irecs:
	if (irecs != &irec)
		kmem_free(irecs);
	return error;

invalid_mapping:
	/* Caller ok with no mapping. */
	if (XFS_IS_CORRUPT(mp, !(flags & XFS_DABUF_MAP_HOLE_OK))) {
		error = -EFSCORRUPTED;
		if (xfs_error_level >= XFS_ERRLEVEL_LOW) {
			xfs_alert(mp, "%s: bno %u inode %llu",
					__func__, bno, dp->i_ino);

			for (i = 0; i < nirecs; i++) {
				xfs_alert(mp,
"[%02d] br_startoff %lld br_startblock %lld br_blockcount %lld br_state %d",
					i, irecs[i].br_startoff,
					irecs[i].br_startblock,
					irecs[i].br_blockcount,
					irecs[i].br_state);
			}
		}
	} else {
		*nmaps = 0;
	}
	goto out_free_irecs;
}

/*
 * Get a buffer for the dir/attr block.
 */
int
xfs_da_get_buf(
	struct xfs_trans	*tp,
	struct xfs_inode	*dp,
	xfs_dablk_t		bno,
	struct xfs_buf		**bpp,
	int			whichfork)
{
	struct xfs_mount	*mp = dp->i_mount;
	struct xfs_buf		*bp;
	struct xfs_buf_map	map, *mapp = &map;
	int			nmap = 1;
	int			error;

	*bpp = NULL;
	error = xfs_dabuf_map(dp, bno, 0, whichfork, &mapp, &nmap);
	if (error || nmap == 0)
		goto out_free;

	error = xfs_trans_get_buf_map(tp, mp->m_ddev_targp, mapp, nmap, 0, &bp);
	if (error)
		goto out_free;

	*bpp = bp;

out_free:
	if (mapp != &map)
		kmem_free(mapp);

	return error;
}

/*
 * Get a buffer for the dir/attr block, fill in the contents.
 */
int
xfs_da_read_buf(
	struct xfs_trans	*tp,
	struct xfs_inode	*dp,
	xfs_dablk_t		bno,
	unsigned int		flags,
	struct xfs_buf		**bpp,
	int			whichfork,
	const struct xfs_buf_ops *ops)
{
	struct xfs_mount	*mp = dp->i_mount;
	struct xfs_buf		*bp;
	struct xfs_buf_map	map, *mapp = &map;
	int			nmap = 1;
	int			error;

	*bpp = NULL;
	error = xfs_dabuf_map(dp, bno, flags, whichfork, &mapp, &nmap);
	if (error || !nmap)
		goto out_free;

	error = xfs_trans_read_buf_map(mp, tp, mp->m_ddev_targp, mapp, nmap, 0,
			&bp, ops);
	if (error)
		goto out_free;

	if (whichfork == XFS_ATTR_FORK)
		xfs_buf_set_ref(bp, XFS_ATTR_BTREE_REF);
	else
		xfs_buf_set_ref(bp, XFS_DIR_BTREE_REF);
	*bpp = bp;
out_free:
	if (mapp != &map)
		kmem_free(mapp);

	return error;
}

/*
 * Readahead the dir/attr block.
 */
int
xfs_da_reada_buf(
	struct xfs_inode	*dp,
	xfs_dablk_t		bno,
	unsigned int		flags,
	int			whichfork,
	const struct xfs_buf_ops *ops)
{
	struct xfs_buf_map	map;
	struct xfs_buf_map	*mapp;
	int			nmap;
	int			error;

	mapp = &map;
	nmap = 1;
	error = xfs_dabuf_map(dp, bno, flags, whichfork, &mapp, &nmap);
	if (error || !nmap)
		goto out_free;

	xfs_buf_readahead_map(dp->i_mount->m_ddev_targp, mapp, nmap, ops);

out_free:
	if (mapp != &map)
		kmem_free(mapp);

	return error;
}