Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Darrick J. Wong | 1954 | 81.96% | 35 | 45.45% |
David Chinner | 199 | 8.35% | 28 | 36.36% |
Christoph Hellwig | 170 | 7.13% | 8 | 10.39% |
Brian Foster | 24 | 1.01% | 2 | 2.60% |
Russell Cattelan | 18 | 0.76% | 1 | 1.30% |
Nathan Scott | 17 | 0.71% | 2 | 2.60% |
Hsiang Kao | 2 | 0.08% | 1 | 1.30% |
Total | 2384 | 77 |
// SPDX-License-Identifier: GPL-2.0+ /* * Copyright (C) 2016 Oracle. All Rights Reserved. * Author: Darrick J. Wong <darrick.wong@oracle.com> */ #include "xfs.h" #include "xfs_fs.h" #include "xfs_shared.h" #include "xfs_format.h" #include "xfs_log_format.h" #include "xfs_trans_resv.h" #include "xfs_mount.h" #include "xfs_btree.h" #include "xfs_btree_staging.h" #include "xfs_refcount_btree.h" #include "xfs_refcount.h" #include "xfs_alloc.h" #include "xfs_error.h" #include "xfs_trace.h" #include "xfs_trans.h" #include "xfs_bit.h" #include "xfs_rmap.h" #include "xfs_ag.h" static struct kmem_cache *xfs_refcountbt_cur_cache; static struct xfs_btree_cur * xfs_refcountbt_dup_cursor( struct xfs_btree_cur *cur) { return xfs_refcountbt_init_cursor(cur->bc_mp, cur->bc_tp, cur->bc_ag.agbp, cur->bc_ag.pag); } STATIC void xfs_refcountbt_set_root( struct xfs_btree_cur *cur, const union xfs_btree_ptr *ptr, int inc) { struct xfs_buf *agbp = cur->bc_ag.agbp; struct xfs_agf *agf = agbp->b_addr; struct xfs_perag *pag = agbp->b_pag; ASSERT(ptr->s != 0); agf->agf_refcount_root = ptr->s; be32_add_cpu(&agf->agf_refcount_level, inc); pag->pagf_refcount_level += inc; xfs_alloc_log_agf(cur->bc_tp, agbp, XFS_AGF_REFCOUNT_ROOT | XFS_AGF_REFCOUNT_LEVEL); } STATIC int xfs_refcountbt_alloc_block( struct xfs_btree_cur *cur, const union xfs_btree_ptr *start, union xfs_btree_ptr *new, int *stat) { struct xfs_buf *agbp = cur->bc_ag.agbp; struct xfs_agf *agf = agbp->b_addr; struct xfs_alloc_arg args; /* block allocation args */ int error; /* error return value */ memset(&args, 0, sizeof(args)); args.tp = cur->bc_tp; args.mp = cur->bc_mp; args.pag = cur->bc_ag.pag; args.oinfo = XFS_RMAP_OINFO_REFC; args.minlen = args.maxlen = args.prod = 1; args.resv = XFS_AG_RESV_METADATA; error = xfs_alloc_vextent_near_bno(&args, XFS_AGB_TO_FSB(args.mp, args.pag->pag_agno, xfs_refc_block(args.mp))); if (error) goto out_error; trace_xfs_refcountbt_alloc_block(cur->bc_mp, cur->bc_ag.pag->pag_agno, args.agbno, 1); if (args.fsbno == NULLFSBLOCK) { *stat = 0; return 0; } ASSERT(args.agno == cur->bc_ag.pag->pag_agno); ASSERT(args.len == 1); new->s = cpu_to_be32(args.agbno); be32_add_cpu(&agf->agf_refcount_blocks, 1); xfs_alloc_log_agf(cur->bc_tp, agbp, XFS_AGF_REFCOUNT_BLOCKS); *stat = 1; return 0; out_error: return error; } STATIC int xfs_refcountbt_free_block( struct xfs_btree_cur *cur, struct xfs_buf *bp) { struct xfs_mount *mp = cur->bc_mp; struct xfs_buf *agbp = cur->bc_ag.agbp; struct xfs_agf *agf = agbp->b_addr; xfs_fsblock_t fsbno = XFS_DADDR_TO_FSB(mp, xfs_buf_daddr(bp)); trace_xfs_refcountbt_free_block(cur->bc_mp, cur->bc_ag.pag->pag_agno, XFS_FSB_TO_AGBNO(cur->bc_mp, fsbno), 1); be32_add_cpu(&agf->agf_refcount_blocks, -1); xfs_alloc_log_agf(cur->bc_tp, agbp, XFS_AGF_REFCOUNT_BLOCKS); return xfs_free_extent_later(cur->bc_tp, fsbno, 1, &XFS_RMAP_OINFO_REFC, XFS_AG_RESV_METADATA, false); } STATIC int xfs_refcountbt_get_minrecs( struct xfs_btree_cur *cur, int level) { return cur->bc_mp->m_refc_mnr[level != 0]; } STATIC int xfs_refcountbt_get_maxrecs( struct xfs_btree_cur *cur, int level) { return cur->bc_mp->m_refc_mxr[level != 0]; } STATIC void xfs_refcountbt_init_key_from_rec( union xfs_btree_key *key, const union xfs_btree_rec *rec) { key->refc.rc_startblock = rec->refc.rc_startblock; } STATIC void xfs_refcountbt_init_high_key_from_rec( union xfs_btree_key *key, const union xfs_btree_rec *rec) { __u32 x; x = be32_to_cpu(rec->refc.rc_startblock); x += be32_to_cpu(rec->refc.rc_blockcount) - 1; key->refc.rc_startblock = cpu_to_be32(x); } STATIC void xfs_refcountbt_init_rec_from_cur( struct xfs_btree_cur *cur, union xfs_btree_rec *rec) { const struct xfs_refcount_irec *irec = &cur->bc_rec.rc; uint32_t start; start = xfs_refcount_encode_startblock(irec->rc_startblock, irec->rc_domain); rec->refc.rc_startblock = cpu_to_be32(start); rec->refc.rc_blockcount = cpu_to_be32(cur->bc_rec.rc.rc_blockcount); rec->refc.rc_refcount = cpu_to_be32(cur->bc_rec.rc.rc_refcount); } STATIC void xfs_refcountbt_init_ptr_from_cur( struct xfs_btree_cur *cur, union xfs_btree_ptr *ptr) { struct xfs_agf *agf = cur->bc_ag.agbp->b_addr; ASSERT(cur->bc_ag.pag->pag_agno == be32_to_cpu(agf->agf_seqno)); ptr->s = agf->agf_refcount_root; } STATIC int64_t xfs_refcountbt_key_diff( struct xfs_btree_cur *cur, const union xfs_btree_key *key) { const struct xfs_refcount_key *kp = &key->refc; const struct xfs_refcount_irec *irec = &cur->bc_rec.rc; uint32_t start; start = xfs_refcount_encode_startblock(irec->rc_startblock, irec->rc_domain); return (int64_t)be32_to_cpu(kp->rc_startblock) - start; } STATIC int64_t xfs_refcountbt_diff_two_keys( struct xfs_btree_cur *cur, const union xfs_btree_key *k1, const union xfs_btree_key *k2, const union xfs_btree_key *mask) { ASSERT(!mask || mask->refc.rc_startblock); return (int64_t)be32_to_cpu(k1->refc.rc_startblock) - be32_to_cpu(k2->refc.rc_startblock); } STATIC xfs_failaddr_t xfs_refcountbt_verify( struct xfs_buf *bp) { struct xfs_mount *mp = bp->b_mount; struct xfs_btree_block *block = XFS_BUF_TO_BLOCK(bp); struct xfs_perag *pag = bp->b_pag; xfs_failaddr_t fa; unsigned int level; if (!xfs_verify_magic(bp, block->bb_magic)) return __this_address; if (!xfs_has_reflink(mp)) return __this_address; fa = xfs_btree_sblock_v5hdr_verify(bp); if (fa) return fa; level = be16_to_cpu(block->bb_level); if (pag && xfs_perag_initialised_agf(pag)) { unsigned int maxlevel = pag->pagf_refcount_level; #ifdef CONFIG_XFS_ONLINE_REPAIR /* * Online repair could be rewriting the refcount btree, so * we'll validate against the larger of either tree while this * is going on. */ maxlevel = max_t(unsigned int, maxlevel, pag->pagf_repair_refcount_level); #endif if (level >= maxlevel) return __this_address; } else if (level >= mp->m_refc_maxlevels) return __this_address; return xfs_btree_sblock_verify(bp, mp->m_refc_mxr[level != 0]); } STATIC void xfs_refcountbt_read_verify( struct xfs_buf *bp) { xfs_failaddr_t fa; if (!xfs_btree_sblock_verify_crc(bp)) xfs_verifier_error(bp, -EFSBADCRC, __this_address); else { fa = xfs_refcountbt_verify(bp); if (fa) xfs_verifier_error(bp, -EFSCORRUPTED, fa); } if (bp->b_error) trace_xfs_btree_corrupt(bp, _RET_IP_); } STATIC void xfs_refcountbt_write_verify( struct xfs_buf *bp) { xfs_failaddr_t fa; fa = xfs_refcountbt_verify(bp); if (fa) { trace_xfs_btree_corrupt(bp, _RET_IP_); xfs_verifier_error(bp, -EFSCORRUPTED, fa); return; } xfs_btree_sblock_calc_crc(bp); } const struct xfs_buf_ops xfs_refcountbt_buf_ops = { .name = "xfs_refcountbt", .magic = { 0, cpu_to_be32(XFS_REFC_CRC_MAGIC) }, .verify_read = xfs_refcountbt_read_verify, .verify_write = xfs_refcountbt_write_verify, .verify_struct = xfs_refcountbt_verify, }; STATIC int xfs_refcountbt_keys_inorder( struct xfs_btree_cur *cur, const union xfs_btree_key *k1, const union xfs_btree_key *k2) { return be32_to_cpu(k1->refc.rc_startblock) < be32_to_cpu(k2->refc.rc_startblock); } STATIC int xfs_refcountbt_recs_inorder( struct xfs_btree_cur *cur, const union xfs_btree_rec *r1, const union xfs_btree_rec *r2) { return be32_to_cpu(r1->refc.rc_startblock) + be32_to_cpu(r1->refc.rc_blockcount) <= be32_to_cpu(r2->refc.rc_startblock); } STATIC enum xbtree_key_contig xfs_refcountbt_keys_contiguous( struct xfs_btree_cur *cur, const union xfs_btree_key *key1, const union xfs_btree_key *key2, const union xfs_btree_key *mask) { ASSERT(!mask || mask->refc.rc_startblock); return xbtree_key_contig(be32_to_cpu(key1->refc.rc_startblock), be32_to_cpu(key2->refc.rc_startblock)); } static const struct xfs_btree_ops xfs_refcountbt_ops = { .rec_len = sizeof(struct xfs_refcount_rec), .key_len = sizeof(struct xfs_refcount_key), .dup_cursor = xfs_refcountbt_dup_cursor, .set_root = xfs_refcountbt_set_root, .alloc_block = xfs_refcountbt_alloc_block, .free_block = xfs_refcountbt_free_block, .get_minrecs = xfs_refcountbt_get_minrecs, .get_maxrecs = xfs_refcountbt_get_maxrecs, .init_key_from_rec = xfs_refcountbt_init_key_from_rec, .init_high_key_from_rec = xfs_refcountbt_init_high_key_from_rec, .init_rec_from_cur = xfs_refcountbt_init_rec_from_cur, .init_ptr_from_cur = xfs_refcountbt_init_ptr_from_cur, .key_diff = xfs_refcountbt_key_diff, .buf_ops = &xfs_refcountbt_buf_ops, .diff_two_keys = xfs_refcountbt_diff_two_keys, .keys_inorder = xfs_refcountbt_keys_inorder, .recs_inorder = xfs_refcountbt_recs_inorder, .keys_contiguous = xfs_refcountbt_keys_contiguous, }; /* * Initialize a new refcount btree cursor. */ static struct xfs_btree_cur * xfs_refcountbt_init_common( struct xfs_mount *mp, struct xfs_trans *tp, struct xfs_perag *pag) { struct xfs_btree_cur *cur; ASSERT(pag->pag_agno < mp->m_sb.sb_agcount); cur = xfs_btree_alloc_cursor(mp, tp, XFS_BTNUM_REFC, mp->m_refc_maxlevels, xfs_refcountbt_cur_cache); cur->bc_statoff = XFS_STATS_CALC_INDEX(xs_refcbt_2); cur->bc_flags |= XFS_BTREE_CRC_BLOCKS; cur->bc_ag.pag = xfs_perag_hold(pag); cur->bc_ag.refc.nr_ops = 0; cur->bc_ag.refc.shape_changes = 0; cur->bc_ops = &xfs_refcountbt_ops; return cur; } /* Create a btree cursor. */ struct xfs_btree_cur * xfs_refcountbt_init_cursor( struct xfs_mount *mp, struct xfs_trans *tp, struct xfs_buf *agbp, struct xfs_perag *pag) { struct xfs_agf *agf = agbp->b_addr; struct xfs_btree_cur *cur; cur = xfs_refcountbt_init_common(mp, tp, pag); cur->bc_nlevels = be32_to_cpu(agf->agf_refcount_level); cur->bc_ag.agbp = agbp; return cur; } /* Create a btree cursor with a fake root for staging. */ struct xfs_btree_cur * xfs_refcountbt_stage_cursor( struct xfs_mount *mp, struct xbtree_afakeroot *afake, struct xfs_perag *pag) { struct xfs_btree_cur *cur; cur = xfs_refcountbt_init_common(mp, NULL, pag); xfs_btree_stage_afakeroot(cur, afake); return cur; } /* * Swap in the new btree root. Once we pass this point the newly rebuilt btree * is in place and we have to kill off all the old btree blocks. */ void xfs_refcountbt_commit_staged_btree( struct xfs_btree_cur *cur, struct xfs_trans *tp, struct xfs_buf *agbp) { struct xfs_agf *agf = agbp->b_addr; struct xbtree_afakeroot *afake = cur->bc_ag.afake; ASSERT(cur->bc_flags & XFS_BTREE_STAGING); agf->agf_refcount_root = cpu_to_be32(afake->af_root); agf->agf_refcount_level = cpu_to_be32(afake->af_levels); agf->agf_refcount_blocks = cpu_to_be32(afake->af_blocks); xfs_alloc_log_agf(tp, agbp, XFS_AGF_REFCOUNT_BLOCKS | XFS_AGF_REFCOUNT_ROOT | XFS_AGF_REFCOUNT_LEVEL); xfs_btree_commit_afakeroot(cur, tp, agbp, &xfs_refcountbt_ops); } /* Calculate number of records in a refcount btree block. */ static inline unsigned int xfs_refcountbt_block_maxrecs( unsigned int blocklen, bool leaf) { if (leaf) return blocklen / sizeof(struct xfs_refcount_rec); return blocklen / (sizeof(struct xfs_refcount_key) + sizeof(xfs_refcount_ptr_t)); } /* * Calculate the number of records in a refcount btree block. */ int xfs_refcountbt_maxrecs( int blocklen, bool leaf) { blocklen -= XFS_REFCOUNT_BLOCK_LEN; return xfs_refcountbt_block_maxrecs(blocklen, leaf); } /* Compute the max possible height of the maximally sized refcount btree. */ unsigned int xfs_refcountbt_maxlevels_ondisk(void) { unsigned int minrecs[2]; unsigned int blocklen; blocklen = XFS_MIN_CRC_BLOCKSIZE - XFS_BTREE_SBLOCK_CRC_LEN; minrecs[0] = xfs_refcountbt_block_maxrecs(blocklen, true) / 2; minrecs[1] = xfs_refcountbt_block_maxrecs(blocklen, false) / 2; return xfs_btree_compute_maxlevels(minrecs, XFS_MAX_CRC_AG_BLOCKS); } /* Compute the maximum height of a refcount btree. */ void xfs_refcountbt_compute_maxlevels( struct xfs_mount *mp) { if (!xfs_has_reflink(mp)) { mp->m_refc_maxlevels = 0; return; } mp->m_refc_maxlevels = xfs_btree_compute_maxlevels( mp->m_refc_mnr, mp->m_sb.sb_agblocks); ASSERT(mp->m_refc_maxlevels <= xfs_refcountbt_maxlevels_ondisk()); } /* Calculate the refcount btree size for some records. */ xfs_extlen_t xfs_refcountbt_calc_size( struct xfs_mount *mp, unsigned long long len) { return xfs_btree_calc_size(mp->m_refc_mnr, len); } /* * Calculate the maximum refcount btree size. */ xfs_extlen_t xfs_refcountbt_max_size( struct xfs_mount *mp, xfs_agblock_t agblocks) { /* Bail out if we're uninitialized, which can happen in mkfs. */ if (mp->m_refc_mxr[0] == 0) return 0; return xfs_refcountbt_calc_size(mp, agblocks); } /* * Figure out how many blocks to reserve and how many are used by this btree. */ int xfs_refcountbt_calc_reserves( struct xfs_mount *mp, struct xfs_trans *tp, struct xfs_perag *pag, xfs_extlen_t *ask, xfs_extlen_t *used) { struct xfs_buf *agbp; struct xfs_agf *agf; xfs_agblock_t agblocks; xfs_extlen_t tree_len; int error; if (!xfs_has_reflink(mp)) return 0; error = xfs_alloc_read_agf(pag, tp, 0, &agbp); if (error) return error; agf = agbp->b_addr; agblocks = be32_to_cpu(agf->agf_length); tree_len = be32_to_cpu(agf->agf_refcount_blocks); xfs_trans_brelse(tp, agbp); /* * The log is permanently allocated, so the space it occupies will * never be available for the kinds of things that would require btree * expansion. We therefore can pretend the space isn't there. */ if (xfs_ag_contains_log(mp, pag->pag_agno)) agblocks -= mp->m_sb.sb_logblocks; *ask += xfs_refcountbt_max_size(mp, agblocks); *used += tree_len; return error; } int __init xfs_refcountbt_init_cur_cache(void) { xfs_refcountbt_cur_cache = kmem_cache_create("xfs_refcbt_cur", xfs_btree_cur_sizeof(xfs_refcountbt_maxlevels_ondisk()), 0, 0, NULL); if (!xfs_refcountbt_cur_cache) return -ENOMEM; return 0; } void xfs_refcountbt_destroy_cur_cache(void) { kmem_cache_destroy(xfs_refcountbt_cur_cache); xfs_refcountbt_cur_cache = NULL; }
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1