Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Christoph Hellwig | 1259 | 59.70% | 75 | 47.47% |
Darrick J. Wong | 272 | 12.90% | 13 | 8.23% |
David Chinner | 140 | 6.64% | 23 | 14.56% |
Brian Foster | 135 | 6.40% | 5 | 3.16% |
Nathan Scott | 107 | 5.07% | 8 | 5.06% |
Matthew Wilcox | 38 | 1.80% | 9 | 5.70% |
Dan J Williams | 38 | 1.80% | 1 | 0.63% |
Lachlan McIlroy | 34 | 1.61% | 3 | 1.90% |
Stephen Lord | 28 | 1.33% | 4 | 2.53% |
Russell Cattelan | 22 | 1.04% | 3 | 1.90% |
David Howells | 8 | 0.38% | 1 | 0.63% |
Jie Liu | 4 | 0.19% | 1 | 0.63% |
Michal Hocko | 4 | 0.19% | 1 | 0.63% |
Hisashi Hifumi | 4 | 0.19% | 1 | 0.63% |
Fabian Frederick | 3 | 0.14% | 1 | 0.63% |
Andi Kleen | 3 | 0.14% | 1 | 0.63% |
Eryu Guan | 2 | 0.09% | 1 | 0.63% |
Andrew Morton | 2 | 0.09% | 1 | 0.63% |
Christoph Lameter | 1 | 0.05% | 1 | 0.63% |
Ingo Molnar | 1 | 0.05% | 1 | 0.63% |
Vivek Goyal | 1 | 0.05% | 1 | 0.63% |
Zizhen Pang | 1 | 0.05% | 1 | 0.63% |
Bhaskar Chowdhury | 1 | 0.05% | 1 | 0.63% |
Ritesh Harjani | 1 | 0.05% | 1 | 0.63% |
Total | 2109 | 158 |
// SPDX-License-Identifier: GPL-2.0 /* * Copyright (c) 2000-2005 Silicon Graphics, Inc. * Copyright (c) 2016-2018 Christoph Hellwig. * All Rights Reserved. */ #include "xfs.h" #include "xfs_shared.h" #include "xfs_format.h" #include "xfs_log_format.h" #include "xfs_trans_resv.h" #include "xfs_mount.h" #include "xfs_inode.h" #include "xfs_trans.h" #include "xfs_iomap.h" #include "xfs_trace.h" #include "xfs_bmap.h" #include "xfs_bmap_util.h" #include "xfs_reflink.h" #include "xfs_errortag.h" #include "xfs_error.h" struct xfs_writepage_ctx { struct iomap_writepage_ctx ctx; unsigned int data_seq; unsigned int cow_seq; }; static inline struct xfs_writepage_ctx * XFS_WPC(struct iomap_writepage_ctx *ctx) { return container_of(ctx, struct xfs_writepage_ctx, ctx); } /* * Fast and loose check if this write could update the on-disk inode size. */ static inline bool xfs_ioend_is_append(struct iomap_ioend *ioend) { return ioend->io_offset + ioend->io_size > XFS_I(ioend->io_inode)->i_disk_size; } /* * Update on-disk file size now that data has been written to disk. */ int xfs_setfilesize( struct xfs_inode *ip, xfs_off_t offset, size_t size) { struct xfs_mount *mp = ip->i_mount; struct xfs_trans *tp; xfs_fsize_t isize; int error; error = xfs_trans_alloc(mp, &M_RES(mp)->tr_fsyncts, 0, 0, 0, &tp); if (error) return error; xfs_ilock(ip, XFS_ILOCK_EXCL); isize = xfs_new_eof(ip, offset + size); if (!isize) { xfs_iunlock(ip, XFS_ILOCK_EXCL); xfs_trans_cancel(tp); return 0; } trace_xfs_setfilesize(ip, offset, size); ip->i_disk_size = isize; xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL); xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE); return xfs_trans_commit(tp); } /* * IO write completion. */ STATIC void xfs_end_ioend( struct iomap_ioend *ioend) { struct xfs_inode *ip = XFS_I(ioend->io_inode); struct xfs_mount *mp = ip->i_mount; xfs_off_t offset = ioend->io_offset; size_t size = ioend->io_size; unsigned int nofs_flag; int error; /* * We can allocate memory here while doing writeback on behalf of * memory reclaim. To avoid memory allocation deadlocks set the * task-wide nofs context for the following operations. */ nofs_flag = memalloc_nofs_save(); /* * Just clean up the in-memory structures if the fs has been shut down. */ if (xfs_is_shutdown(mp)) { error = -EIO; goto done; } /* * Clean up all COW blocks and underlying data fork delalloc blocks on * I/O error. The delalloc punch is required because this ioend was * mapped to blocks in the COW fork and the associated pages are no * longer dirty. If we don't remove delalloc blocks here, they become * stale and can corrupt free space accounting on unmount. */ error = blk_status_to_errno(ioend->io_bio->bi_status); if (unlikely(error)) { if (ioend->io_flags & IOMAP_F_SHARED) { xfs_reflink_cancel_cow_range(ip, offset, size, true); xfs_bmap_punch_delalloc_range(ip, offset, offset + size); } goto done; } /* * Success: commit the COW or unwritten blocks if needed. */ if (ioend->io_flags & IOMAP_F_SHARED) error = xfs_reflink_end_cow(ip, offset, size); else if (ioend->io_type == IOMAP_UNWRITTEN) error = xfs_iomap_write_unwritten(ip, offset, size, false); if (!error && xfs_ioend_is_append(ioend)) error = xfs_setfilesize(ip, ioend->io_offset, ioend->io_size); done: iomap_finish_ioends(ioend, error); memalloc_nofs_restore(nofs_flag); } /* * Finish all pending IO completions that require transactional modifications. * * We try to merge physical and logically contiguous ioends before completion to * minimise the number of transactions we need to perform during IO completion. * Both unwritten extent conversion and COW remapping need to iterate and modify * one physical extent at a time, so we gain nothing by merging physically * discontiguous extents here. * * The ioend chain length that we can be processing here is largely unbound in * length and we may have to perform significant amounts of work on each ioend * to complete it. Hence we have to be careful about holding the CPU for too * long in this loop. */ void xfs_end_io( struct work_struct *work) { struct xfs_inode *ip = container_of(work, struct xfs_inode, i_ioend_work); struct iomap_ioend *ioend; struct list_head tmp; unsigned long flags; spin_lock_irqsave(&ip->i_ioend_lock, flags); list_replace_init(&ip->i_ioend_list, &tmp); spin_unlock_irqrestore(&ip->i_ioend_lock, flags); iomap_sort_ioends(&tmp); while ((ioend = list_first_entry_or_null(&tmp, struct iomap_ioend, io_list))) { list_del_init(&ioend->io_list); iomap_ioend_try_merge(ioend, &tmp); xfs_end_ioend(ioend); cond_resched(); } } STATIC void xfs_end_bio( struct bio *bio) { struct iomap_ioend *ioend = bio->bi_private; struct xfs_inode *ip = XFS_I(ioend->io_inode); unsigned long flags; spin_lock_irqsave(&ip->i_ioend_lock, flags); if (list_empty(&ip->i_ioend_list)) WARN_ON_ONCE(!queue_work(ip->i_mount->m_unwritten_workqueue, &ip->i_ioend_work)); list_add_tail(&ioend->io_list, &ip->i_ioend_list); spin_unlock_irqrestore(&ip->i_ioend_lock, flags); } /* * Fast revalidation of the cached writeback mapping. Return true if the current * mapping is valid, false otherwise. */ static bool xfs_imap_valid( struct iomap_writepage_ctx *wpc, struct xfs_inode *ip, loff_t offset) { if (offset < wpc->iomap.offset || offset >= wpc->iomap.offset + wpc->iomap.length) return false; /* * If this is a COW mapping, it is sufficient to check that the mapping * covers the offset. Be careful to check this first because the caller * can revalidate a COW mapping without updating the data seqno. */ if (wpc->iomap.flags & IOMAP_F_SHARED) return true; /* * This is not a COW mapping. Check the sequence number of the data fork * because concurrent changes could have invalidated the extent. Check * the COW fork because concurrent changes since the last time we * checked (and found nothing at this offset) could have added * overlapping blocks. */ if (XFS_WPC(wpc)->data_seq != READ_ONCE(ip->i_df.if_seq)) { trace_xfs_wb_data_iomap_invalid(ip, &wpc->iomap, XFS_WPC(wpc)->data_seq, XFS_DATA_FORK); return false; } if (xfs_inode_has_cow_data(ip) && XFS_WPC(wpc)->cow_seq != READ_ONCE(ip->i_cowfp->if_seq)) { trace_xfs_wb_cow_iomap_invalid(ip, &wpc->iomap, XFS_WPC(wpc)->cow_seq, XFS_COW_FORK); return false; } return true; } /* * Pass in a dellalloc extent and convert it to real extents, return the real * extent that maps offset_fsb in wpc->iomap. * * The current page is held locked so nothing could have removed the block * backing offset_fsb, although it could have moved from the COW to the data * fork by another thread. */ static int xfs_convert_blocks( struct iomap_writepage_ctx *wpc, struct xfs_inode *ip, int whichfork, loff_t offset) { int error; unsigned *seq; if (whichfork == XFS_COW_FORK) seq = &XFS_WPC(wpc)->cow_seq; else seq = &XFS_WPC(wpc)->data_seq; /* * Attempt to allocate whatever delalloc extent currently backs offset * and put the result into wpc->iomap. Allocate in a loop because it * may take several attempts to allocate real blocks for a contiguous * delalloc extent if free space is sufficiently fragmented. */ do { error = xfs_bmapi_convert_delalloc(ip, whichfork, offset, &wpc->iomap, seq); if (error) return error; } while (wpc->iomap.offset + wpc->iomap.length <= offset); return 0; } static int xfs_map_blocks( struct iomap_writepage_ctx *wpc, struct inode *inode, loff_t offset) { struct xfs_inode *ip = XFS_I(inode); struct xfs_mount *mp = ip->i_mount; ssize_t count = i_blocksize(inode); xfs_fileoff_t offset_fsb = XFS_B_TO_FSBT(mp, offset); xfs_fileoff_t end_fsb = XFS_B_TO_FSB(mp, offset + count); xfs_fileoff_t cow_fsb; int whichfork; struct xfs_bmbt_irec imap; struct xfs_iext_cursor icur; int retries = 0; int error = 0; if (xfs_is_shutdown(mp)) return -EIO; XFS_ERRORTAG_DELAY(mp, XFS_ERRTAG_WB_DELAY_MS); /* * COW fork blocks can overlap data fork blocks even if the blocks * aren't shared. COW I/O always takes precedent, so we must always * check for overlap on reflink inodes unless the mapping is already a * COW one, or the COW fork hasn't changed from the last time we looked * at it. * * It's safe to check the COW fork if_seq here without the ILOCK because * we've indirectly protected against concurrent updates: writeback has * the page locked, which prevents concurrent invalidations by reflink * and directio and prevents concurrent buffered writes to the same * page. Changes to if_seq always happen under i_lock, which protects * against concurrent updates and provides a memory barrier on the way * out that ensures that we always see the current value. */ if (xfs_imap_valid(wpc, ip, offset)) return 0; /* * If we don't have a valid map, now it's time to get a new one for this * offset. This will convert delayed allocations (including COW ones) * into real extents. If we return without a valid map, it means we * landed in a hole and we skip the block. */ retry: cow_fsb = NULLFILEOFF; whichfork = XFS_DATA_FORK; xfs_ilock(ip, XFS_ILOCK_SHARED); ASSERT(!xfs_need_iread_extents(&ip->i_df)); /* * Check if this is offset is covered by a COW extents, and if yes use * it directly instead of looking up anything in the data fork. */ if (xfs_inode_has_cow_data(ip) && xfs_iext_lookup_extent(ip, ip->i_cowfp, offset_fsb, &icur, &imap)) cow_fsb = imap.br_startoff; if (cow_fsb != NULLFILEOFF && cow_fsb <= offset_fsb) { XFS_WPC(wpc)->cow_seq = READ_ONCE(ip->i_cowfp->if_seq); xfs_iunlock(ip, XFS_ILOCK_SHARED); whichfork = XFS_COW_FORK; goto allocate_blocks; } /* * No COW extent overlap. Revalidate now that we may have updated * ->cow_seq. If the data mapping is still valid, we're done. */ if (xfs_imap_valid(wpc, ip, offset)) { xfs_iunlock(ip, XFS_ILOCK_SHARED); return 0; } /* * If we don't have a valid map, now it's time to get a new one for this * offset. This will convert delayed allocations (including COW ones) * into real extents. */ if (!xfs_iext_lookup_extent(ip, &ip->i_df, offset_fsb, &icur, &imap)) imap.br_startoff = end_fsb; /* fake a hole past EOF */ XFS_WPC(wpc)->data_seq = READ_ONCE(ip->i_df.if_seq); xfs_iunlock(ip, XFS_ILOCK_SHARED); /* landed in a hole or beyond EOF? */ if (imap.br_startoff > offset_fsb) { imap.br_blockcount = imap.br_startoff - offset_fsb; imap.br_startoff = offset_fsb; imap.br_startblock = HOLESTARTBLOCK; imap.br_state = XFS_EXT_NORM; } /* * Truncate to the next COW extent if there is one. This is the only * opportunity to do this because we can skip COW fork lookups for the * subsequent blocks in the mapping; however, the requirement to treat * the COW range separately remains. */ if (cow_fsb != NULLFILEOFF && cow_fsb < imap.br_startoff + imap.br_blockcount) imap.br_blockcount = cow_fsb - imap.br_startoff; /* got a delalloc extent? */ if (imap.br_startblock != HOLESTARTBLOCK && isnullstartblock(imap.br_startblock)) goto allocate_blocks; xfs_bmbt_to_iomap(ip, &wpc->iomap, &imap, 0, 0, XFS_WPC(wpc)->data_seq); trace_xfs_map_blocks_found(ip, offset, count, whichfork, &imap); return 0; allocate_blocks: error = xfs_convert_blocks(wpc, ip, whichfork, offset); if (error) { /* * If we failed to find the extent in the COW fork we might have * raced with a COW to data fork conversion or truncate. * Restart the lookup to catch the extent in the data fork for * the former case, but prevent additional retries to avoid * looping forever for the latter case. */ if (error == -EAGAIN && whichfork == XFS_COW_FORK && !retries++) goto retry; ASSERT(error != -EAGAIN); return error; } /* * Due to merging the return real extent might be larger than the * original delalloc one. Trim the return extent to the next COW * boundary again to force a re-lookup. */ if (whichfork != XFS_COW_FORK && cow_fsb != NULLFILEOFF) { loff_t cow_offset = XFS_FSB_TO_B(mp, cow_fsb); if (cow_offset < wpc->iomap.offset + wpc->iomap.length) wpc->iomap.length = cow_offset - wpc->iomap.offset; } ASSERT(wpc->iomap.offset <= offset); ASSERT(wpc->iomap.offset + wpc->iomap.length > offset); trace_xfs_map_blocks_alloc(ip, offset, count, whichfork, &imap); return 0; } static int xfs_prepare_ioend( struct iomap_ioend *ioend, int status) { unsigned int nofs_flag; /* * We can allocate memory here while doing writeback on behalf of * memory reclaim. To avoid memory allocation deadlocks set the * task-wide nofs context for the following operations. */ nofs_flag = memalloc_nofs_save(); /* Convert CoW extents to regular */ if (!status && (ioend->io_flags & IOMAP_F_SHARED)) { status = xfs_reflink_convert_cow(XFS_I(ioend->io_inode), ioend->io_offset, ioend->io_size); } memalloc_nofs_restore(nofs_flag); /* send ioends that might require a transaction to the completion wq */ if (xfs_ioend_is_append(ioend) || ioend->io_type == IOMAP_UNWRITTEN || (ioend->io_flags & IOMAP_F_SHARED)) ioend->io_bio->bi_end_io = xfs_end_bio; return status; } /* * If the folio has delalloc blocks on it, the caller is asking us to punch them * out. If we don't, we can leave a stale delalloc mapping covered by a clean * page that needs to be dirtied again before the delalloc mapping can be * converted. This stale delalloc mapping can trip up a later direct I/O read * operation on the same region. * * We prevent this by truncating away the delalloc regions on the folio. Because * they are delalloc, we can do this without needing a transaction. Indeed - if * we get ENOSPC errors, we have to be able to do this truncation without a * transaction as there is no space left for block reservation (typically why * we see a ENOSPC in writeback). */ static void xfs_discard_folio( struct folio *folio, loff_t pos) { struct xfs_inode *ip = XFS_I(folio->mapping->host); struct xfs_mount *mp = ip->i_mount; int error; if (xfs_is_shutdown(mp)) return; xfs_alert_ratelimited(mp, "page discard on page "PTR_FMT", inode 0x%llx, pos %llu.", folio, ip->i_ino, pos); /* * The end of the punch range is always the offset of the first * byte of the next folio. Hence the end offset is only dependent on the * folio itself and not the start offset that is passed in. */ error = xfs_bmap_punch_delalloc_range(ip, pos, folio_pos(folio) + folio_size(folio)); if (error && !xfs_is_shutdown(mp)) xfs_alert(mp, "page discard unable to remove delalloc mapping."); } static const struct iomap_writeback_ops xfs_writeback_ops = { .map_blocks = xfs_map_blocks, .prepare_ioend = xfs_prepare_ioend, .discard_folio = xfs_discard_folio, }; STATIC int xfs_vm_writepages( struct address_space *mapping, struct writeback_control *wbc) { struct xfs_writepage_ctx wpc = { }; /* * Writing back data in a transaction context can result in recursive * transactions. This is bad, so issue a warning and get out of here. */ if (WARN_ON_ONCE(current->journal_info)) return 0; xfs_iflags_clear(XFS_I(mapping->host), XFS_ITRUNCATED); return iomap_writepages(mapping, wbc, &wpc.ctx, &xfs_writeback_ops); } STATIC int xfs_dax_writepages( struct address_space *mapping, struct writeback_control *wbc) { struct xfs_inode *ip = XFS_I(mapping->host); xfs_iflags_clear(ip, XFS_ITRUNCATED); return dax_writeback_mapping_range(mapping, xfs_inode_buftarg(ip)->bt_daxdev, wbc); } STATIC sector_t xfs_vm_bmap( struct address_space *mapping, sector_t block) { struct xfs_inode *ip = XFS_I(mapping->host); trace_xfs_vm_bmap(ip); /* * The swap code (ab-)uses ->bmap to get a block mapping and then * bypasses the file system for actual I/O. We really can't allow * that on reflinks inodes, so we have to skip out here. And yes, * 0 is the magic code for a bmap error. * * Since we don't pass back blockdev info, we can't return bmap * information for rt files either. */ if (xfs_is_cow_inode(ip) || XFS_IS_REALTIME_INODE(ip)) return 0; return iomap_bmap(mapping, block, &xfs_read_iomap_ops); } STATIC int xfs_vm_read_folio( struct file *unused, struct folio *folio) { return iomap_read_folio(folio, &xfs_read_iomap_ops); } STATIC void xfs_vm_readahead( struct readahead_control *rac) { iomap_readahead(rac, &xfs_read_iomap_ops); } static int xfs_iomap_swapfile_activate( struct swap_info_struct *sis, struct file *swap_file, sector_t *span) { sis->bdev = xfs_inode_buftarg(XFS_I(file_inode(swap_file)))->bt_bdev; return iomap_swapfile_activate(sis, swap_file, span, &xfs_read_iomap_ops); } const struct address_space_operations xfs_address_space_operations = { .read_folio = xfs_vm_read_folio, .readahead = xfs_vm_readahead, .writepages = xfs_vm_writepages, .dirty_folio = iomap_dirty_folio, .release_folio = iomap_release_folio, .invalidate_folio = iomap_invalidate_folio, .bmap = xfs_vm_bmap, .migrate_folio = filemap_migrate_folio, .is_partially_uptodate = iomap_is_partially_uptodate, .error_remove_folio = generic_error_remove_folio, .swap_activate = xfs_iomap_swapfile_activate, }; const struct address_space_operations xfs_dax_aops = { .writepages = xfs_dax_writepages, .dirty_folio = noop_dirty_folio, .swap_activate = xfs_iomap_swapfile_activate, };
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1