Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
David Chinner | 688 | 52.08% | 18 | 41.86% |
Christoph Hellwig | 482 | 36.49% | 8 | 18.60% |
Lukas Czerner | 54 | 4.09% | 3 | 6.98% |
Darrick J. Wong | 24 | 1.82% | 4 | 9.30% |
Tomas Racek | 23 | 1.74% | 1 | 2.33% |
Shilong Wang | 14 | 1.06% | 1 | 2.33% |
Jie Liu | 12 | 0.91% | 1 | 2.33% |
Russell Cattelan | 9 | 0.68% | 1 | 2.33% |
Nathan Scott | 5 | 0.38% | 1 | 2.33% |
Lachlan McIlroy | 5 | 0.38% | 1 | 2.33% |
Eric Sandeen | 2 | 0.15% | 1 | 2.33% |
Mandy Kirkconnell | 1 | 0.08% | 1 | 2.33% |
Carlos Maiolino | 1 | 0.08% | 1 | 2.33% |
Yingping Lu | 1 | 0.08% | 1 | 2.33% |
Total | 1321 | 43 |
// SPDX-License-Identifier: GPL-2.0 /* * Copyright (C) 2010, 2023 Red Hat, Inc. * All Rights Reserved. */ #include "xfs.h" #include "xfs_shared.h" #include "xfs_format.h" #include "xfs_log_format.h" #include "xfs_trans_resv.h" #include "xfs_mount.h" #include "xfs_btree.h" #include "xfs_alloc_btree.h" #include "xfs_alloc.h" #include "xfs_discard.h" #include "xfs_error.h" #include "xfs_extent_busy.h" #include "xfs_trace.h" #include "xfs_log.h" #include "xfs_ag.h" /* * Notes on an efficient, low latency fstrim algorithm * * We need to walk the filesystem free space and issue discards on the free * space that meet the search criteria (size and location). We cannot issue * discards on extents that might be in use, or are so recently in use they are * still marked as busy. To serialise against extent state changes whilst we are * gathering extents to trim, we must hold the AGF lock to lock out other * allocations and extent free operations that might change extent state. * * However, we cannot just hold the AGF for the entire AG free space walk whilst * we issue discards on each free space that is found. Storage devices can have * extremely slow discard implementations (e.g. ceph RBD) and so walking a * couple of million free extents and issuing synchronous discards on each * extent can take a *long* time. Whilst we are doing this walk, nothing else * can access the AGF, and we can stall transactions and hence the log whilst * modifications wait for the AGF lock to be released. This can lead hung tasks * kicking the hung task timer and rebooting the system. This is bad. * * Hence we need to take a leaf from the bulkstat playbook. It takes the AGI * lock, gathers a range of inode cluster buffers that are allocated, drops the * AGI lock and then reads all the inode cluster buffers and processes them. It * loops doing this, using a cursor to keep track of where it is up to in the AG * for each iteration to restart the INOBT lookup from. * * We can't do this exactly with free space - once we drop the AGF lock, the * state of the free extent is out of our control and we cannot run a discard * safely on it in this situation. Unless, of course, we've marked the free * extent as busy and undergoing a discard operation whilst we held the AGF * locked. * * This is exactly how online discard works - free extents are marked busy when * they are freed, and once the extent free has been committed to the journal, * the busy extent record is marked as "undergoing discard" and the discard is * then issued on the free extent. Once the discard completes, the busy extent * record is removed and the extent is able to be allocated again. * * In the context of fstrim, if we find a free extent we need to discard, we * don't have to discard it immediately. All we need to do it record that free * extent as being busy and under discard, and all the allocation routines will * now avoid trying to allocate it. Hence if we mark the extent as busy under * the AGF lock, we can safely discard it without holding the AGF lock because * nothing will attempt to allocate that free space until the discard completes. * * This also allows us to issue discards asynchronously like we do with online * discard, and so for fast devices fstrim will run much faster as we can have * multiple discard operations in flight at once, as well as pipeline the free * extent search so that it overlaps in flight discard IO. */ struct workqueue_struct *xfs_discard_wq; static void xfs_discard_endio_work( struct work_struct *work) { struct xfs_busy_extents *extents = container_of(work, struct xfs_busy_extents, endio_work); xfs_extent_busy_clear(extents->mount, &extents->extent_list, false); kmem_free(extents->owner); } /* * Queue up the actual completion to a thread to avoid IRQ-safe locking for * pagb_lock. */ static void xfs_discard_endio( struct bio *bio) { struct xfs_busy_extents *extents = bio->bi_private; INIT_WORK(&extents->endio_work, xfs_discard_endio_work); queue_work(xfs_discard_wq, &extents->endio_work); bio_put(bio); } /* * Walk the discard list and issue discards on all the busy extents in the * list. We plug and chain the bios so that we only need a single completion * call to clear all the busy extents once the discards are complete. */ int xfs_discard_extents( struct xfs_mount *mp, struct xfs_busy_extents *extents) { struct xfs_extent_busy *busyp; struct bio *bio = NULL; struct blk_plug plug; int error = 0; blk_start_plug(&plug); list_for_each_entry(busyp, &extents->extent_list, list) { trace_xfs_discard_extent(mp, busyp->agno, busyp->bno, busyp->length); error = __blkdev_issue_discard(mp->m_ddev_targp->bt_bdev, XFS_AGB_TO_DADDR(mp, busyp->agno, busyp->bno), XFS_FSB_TO_BB(mp, busyp->length), GFP_NOFS, &bio); if (error && error != -EOPNOTSUPP) { xfs_info(mp, "discard failed for extent [0x%llx,%u], error %d", (unsigned long long)busyp->bno, busyp->length, error); break; } } if (bio) { bio->bi_private = extents; bio->bi_end_io = xfs_discard_endio; submit_bio(bio); } else { xfs_discard_endio_work(&extents->endio_work); } blk_finish_plug(&plug); return error; } static int xfs_trim_gather_extents( struct xfs_perag *pag, xfs_daddr_t start, xfs_daddr_t end, xfs_daddr_t minlen, struct xfs_alloc_rec_incore *tcur, struct xfs_busy_extents *extents, uint64_t *blocks_trimmed) { struct xfs_mount *mp = pag->pag_mount; struct xfs_btree_cur *cur; struct xfs_buf *agbp; int error; int i; int batch = 100; /* * Force out the log. This means any transactions that might have freed * space before we take the AGF buffer lock are now on disk, and the * volatile disk cache is flushed. */ xfs_log_force(mp, XFS_LOG_SYNC); error = xfs_alloc_read_agf(pag, NULL, 0, &agbp); if (error) return error; cur = xfs_allocbt_init_cursor(mp, NULL, agbp, pag, XFS_BTNUM_CNT); /* * Look up the extent length requested in the AGF and start with it. */ if (tcur->ar_startblock == NULLAGBLOCK) error = xfs_alloc_lookup_ge(cur, 0, tcur->ar_blockcount, &i); else error = xfs_alloc_lookup_le(cur, tcur->ar_startblock, tcur->ar_blockcount, &i); if (error) goto out_del_cursor; if (i == 0) { /* nothing of that length left in the AG, we are done */ tcur->ar_blockcount = 0; goto out_del_cursor; } /* * Loop until we are done with all extents that are large * enough to be worth discarding or we hit batch limits. */ while (i) { xfs_agblock_t fbno; xfs_extlen_t flen; xfs_daddr_t dbno; xfs_extlen_t dlen; error = xfs_alloc_get_rec(cur, &fbno, &flen, &i); if (error) break; if (XFS_IS_CORRUPT(mp, i != 1)) { error = -EFSCORRUPTED; break; } if (--batch <= 0) { /* * Update the cursor to point at this extent so we * restart the next batch from this extent. */ tcur->ar_startblock = fbno; tcur->ar_blockcount = flen; break; } /* * use daddr format for all range/len calculations as that is * the format the range/len variables are supplied in by * userspace. */ dbno = XFS_AGB_TO_DADDR(mp, pag->pag_agno, fbno); dlen = XFS_FSB_TO_BB(mp, flen); /* * Too small? Give up. */ if (dlen < minlen) { trace_xfs_discard_toosmall(mp, pag->pag_agno, fbno, flen); tcur->ar_blockcount = 0; break; } /* * If the extent is entirely outside of the range we are * supposed to discard skip it. Do not bother to trim * down partially overlapping ranges for now. */ if (dbno + dlen < start || dbno > end) { trace_xfs_discard_exclude(mp, pag->pag_agno, fbno, flen); goto next_extent; } /* * If any blocks in the range are still busy, skip the * discard and try again the next time. */ if (xfs_extent_busy_search(mp, pag, fbno, flen)) { trace_xfs_discard_busy(mp, pag->pag_agno, fbno, flen); goto next_extent; } xfs_extent_busy_insert_discard(pag, fbno, flen, &extents->extent_list); *blocks_trimmed += flen; next_extent: error = xfs_btree_decrement(cur, 0, &i); if (error) break; /* * If there's no more records in the tree, we are done. Set the * cursor block count to 0 to indicate to the caller that there * is no more extents to search. */ if (i == 0) tcur->ar_blockcount = 0; } /* * If there was an error, release all the gathered busy extents because * we aren't going to issue a discard on them any more. */ if (error) xfs_extent_busy_clear(mp, &extents->extent_list, false); out_del_cursor: xfs_btree_del_cursor(cur, error); xfs_buf_relse(agbp); return error; } static bool xfs_trim_should_stop(void) { return fatal_signal_pending(current) || freezing(current); } /* * Iterate the free list gathering extents and discarding them. We need a cursor * for the repeated iteration of gather/discard loop, so use the longest extent * we found in the last batch as the key to start the next. */ static int xfs_trim_extents( struct xfs_perag *pag, xfs_daddr_t start, xfs_daddr_t end, xfs_daddr_t minlen, uint64_t *blocks_trimmed) { struct xfs_alloc_rec_incore tcur = { .ar_blockcount = pag->pagf_longest, .ar_startblock = NULLAGBLOCK, }; int error = 0; do { struct xfs_busy_extents *extents; extents = kzalloc(sizeof(*extents), GFP_KERNEL); if (!extents) { error = -ENOMEM; break; } extents->mount = pag->pag_mount; extents->owner = extents; INIT_LIST_HEAD(&extents->extent_list); error = xfs_trim_gather_extents(pag, start, end, minlen, &tcur, extents, blocks_trimmed); if (error) { kfree(extents); break; } /* * We hand the extent list to the discard function here so the * discarded extents can be removed from the busy extent list. * This allows the discards to run asynchronously with gathering * the next round of extents to discard. * * However, we must ensure that we do not reference the extent * list after this function call, as it may have been freed by * the time control returns to us. */ error = xfs_discard_extents(pag->pag_mount, extents); if (error) break; if (xfs_trim_should_stop()) break; } while (tcur.ar_blockcount != 0); return error; } /* * trim a range of the filesystem. * * Note: the parameters passed from userspace are byte ranges into the * filesystem which does not match to the format we use for filesystem block * addressing. FSB addressing is sparse (AGNO|AGBNO), while the incoming format * is a linear address range. Hence we need to use DADDR based conversions and * comparisons for determining the correct offset and regions to trim. */ int xfs_ioc_trim( struct xfs_mount *mp, struct fstrim_range __user *urange) { struct xfs_perag *pag; unsigned int granularity = bdev_discard_granularity(mp->m_ddev_targp->bt_bdev); struct fstrim_range range; xfs_daddr_t start, end, minlen; xfs_agnumber_t agno; uint64_t blocks_trimmed = 0; int error, last_error = 0; if (!capable(CAP_SYS_ADMIN)) return -EPERM; if (!bdev_max_discard_sectors(mp->m_ddev_targp->bt_bdev)) return -EOPNOTSUPP; /* * We haven't recovered the log, so we cannot use our bnobt-guided * storage zapping commands. */ if (xfs_has_norecovery(mp)) return -EROFS; if (copy_from_user(&range, urange, sizeof(range))) return -EFAULT; range.minlen = max_t(u64, granularity, range.minlen); minlen = BTOBB(range.minlen); /* * Truncating down the len isn't actually quite correct, but using * BBTOB would mean we trivially get overflows for values * of ULLONG_MAX or slightly lower. And ULLONG_MAX is the default * used by the fstrim application. In the end it really doesn't * matter as trimming blocks is an advisory interface. */ if (range.start >= XFS_FSB_TO_B(mp, mp->m_sb.sb_dblocks) || range.minlen > XFS_FSB_TO_B(mp, mp->m_ag_max_usable) || range.len < mp->m_sb.sb_blocksize) return -EINVAL; start = BTOBB(range.start); end = start + BTOBBT(range.len) - 1; if (end > XFS_FSB_TO_BB(mp, mp->m_sb.sb_dblocks) - 1) end = XFS_FSB_TO_BB(mp, mp->m_sb.sb_dblocks) - 1; agno = xfs_daddr_to_agno(mp, start); for_each_perag_range(mp, agno, xfs_daddr_to_agno(mp, end), pag) { error = xfs_trim_extents(pag, start, end, minlen, &blocks_trimmed); if (error) last_error = error; if (xfs_trim_should_stop()) { xfs_perag_rele(pag); break; } } if (last_error) return last_error; range.len = XFS_FSB_TO_B(mp, blocks_trimmed); if (copy_to_user(urange, &range, sizeof(range))) return -EFAULT; return 0; }
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1