Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Darrick J. Wong | 2014 | 82.81% | 45 | 46.88% |
Christoph Hellwig | 262 | 10.77% | 19 | 19.79% |
David Chinner | 120 | 4.93% | 21 | 21.88% |
Russell Cattelan | 14 | 0.58% | 1 | 1.04% |
Carlos Maiolino | 10 | 0.41% | 2 | 2.08% |
Brian Foster | 4 | 0.16% | 3 | 3.12% |
Nathan Scott | 2 | 0.08% | 1 | 1.04% |
Sami Tolvanen | 2 | 0.08% | 1 | 1.04% |
Mark Tinguely | 2 | 0.08% | 1 | 1.04% |
Randy Dunlap | 1 | 0.04% | 1 | 1.04% |
Tetsuo Handa | 1 | 0.04% | 1 | 1.04% |
Total | 2432 | 96 |
// SPDX-License-Identifier: GPL-2.0+ /* * Copyright (C) 2016 Oracle. All Rights Reserved. * Author: Darrick J. Wong <darrick.wong@oracle.com> */ #include "xfs.h" #include "xfs_fs.h" #include "xfs_format.h" #include "xfs_log_format.h" #include "xfs_trans_resv.h" #include "xfs_bit.h" #include "xfs_shared.h" #include "xfs_mount.h" #include "xfs_defer.h" #include "xfs_trans.h" #include "xfs_trans_priv.h" #include "xfs_refcount_item.h" #include "xfs_log.h" #include "xfs_refcount.h" #include "xfs_error.h" #include "xfs_log_priv.h" #include "xfs_log_recover.h" #include "xfs_ag.h" struct kmem_cache *xfs_cui_cache; struct kmem_cache *xfs_cud_cache; static const struct xfs_item_ops xfs_cui_item_ops; static inline struct xfs_cui_log_item *CUI_ITEM(struct xfs_log_item *lip) { return container_of(lip, struct xfs_cui_log_item, cui_item); } STATIC void xfs_cui_item_free( struct xfs_cui_log_item *cuip) { kmem_free(cuip->cui_item.li_lv_shadow); if (cuip->cui_format.cui_nextents > XFS_CUI_MAX_FAST_EXTENTS) kmem_free(cuip); else kmem_cache_free(xfs_cui_cache, cuip); } /* * Freeing the CUI requires that we remove it from the AIL if it has already * been placed there. However, the CUI may not yet have been placed in the AIL * when called by xfs_cui_release() from CUD processing due to the ordering of * committed vs unpin operations in bulk insert operations. Hence the reference * count to ensure only the last caller frees the CUI. */ STATIC void xfs_cui_release( struct xfs_cui_log_item *cuip) { ASSERT(atomic_read(&cuip->cui_refcount) > 0); if (!atomic_dec_and_test(&cuip->cui_refcount)) return; xfs_trans_ail_delete(&cuip->cui_item, 0); xfs_cui_item_free(cuip); } STATIC void xfs_cui_item_size( struct xfs_log_item *lip, int *nvecs, int *nbytes) { struct xfs_cui_log_item *cuip = CUI_ITEM(lip); *nvecs += 1; *nbytes += xfs_cui_log_format_sizeof(cuip->cui_format.cui_nextents); } /* * This is called to fill in the vector of log iovecs for the * given cui log item. We use only 1 iovec, and we point that * at the cui_log_format structure embedded in the cui item. * It is at this point that we assert that all of the extent * slots in the cui item have been filled. */ STATIC void xfs_cui_item_format( struct xfs_log_item *lip, struct xfs_log_vec *lv) { struct xfs_cui_log_item *cuip = CUI_ITEM(lip); struct xfs_log_iovec *vecp = NULL; ASSERT(atomic_read(&cuip->cui_next_extent) == cuip->cui_format.cui_nextents); cuip->cui_format.cui_type = XFS_LI_CUI; cuip->cui_format.cui_size = 1; xlog_copy_iovec(lv, &vecp, XLOG_REG_TYPE_CUI_FORMAT, &cuip->cui_format, xfs_cui_log_format_sizeof(cuip->cui_format.cui_nextents)); } /* * The unpin operation is the last place an CUI is manipulated in the log. It is * either inserted in the AIL or aborted in the event of a log I/O error. In * either case, the CUI transaction has been successfully committed to make it * this far. Therefore, we expect whoever committed the CUI to either construct * and commit the CUD or drop the CUD's reference in the event of error. Simply * drop the log's CUI reference now that the log is done with it. */ STATIC void xfs_cui_item_unpin( struct xfs_log_item *lip, int remove) { struct xfs_cui_log_item *cuip = CUI_ITEM(lip); xfs_cui_release(cuip); } /* * The CUI has been either committed or aborted if the transaction has been * cancelled. If the transaction was cancelled, an CUD isn't going to be * constructed and thus we free the CUI here directly. */ STATIC void xfs_cui_item_release( struct xfs_log_item *lip) { xfs_cui_release(CUI_ITEM(lip)); } /* * Allocate and initialize an cui item with the given number of extents. */ STATIC struct xfs_cui_log_item * xfs_cui_init( struct xfs_mount *mp, uint nextents) { struct xfs_cui_log_item *cuip; ASSERT(nextents > 0); if (nextents > XFS_CUI_MAX_FAST_EXTENTS) cuip = kmem_zalloc(xfs_cui_log_item_sizeof(nextents), 0); else cuip = kmem_cache_zalloc(xfs_cui_cache, GFP_KERNEL | __GFP_NOFAIL); xfs_log_item_init(mp, &cuip->cui_item, XFS_LI_CUI, &xfs_cui_item_ops); cuip->cui_format.cui_nextents = nextents; cuip->cui_format.cui_id = (uintptr_t)(void *)cuip; atomic_set(&cuip->cui_next_extent, 0); atomic_set(&cuip->cui_refcount, 2); return cuip; } static inline struct xfs_cud_log_item *CUD_ITEM(struct xfs_log_item *lip) { return container_of(lip, struct xfs_cud_log_item, cud_item); } STATIC void xfs_cud_item_size( struct xfs_log_item *lip, int *nvecs, int *nbytes) { *nvecs += 1; *nbytes += sizeof(struct xfs_cud_log_format); } /* * This is called to fill in the vector of log iovecs for the * given cud log item. We use only 1 iovec, and we point that * at the cud_log_format structure embedded in the cud item. * It is at this point that we assert that all of the extent * slots in the cud item have been filled. */ STATIC void xfs_cud_item_format( struct xfs_log_item *lip, struct xfs_log_vec *lv) { struct xfs_cud_log_item *cudp = CUD_ITEM(lip); struct xfs_log_iovec *vecp = NULL; cudp->cud_format.cud_type = XFS_LI_CUD; cudp->cud_format.cud_size = 1; xlog_copy_iovec(lv, &vecp, XLOG_REG_TYPE_CUD_FORMAT, &cudp->cud_format, sizeof(struct xfs_cud_log_format)); } /* * The CUD is either committed or aborted if the transaction is cancelled. If * the transaction is cancelled, drop our reference to the CUI and free the * CUD. */ STATIC void xfs_cud_item_release( struct xfs_log_item *lip) { struct xfs_cud_log_item *cudp = CUD_ITEM(lip); xfs_cui_release(cudp->cud_cuip); kmem_free(cudp->cud_item.li_lv_shadow); kmem_cache_free(xfs_cud_cache, cudp); } static struct xfs_log_item * xfs_cud_item_intent( struct xfs_log_item *lip) { return &CUD_ITEM(lip)->cud_cuip->cui_item; } static const struct xfs_item_ops xfs_cud_item_ops = { .flags = XFS_ITEM_RELEASE_WHEN_COMMITTED | XFS_ITEM_INTENT_DONE, .iop_size = xfs_cud_item_size, .iop_format = xfs_cud_item_format, .iop_release = xfs_cud_item_release, .iop_intent = xfs_cud_item_intent, }; /* Sort refcount intents by AG. */ static int xfs_refcount_update_diff_items( void *priv, const struct list_head *a, const struct list_head *b) { struct xfs_refcount_intent *ra; struct xfs_refcount_intent *rb; ra = container_of(a, struct xfs_refcount_intent, ri_list); rb = container_of(b, struct xfs_refcount_intent, ri_list); return ra->ri_pag->pag_agno - rb->ri_pag->pag_agno; } /* Set the phys extent flags for this reverse mapping. */ static void xfs_trans_set_refcount_flags( struct xfs_phys_extent *pmap, enum xfs_refcount_intent_type type) { pmap->pe_flags = 0; switch (type) { case XFS_REFCOUNT_INCREASE: case XFS_REFCOUNT_DECREASE: case XFS_REFCOUNT_ALLOC_COW: case XFS_REFCOUNT_FREE_COW: pmap->pe_flags |= type; break; default: ASSERT(0); } } /* Log refcount updates in the intent item. */ STATIC void xfs_refcount_update_log_item( struct xfs_trans *tp, struct xfs_cui_log_item *cuip, struct xfs_refcount_intent *ri) { uint next_extent; struct xfs_phys_extent *pmap; /* * atomic_inc_return gives us the value after the increment; * we want to use it as an array index so we need to subtract 1 from * it. */ next_extent = atomic_inc_return(&cuip->cui_next_extent) - 1; ASSERT(next_extent < cuip->cui_format.cui_nextents); pmap = &cuip->cui_format.cui_extents[next_extent]; pmap->pe_startblock = ri->ri_startblock; pmap->pe_len = ri->ri_blockcount; xfs_trans_set_refcount_flags(pmap, ri->ri_type); } static struct xfs_log_item * xfs_refcount_update_create_intent( struct xfs_trans *tp, struct list_head *items, unsigned int count, bool sort) { struct xfs_mount *mp = tp->t_mountp; struct xfs_cui_log_item *cuip = xfs_cui_init(mp, count); struct xfs_refcount_intent *ri; ASSERT(count > 0); if (sort) list_sort(mp, items, xfs_refcount_update_diff_items); list_for_each_entry(ri, items, ri_list) xfs_refcount_update_log_item(tp, cuip, ri); return &cuip->cui_item; } /* Get an CUD so we can process all the deferred refcount updates. */ static struct xfs_log_item * xfs_refcount_update_create_done( struct xfs_trans *tp, struct xfs_log_item *intent, unsigned int count) { struct xfs_cui_log_item *cuip = CUI_ITEM(intent); struct xfs_cud_log_item *cudp; cudp = kmem_cache_zalloc(xfs_cud_cache, GFP_KERNEL | __GFP_NOFAIL); xfs_log_item_init(tp->t_mountp, &cudp->cud_item, XFS_LI_CUD, &xfs_cud_item_ops); cudp->cud_cuip = cuip; cudp->cud_format.cud_cui_id = cuip->cui_format.cui_id; return &cudp->cud_item; } /* Take a passive ref to the AG containing the space we're refcounting. */ void xfs_refcount_update_get_group( struct xfs_mount *mp, struct xfs_refcount_intent *ri) { xfs_agnumber_t agno; agno = XFS_FSB_TO_AGNO(mp, ri->ri_startblock); ri->ri_pag = xfs_perag_intent_get(mp, agno); } /* Release a passive AG ref after finishing refcounting work. */ static inline void xfs_refcount_update_put_group( struct xfs_refcount_intent *ri) { xfs_perag_intent_put(ri->ri_pag); } /* Process a deferred refcount update. */ STATIC int xfs_refcount_update_finish_item( struct xfs_trans *tp, struct xfs_log_item *done, struct list_head *item, struct xfs_btree_cur **state) { struct xfs_refcount_intent *ri; int error; ri = container_of(item, struct xfs_refcount_intent, ri_list); /* Did we run out of reservation? Requeue what we didn't finish. */ error = xfs_refcount_finish_one(tp, ri, state); if (!error && ri->ri_blockcount > 0) { ASSERT(ri->ri_type == XFS_REFCOUNT_INCREASE || ri->ri_type == XFS_REFCOUNT_DECREASE); return -EAGAIN; } xfs_refcount_update_put_group(ri); kmem_cache_free(xfs_refcount_intent_cache, ri); return error; } /* Abort all pending CUIs. */ STATIC void xfs_refcount_update_abort_intent( struct xfs_log_item *intent) { xfs_cui_release(CUI_ITEM(intent)); } /* Cancel a deferred refcount update. */ STATIC void xfs_refcount_update_cancel_item( struct list_head *item) { struct xfs_refcount_intent *ri; ri = container_of(item, struct xfs_refcount_intent, ri_list); xfs_refcount_update_put_group(ri); kmem_cache_free(xfs_refcount_intent_cache, ri); } /* Is this recovered CUI ok? */ static inline bool xfs_cui_validate_phys( struct xfs_mount *mp, struct xfs_phys_extent *pmap) { if (!xfs_has_reflink(mp)) return false; if (pmap->pe_flags & ~XFS_REFCOUNT_EXTENT_FLAGS) return false; switch (pmap->pe_flags & XFS_REFCOUNT_EXTENT_TYPE_MASK) { case XFS_REFCOUNT_INCREASE: case XFS_REFCOUNT_DECREASE: case XFS_REFCOUNT_ALLOC_COW: case XFS_REFCOUNT_FREE_COW: break; default: return false; } return xfs_verify_fsbext(mp, pmap->pe_startblock, pmap->pe_len); } static inline void xfs_cui_recover_work( struct xfs_mount *mp, struct xfs_defer_pending *dfp, struct xfs_phys_extent *pmap) { struct xfs_refcount_intent *ri; ri = kmem_cache_alloc(xfs_refcount_intent_cache, GFP_NOFS | __GFP_NOFAIL); ri->ri_type = pmap->pe_flags & XFS_REFCOUNT_EXTENT_TYPE_MASK; ri->ri_startblock = pmap->pe_startblock; ri->ri_blockcount = pmap->pe_len; xfs_refcount_update_get_group(mp, ri); xfs_defer_add_item(dfp, &ri->ri_list); } /* * Process a refcount update intent item that was recovered from the log. * We need to update the refcountbt. */ STATIC int xfs_refcount_recover_work( struct xfs_defer_pending *dfp, struct list_head *capture_list) { struct xfs_trans_res resv; struct xfs_log_item *lip = dfp->dfp_intent; struct xfs_cui_log_item *cuip = CUI_ITEM(lip); struct xfs_trans *tp; struct xfs_mount *mp = lip->li_log->l_mp; int i; int error = 0; /* * First check the validity of the extents described by the * CUI. If any are bad, then assume that all are bad and * just toss the CUI. */ for (i = 0; i < cuip->cui_format.cui_nextents; i++) { if (!xfs_cui_validate_phys(mp, &cuip->cui_format.cui_extents[i])) { XFS_CORRUPTION_ERROR(__func__, XFS_ERRLEVEL_LOW, mp, &cuip->cui_format, sizeof(cuip->cui_format)); return -EFSCORRUPTED; } xfs_cui_recover_work(mp, dfp, &cuip->cui_format.cui_extents[i]); } /* * Under normal operation, refcount updates are deferred, so we * wouldn't be adding them directly to a transaction. All * refcount updates manage reservation usage internally and * dynamically by deferring work that won't fit in the * transaction. Normally, any work that needs to be deferred * gets attached to the same defer_ops that scheduled the * refcount update. However, we're in log recovery here, so we * use the passed in defer_ops and to finish up any work that * doesn't fit. We need to reserve enough blocks to handle a * full btree split on either end of the refcount range. */ resv = xlog_recover_resv(&M_RES(mp)->tr_itruncate); error = xfs_trans_alloc(mp, &resv, mp->m_refc_maxlevels * 2, 0, XFS_TRANS_RESERVE, &tp); if (error) return error; error = xlog_recover_finish_intent(tp, dfp); if (error == -EFSCORRUPTED) XFS_CORRUPTION_ERROR(__func__, XFS_ERRLEVEL_LOW, mp, &cuip->cui_format, sizeof(cuip->cui_format)); if (error) goto abort_error; return xfs_defer_ops_capture_and_commit(tp, capture_list); abort_error: xfs_trans_cancel(tp); return error; } /* Relog an intent item to push the log tail forward. */ static struct xfs_log_item * xfs_refcount_relog_intent( struct xfs_trans *tp, struct xfs_log_item *intent, struct xfs_log_item *done_item) { struct xfs_cui_log_item *cuip; struct xfs_phys_extent *pmap; unsigned int count; count = CUI_ITEM(intent)->cui_format.cui_nextents; pmap = CUI_ITEM(intent)->cui_format.cui_extents; cuip = xfs_cui_init(tp->t_mountp, count); memcpy(cuip->cui_format.cui_extents, pmap, count * sizeof(*pmap)); atomic_set(&cuip->cui_next_extent, count); return &cuip->cui_item; } const struct xfs_defer_op_type xfs_refcount_update_defer_type = { .name = "refcount", .max_items = XFS_CUI_MAX_FAST_EXTENTS, .create_intent = xfs_refcount_update_create_intent, .abort_intent = xfs_refcount_update_abort_intent, .create_done = xfs_refcount_update_create_done, .finish_item = xfs_refcount_update_finish_item, .finish_cleanup = xfs_refcount_finish_one_cleanup, .cancel_item = xfs_refcount_update_cancel_item, .recover_work = xfs_refcount_recover_work, .relog_intent = xfs_refcount_relog_intent, }; STATIC bool xfs_cui_item_match( struct xfs_log_item *lip, uint64_t intent_id) { return CUI_ITEM(lip)->cui_format.cui_id == intent_id; } static const struct xfs_item_ops xfs_cui_item_ops = { .flags = XFS_ITEM_INTENT, .iop_size = xfs_cui_item_size, .iop_format = xfs_cui_item_format, .iop_unpin = xfs_cui_item_unpin, .iop_release = xfs_cui_item_release, .iop_match = xfs_cui_item_match, }; static inline void xfs_cui_copy_format( struct xfs_cui_log_format *dst, const struct xfs_cui_log_format *src) { unsigned int i; memcpy(dst, src, offsetof(struct xfs_cui_log_format, cui_extents)); for (i = 0; i < src->cui_nextents; i++) memcpy(&dst->cui_extents[i], &src->cui_extents[i], sizeof(struct xfs_phys_extent)); } /* * This routine is called to create an in-core extent refcount update * item from the cui format structure which was logged on disk. * It allocates an in-core cui, copies the extents from the format * structure into it, and adds the cui to the AIL with the given * LSN. */ STATIC int xlog_recover_cui_commit_pass2( struct xlog *log, struct list_head *buffer_list, struct xlog_recover_item *item, xfs_lsn_t lsn) { struct xfs_mount *mp = log->l_mp; struct xfs_cui_log_item *cuip; struct xfs_cui_log_format *cui_formatp; size_t len; cui_formatp = item->ri_buf[0].i_addr; if (item->ri_buf[0].i_len < xfs_cui_log_format_sizeof(0)) { XFS_CORRUPTION_ERROR(__func__, XFS_ERRLEVEL_LOW, mp, item->ri_buf[0].i_addr, item->ri_buf[0].i_len); return -EFSCORRUPTED; } len = xfs_cui_log_format_sizeof(cui_formatp->cui_nextents); if (item->ri_buf[0].i_len != len) { XFS_CORRUPTION_ERROR(__func__, XFS_ERRLEVEL_LOW, mp, item->ri_buf[0].i_addr, item->ri_buf[0].i_len); return -EFSCORRUPTED; } cuip = xfs_cui_init(mp, cui_formatp->cui_nextents); xfs_cui_copy_format(&cuip->cui_format, cui_formatp); atomic_set(&cuip->cui_next_extent, cui_formatp->cui_nextents); xlog_recover_intent_item(log, &cuip->cui_item, lsn, &xfs_refcount_update_defer_type); return 0; } const struct xlog_recover_item_ops xlog_cui_item_ops = { .item_type = XFS_LI_CUI, .commit_pass2 = xlog_recover_cui_commit_pass2, }; /* * This routine is called when an CUD format structure is found in a committed * transaction in the log. Its purpose is to cancel the corresponding CUI if it * was still in the log. To do this it searches the AIL for the CUI with an id * equal to that in the CUD format structure. If we find it we drop the CUD * reference, which removes the CUI from the AIL and frees it. */ STATIC int xlog_recover_cud_commit_pass2( struct xlog *log, struct list_head *buffer_list, struct xlog_recover_item *item, xfs_lsn_t lsn) { struct xfs_cud_log_format *cud_formatp; cud_formatp = item->ri_buf[0].i_addr; if (item->ri_buf[0].i_len != sizeof(struct xfs_cud_log_format)) { XFS_CORRUPTION_ERROR(__func__, XFS_ERRLEVEL_LOW, log->l_mp, item->ri_buf[0].i_addr, item->ri_buf[0].i_len); return -EFSCORRUPTED; } xlog_recover_release_intent(log, XFS_LI_CUI, cud_formatp->cud_cui_id); return 0; } const struct xlog_recover_item_ops xlog_cud_item_ops = { .item_type = XFS_LI_CUD, .commit_pass2 = xlog_recover_cud_commit_pass2, };
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1