Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Alexander Potapenko | 1603 | 94.13% | 9 | 27.27% |
Christoph Lameter | 20 | 1.17% | 2 | 6.06% |
Kees Cook | 10 | 0.59% | 1 | 3.03% |
Jesper Dangaard Brouer | 8 | 0.47% | 1 | 3.03% |
Andrey Konovalov | 8 | 0.47% | 1 | 3.03% |
Huang Ying | 7 | 0.41% | 1 | 3.03% |
Andi Kleen | 7 | 0.41% | 1 | 3.03% |
Linus Torvalds (pre-git) | 6 | 0.35% | 3 | 9.09% |
Benjamin Herrenschmidt | 5 | 0.29% | 1 | 3.03% |
Arnd Bergmann | 5 | 0.29% | 1 | 3.03% |
ZhangPeng | 4 | 0.23% | 2 | 6.06% |
Andrew Morton | 4 | 0.23% | 1 | 3.03% |
Vlastimil Babka | 4 | 0.23% | 1 | 3.03% |
Håvard Skinnemoen | 4 | 0.23% | 1 | 3.03% |
Nicholas Piggin | 3 | 0.18% | 3 | 9.09% |
Christophe Leroy | 2 | 0.12% | 1 | 3.03% |
Christoph Hellwig | 1 | 0.06% | 1 | 3.03% |
Kenji Kaneshige | 1 | 0.06% | 1 | 3.03% |
Paul E. McKenney | 1 | 0.06% | 1 | 3.03% |
Total | 1703 | 33 |
// SPDX-License-Identifier: GPL-2.0 /* * KMSAN hooks for kernel subsystems. * * These functions handle creation of KMSAN metadata for memory allocations. * * Copyright (C) 2018-2022 Google LLC * Author: Alexander Potapenko <glider@google.com> * */ #include <linux/cacheflush.h> #include <linux/dma-direction.h> #include <linux/gfp.h> #include <linux/kmsan.h> #include <linux/mm.h> #include <linux/mm_types.h> #include <linux/scatterlist.h> #include <linux/slab.h> #include <linux/uaccess.h> #include <linux/usb.h> #include "../internal.h" #include "../slab.h" #include "kmsan.h" /* * Instrumented functions shouldn't be called under * kmsan_enter_runtime()/kmsan_leave_runtime(), because this will lead to * skipping effects of functions like memset() inside instrumented code. */ void kmsan_task_create(struct task_struct *task) { kmsan_enter_runtime(); kmsan_internal_task_create(task); kmsan_leave_runtime(); } void kmsan_task_exit(struct task_struct *task) { struct kmsan_ctx *ctx = &task->kmsan_ctx; if (!kmsan_enabled || kmsan_in_runtime()) return; ctx->allow_reporting = false; } void kmsan_slab_alloc(struct kmem_cache *s, void *object, gfp_t flags) { if (unlikely(object == NULL)) return; if (!kmsan_enabled || kmsan_in_runtime()) return; /* * There's a ctor or this is an RCU cache - do nothing. The memory * status hasn't changed since last use. */ if (s->ctor || (s->flags & SLAB_TYPESAFE_BY_RCU)) return; kmsan_enter_runtime(); if (flags & __GFP_ZERO) kmsan_internal_unpoison_memory(object, s->object_size, KMSAN_POISON_CHECK); else kmsan_internal_poison_memory(object, s->object_size, flags, KMSAN_POISON_CHECK); kmsan_leave_runtime(); } void kmsan_slab_free(struct kmem_cache *s, void *object) { if (!kmsan_enabled || kmsan_in_runtime()) return; /* RCU slabs could be legally used after free within the RCU period */ if (unlikely(s->flags & (SLAB_TYPESAFE_BY_RCU | SLAB_POISON))) return; /* * If there's a constructor, freed memory must remain in the same state * until the next allocation. We cannot save its state to detect * use-after-free bugs, instead we just keep it unpoisoned. */ if (s->ctor) return; kmsan_enter_runtime(); kmsan_internal_poison_memory(object, s->object_size, GFP_KERNEL, KMSAN_POISON_CHECK | KMSAN_POISON_FREE); kmsan_leave_runtime(); } void kmsan_kmalloc_large(const void *ptr, size_t size, gfp_t flags) { if (unlikely(ptr == NULL)) return; if (!kmsan_enabled || kmsan_in_runtime()) return; kmsan_enter_runtime(); if (flags & __GFP_ZERO) kmsan_internal_unpoison_memory((void *)ptr, size, /*checked*/ true); else kmsan_internal_poison_memory((void *)ptr, size, flags, KMSAN_POISON_CHECK); kmsan_leave_runtime(); } void kmsan_kfree_large(const void *ptr) { struct page *page; if (!kmsan_enabled || kmsan_in_runtime()) return; kmsan_enter_runtime(); page = virt_to_head_page((void *)ptr); KMSAN_WARN_ON(ptr != page_address(page)); kmsan_internal_poison_memory((void *)ptr, page_size(page), GFP_KERNEL, KMSAN_POISON_CHECK | KMSAN_POISON_FREE); kmsan_leave_runtime(); } static unsigned long vmalloc_shadow(unsigned long addr) { return (unsigned long)kmsan_get_metadata((void *)addr, KMSAN_META_SHADOW); } static unsigned long vmalloc_origin(unsigned long addr) { return (unsigned long)kmsan_get_metadata((void *)addr, KMSAN_META_ORIGIN); } void kmsan_vunmap_range_noflush(unsigned long start, unsigned long end) { __vunmap_range_noflush(vmalloc_shadow(start), vmalloc_shadow(end)); __vunmap_range_noflush(vmalloc_origin(start), vmalloc_origin(end)); flush_cache_vmap(vmalloc_shadow(start), vmalloc_shadow(end)); flush_cache_vmap(vmalloc_origin(start), vmalloc_origin(end)); } /* * This function creates new shadow/origin pages for the physical pages mapped * into the virtual memory. If those physical pages already had shadow/origin, * those are ignored. */ int kmsan_ioremap_page_range(unsigned long start, unsigned long end, phys_addr_t phys_addr, pgprot_t prot, unsigned int page_shift) { gfp_t gfp_mask = GFP_KERNEL | __GFP_ZERO; struct page *shadow, *origin; unsigned long off = 0; int nr, err = 0, clean = 0, mapped; if (!kmsan_enabled || kmsan_in_runtime()) return 0; nr = (end - start) / PAGE_SIZE; kmsan_enter_runtime(); for (int i = 0; i < nr; i++, off += PAGE_SIZE, clean = i) { shadow = alloc_pages(gfp_mask, 1); origin = alloc_pages(gfp_mask, 1); if (!shadow || !origin) { err = -ENOMEM; goto ret; } mapped = __vmap_pages_range_noflush( vmalloc_shadow(start + off), vmalloc_shadow(start + off + PAGE_SIZE), prot, &shadow, PAGE_SHIFT); if (mapped) { err = mapped; goto ret; } shadow = NULL; mapped = __vmap_pages_range_noflush( vmalloc_origin(start + off), vmalloc_origin(start + off + PAGE_SIZE), prot, &origin, PAGE_SHIFT); if (mapped) { __vunmap_range_noflush( vmalloc_shadow(start + off), vmalloc_shadow(start + off + PAGE_SIZE)); err = mapped; goto ret; } origin = NULL; } /* Page mapping loop finished normally, nothing to clean up. */ clean = 0; ret: if (clean > 0) { /* * Something went wrong. Clean up shadow/origin pages allocated * on the last loop iteration, then delete mappings created * during the previous iterations. */ if (shadow) __free_pages(shadow, 1); if (origin) __free_pages(origin, 1); __vunmap_range_noflush( vmalloc_shadow(start), vmalloc_shadow(start + clean * PAGE_SIZE)); __vunmap_range_noflush( vmalloc_origin(start), vmalloc_origin(start + clean * PAGE_SIZE)); } flush_cache_vmap(vmalloc_shadow(start), vmalloc_shadow(end)); flush_cache_vmap(vmalloc_origin(start), vmalloc_origin(end)); kmsan_leave_runtime(); return err; } void kmsan_iounmap_page_range(unsigned long start, unsigned long end) { unsigned long v_shadow, v_origin; struct page *shadow, *origin; int nr; if (!kmsan_enabled || kmsan_in_runtime()) return; nr = (end - start) / PAGE_SIZE; kmsan_enter_runtime(); v_shadow = (unsigned long)vmalloc_shadow(start); v_origin = (unsigned long)vmalloc_origin(start); for (int i = 0; i < nr; i++, v_shadow += PAGE_SIZE, v_origin += PAGE_SIZE) { shadow = kmsan_vmalloc_to_page_or_null((void *)v_shadow); origin = kmsan_vmalloc_to_page_or_null((void *)v_origin); __vunmap_range_noflush(v_shadow, vmalloc_shadow(end)); __vunmap_range_noflush(v_origin, vmalloc_origin(end)); if (shadow) __free_pages(shadow, 1); if (origin) __free_pages(origin, 1); } flush_cache_vmap(vmalloc_shadow(start), vmalloc_shadow(end)); flush_cache_vmap(vmalloc_origin(start), vmalloc_origin(end)); kmsan_leave_runtime(); } void kmsan_copy_to_user(void __user *to, const void *from, size_t to_copy, size_t left) { unsigned long ua_flags; if (!kmsan_enabled || kmsan_in_runtime()) return; /* * At this point we've copied the memory already. It's hard to check it * before copying, as the size of actually copied buffer is unknown. */ /* copy_to_user() may copy zero bytes. No need to check. */ if (!to_copy) return; /* Or maybe copy_to_user() failed to copy anything. */ if (to_copy <= left) return; ua_flags = user_access_save(); if ((u64)to < TASK_SIZE) { /* This is a user memory access, check it. */ kmsan_internal_check_memory((void *)from, to_copy - left, to, REASON_COPY_TO_USER); } else { /* Otherwise this is a kernel memory access. This happens when a * compat syscall passes an argument allocated on the kernel * stack to a real syscall. * Don't check anything, just copy the shadow of the copied * bytes. */ kmsan_internal_memmove_metadata((void *)to, (void *)from, to_copy - left); } user_access_restore(ua_flags); } EXPORT_SYMBOL(kmsan_copy_to_user); /* Helper function to check an URB. */ void kmsan_handle_urb(const struct urb *urb, bool is_out) { if (!urb) return; if (is_out) kmsan_internal_check_memory(urb->transfer_buffer, urb->transfer_buffer_length, /*user_addr*/ 0, REASON_SUBMIT_URB); else kmsan_internal_unpoison_memory(urb->transfer_buffer, urb->transfer_buffer_length, /*checked*/ false); } EXPORT_SYMBOL_GPL(kmsan_handle_urb); static void kmsan_handle_dma_page(const void *addr, size_t size, enum dma_data_direction dir) { switch (dir) { case DMA_BIDIRECTIONAL: kmsan_internal_check_memory((void *)addr, size, /*user_addr*/ 0, REASON_ANY); kmsan_internal_unpoison_memory((void *)addr, size, /*checked*/ false); break; case DMA_TO_DEVICE: kmsan_internal_check_memory((void *)addr, size, /*user_addr*/ 0, REASON_ANY); break; case DMA_FROM_DEVICE: kmsan_internal_unpoison_memory((void *)addr, size, /*checked*/ false); break; case DMA_NONE: break; } } /* Helper function to handle DMA data transfers. */ void kmsan_handle_dma(struct page *page, size_t offset, size_t size, enum dma_data_direction dir) { u64 page_offset, to_go, addr; if (PageHighMem(page)) return; addr = (u64)page_address(page) + offset; /* * The kernel may occasionally give us adjacent DMA pages not belonging * to the same allocation. Process them separately to avoid triggering * internal KMSAN checks. */ while (size > 0) { page_offset = offset_in_page(addr); to_go = min(PAGE_SIZE - page_offset, (u64)size); kmsan_handle_dma_page((void *)addr, to_go, dir); addr += to_go; size -= to_go; } } void kmsan_handle_dma_sg(struct scatterlist *sg, int nents, enum dma_data_direction dir) { struct scatterlist *item; int i; for_each_sg(sg, item, nents, i) kmsan_handle_dma(sg_page(item), item->offset, item->length, dir); } /* Functions from kmsan-checks.h follow. */ void kmsan_poison_memory(const void *address, size_t size, gfp_t flags) { if (!kmsan_enabled || kmsan_in_runtime()) return; kmsan_enter_runtime(); /* The users may want to poison/unpoison random memory. */ kmsan_internal_poison_memory((void *)address, size, flags, KMSAN_POISON_NOCHECK); kmsan_leave_runtime(); } EXPORT_SYMBOL(kmsan_poison_memory); void kmsan_unpoison_memory(const void *address, size_t size) { unsigned long ua_flags; if (!kmsan_enabled || kmsan_in_runtime()) return; ua_flags = user_access_save(); kmsan_enter_runtime(); /* The users may want to poison/unpoison random memory. */ kmsan_internal_unpoison_memory((void *)address, size, KMSAN_POISON_NOCHECK); kmsan_leave_runtime(); user_access_restore(ua_flags); } EXPORT_SYMBOL(kmsan_unpoison_memory); /* * Version of kmsan_unpoison_memory() that can be called from within the KMSAN * runtime. * * Non-instrumented IRQ entry functions receive struct pt_regs from assembly * code. Those regs need to be unpoisoned, otherwise using them will result in * false positives. * Using kmsan_unpoison_memory() is not an option in entry code, because the * return value of in_task() is inconsistent - as a result, certain calls to * kmsan_unpoison_memory() are ignored. kmsan_unpoison_entry_regs() ensures that * the registers are unpoisoned even if kmsan_in_runtime() is true in the early * entry code. */ void kmsan_unpoison_entry_regs(const struct pt_regs *regs) { unsigned long ua_flags; if (!kmsan_enabled) return; ua_flags = user_access_save(); kmsan_internal_unpoison_memory((void *)regs, sizeof(*regs), KMSAN_POISON_NOCHECK); user_access_restore(ua_flags); } void kmsan_check_memory(const void *addr, size_t size) { if (!kmsan_enabled) return; return kmsan_internal_check_memory((void *)addr, size, /*user_addr*/ 0, REASON_ANY); } EXPORT_SYMBOL(kmsan_check_memory);
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1