Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Matt Mackall | 660 | 21.91% | 1 | 1.85% |
Naoya Horiguchi | 535 | 17.76% | 7 | 12.96% |
Steven Price | 448 | 14.87% | 7 | 12.96% |
Christoph Hellwig | 289 | 9.59% | 3 | 5.56% |
Christophe Leroy | 271 | 8.99% | 1 | 1.85% |
Thomas Hellstrom | 232 | 7.70% | 2 | 3.70% |
Suren Baghdasaryan | 113 | 3.75% | 1 | 1.85% |
Dave Hansen | 60 | 1.99% | 2 | 3.70% |
Hugh Dickins | 60 | 1.99% | 3 | 5.56% |
Kirill A. Shutemov | 58 | 1.92% | 3 | 5.56% |
David Howells | 48 | 1.59% | 1 | 1.85% |
Matthew Wilcox | 39 | 1.29% | 2 | 3.70% |
David Hildenbrand | 36 | 1.19% | 1 | 1.85% |
Linus Torvalds (pre-git) | 31 | 1.03% | 3 | 5.56% |
Cliff Wickman | 21 | 0.70% | 1 | 1.85% |
Song Muchun | 17 | 0.56% | 1 | 1.85% |
Christoph Lameter | 16 | 0.53% | 1 | 1.85% |
Motohiro Kosaki | 14 | 0.46% | 1 | 1.85% |
Johannes Weiner | 12 | 0.40% | 1 | 1.85% |
Peter Xu | 12 | 0.40% | 2 | 3.70% |
Andy Whitcroft | 11 | 0.37% | 1 | 1.85% |
Jann Horn | 10 | 0.33% | 1 | 1.85% |
Punit Agrawal | 6 | 0.20% | 1 | 1.85% |
Steve Capper | 6 | 0.20% | 1 | 1.85% |
Andi Kleen | 2 | 0.07% | 1 | 1.85% |
Michel Lespinasse | 2 | 0.07% | 1 | 1.85% |
David Sterba | 1 | 0.03% | 1 | 1.85% |
Shiraz Hashim | 1 | 0.03% | 1 | 1.85% |
Greg Kroah-Hartman | 1 | 0.03% | 1 | 1.85% |
Chen LinX | 1 | 0.03% | 1 | 1.85% |
Total | 3013 | 54 |
// SPDX-License-Identifier: GPL-2.0 #include <linux/pagewalk.h> #include <linux/highmem.h> #include <linux/sched.h> #include <linux/hugetlb.h> /* * We want to know the real level where a entry is located ignoring any * folding of levels which may be happening. For example if p4d is folded then * a missing entry found at level 1 (p4d) is actually at level 0 (pgd). */ static int real_depth(int depth) { if (depth == 3 && PTRS_PER_PMD == 1) depth = 2; if (depth == 2 && PTRS_PER_PUD == 1) depth = 1; if (depth == 1 && PTRS_PER_P4D == 1) depth = 0; return depth; } static int walk_pte_range_inner(pte_t *pte, unsigned long addr, unsigned long end, struct mm_walk *walk) { const struct mm_walk_ops *ops = walk->ops; int err = 0; for (;;) { err = ops->pte_entry(pte, addr, addr + PAGE_SIZE, walk); if (err) break; if (addr >= end - PAGE_SIZE) break; addr += PAGE_SIZE; pte++; } return err; } static int walk_pte_range(pmd_t *pmd, unsigned long addr, unsigned long end, struct mm_walk *walk) { pte_t *pte; int err = 0; spinlock_t *ptl; if (walk->no_vma) { /* * pte_offset_map() might apply user-specific validation. * Indeed, on x86_64 the pmd entries set up by init_espfix_ap() * fit its pmd_bad() check (_PAGE_NX set and _PAGE_RW clear), * and CONFIG_EFI_PGT_DUMP efi_mm goes so far as to walk them. */ if (walk->mm == &init_mm || addr >= TASK_SIZE) pte = pte_offset_kernel(pmd, addr); else pte = pte_offset_map(pmd, addr); if (pte) { err = walk_pte_range_inner(pte, addr, end, walk); if (walk->mm != &init_mm && addr < TASK_SIZE) pte_unmap(pte); } } else { pte = pte_offset_map_lock(walk->mm, pmd, addr, &ptl); if (pte) { err = walk_pte_range_inner(pte, addr, end, walk); pte_unmap_unlock(pte, ptl); } } if (!pte) walk->action = ACTION_AGAIN; return err; } #ifdef CONFIG_ARCH_HAS_HUGEPD static int walk_hugepd_range(hugepd_t *phpd, unsigned long addr, unsigned long end, struct mm_walk *walk, int pdshift) { int err = 0; const struct mm_walk_ops *ops = walk->ops; int shift = hugepd_shift(*phpd); int page_size = 1 << shift; if (!ops->pte_entry) return 0; if (addr & (page_size - 1)) return 0; for (;;) { pte_t *pte; spin_lock(&walk->mm->page_table_lock); pte = hugepte_offset(*phpd, addr, pdshift); err = ops->pte_entry(pte, addr, addr + page_size, walk); spin_unlock(&walk->mm->page_table_lock); if (err) break; if (addr >= end - page_size) break; addr += page_size; } return err; } #else static int walk_hugepd_range(hugepd_t *phpd, unsigned long addr, unsigned long end, struct mm_walk *walk, int pdshift) { return 0; } #endif static int walk_pmd_range(pud_t *pud, unsigned long addr, unsigned long end, struct mm_walk *walk) { pmd_t *pmd; unsigned long next; const struct mm_walk_ops *ops = walk->ops; int err = 0; int depth = real_depth(3); pmd = pmd_offset(pud, addr); do { again: next = pmd_addr_end(addr, end); if (pmd_none(*pmd)) { if (ops->pte_hole) err = ops->pte_hole(addr, next, depth, walk); if (err) break; continue; } walk->action = ACTION_SUBTREE; /* * This implies that each ->pmd_entry() handler * needs to know about pmd_trans_huge() pmds */ if (ops->pmd_entry) err = ops->pmd_entry(pmd, addr, next, walk); if (err) break; if (walk->action == ACTION_AGAIN) goto again; /* * Check this here so we only break down trans_huge * pages when we _need_ to */ if ((!walk->vma && (pmd_leaf(*pmd) || !pmd_present(*pmd))) || walk->action == ACTION_CONTINUE || !(ops->pte_entry)) continue; if (walk->vma) split_huge_pmd(walk->vma, pmd, addr); if (is_hugepd(__hugepd(pmd_val(*pmd)))) err = walk_hugepd_range((hugepd_t *)pmd, addr, next, walk, PMD_SHIFT); else err = walk_pte_range(pmd, addr, next, walk); if (err) break; if (walk->action == ACTION_AGAIN) goto again; } while (pmd++, addr = next, addr != end); return err; } static int walk_pud_range(p4d_t *p4d, unsigned long addr, unsigned long end, struct mm_walk *walk) { pud_t *pud; unsigned long next; const struct mm_walk_ops *ops = walk->ops; int err = 0; int depth = real_depth(2); pud = pud_offset(p4d, addr); do { again: next = pud_addr_end(addr, end); if (pud_none(*pud)) { if (ops->pte_hole) err = ops->pte_hole(addr, next, depth, walk); if (err) break; continue; } walk->action = ACTION_SUBTREE; if (ops->pud_entry) err = ops->pud_entry(pud, addr, next, walk); if (err) break; if (walk->action == ACTION_AGAIN) goto again; if ((!walk->vma && (pud_leaf(*pud) || !pud_present(*pud))) || walk->action == ACTION_CONTINUE || !(ops->pmd_entry || ops->pte_entry)) continue; if (walk->vma) split_huge_pud(walk->vma, pud, addr); if (pud_none(*pud)) goto again; if (is_hugepd(__hugepd(pud_val(*pud)))) err = walk_hugepd_range((hugepd_t *)pud, addr, next, walk, PUD_SHIFT); else err = walk_pmd_range(pud, addr, next, walk); if (err) break; } while (pud++, addr = next, addr != end); return err; } static int walk_p4d_range(pgd_t *pgd, unsigned long addr, unsigned long end, struct mm_walk *walk) { p4d_t *p4d; unsigned long next; const struct mm_walk_ops *ops = walk->ops; int err = 0; int depth = real_depth(1); p4d = p4d_offset(pgd, addr); do { next = p4d_addr_end(addr, end); if (p4d_none_or_clear_bad(p4d)) { if (ops->pte_hole) err = ops->pte_hole(addr, next, depth, walk); if (err) break; continue; } if (ops->p4d_entry) { err = ops->p4d_entry(p4d, addr, next, walk); if (err) break; } if (is_hugepd(__hugepd(p4d_val(*p4d)))) err = walk_hugepd_range((hugepd_t *)p4d, addr, next, walk, P4D_SHIFT); else if (ops->pud_entry || ops->pmd_entry || ops->pte_entry) err = walk_pud_range(p4d, addr, next, walk); if (err) break; } while (p4d++, addr = next, addr != end); return err; } static int walk_pgd_range(unsigned long addr, unsigned long end, struct mm_walk *walk) { pgd_t *pgd; unsigned long next; const struct mm_walk_ops *ops = walk->ops; int err = 0; if (walk->pgd) pgd = walk->pgd + pgd_index(addr); else pgd = pgd_offset(walk->mm, addr); do { next = pgd_addr_end(addr, end); if (pgd_none_or_clear_bad(pgd)) { if (ops->pte_hole) err = ops->pte_hole(addr, next, 0, walk); if (err) break; continue; } if (ops->pgd_entry) { err = ops->pgd_entry(pgd, addr, next, walk); if (err) break; } if (is_hugepd(__hugepd(pgd_val(*pgd)))) err = walk_hugepd_range((hugepd_t *)pgd, addr, next, walk, PGDIR_SHIFT); else if (ops->p4d_entry || ops->pud_entry || ops->pmd_entry || ops->pte_entry) err = walk_p4d_range(pgd, addr, next, walk); if (err) break; } while (pgd++, addr = next, addr != end); return err; } #ifdef CONFIG_HUGETLB_PAGE static unsigned long hugetlb_entry_end(struct hstate *h, unsigned long addr, unsigned long end) { unsigned long boundary = (addr & huge_page_mask(h)) + huge_page_size(h); return boundary < end ? boundary : end; } static int walk_hugetlb_range(unsigned long addr, unsigned long end, struct mm_walk *walk) { struct vm_area_struct *vma = walk->vma; struct hstate *h = hstate_vma(vma); unsigned long next; unsigned long hmask = huge_page_mask(h); unsigned long sz = huge_page_size(h); pte_t *pte; const struct mm_walk_ops *ops = walk->ops; int err = 0; hugetlb_vma_lock_read(vma); do { next = hugetlb_entry_end(h, addr, end); pte = hugetlb_walk(vma, addr & hmask, sz); if (pte) err = ops->hugetlb_entry(pte, hmask, addr, next, walk); else if (ops->pte_hole) err = ops->pte_hole(addr, next, -1, walk); if (err) break; } while (addr = next, addr != end); hugetlb_vma_unlock_read(vma); return err; } #else /* CONFIG_HUGETLB_PAGE */ static int walk_hugetlb_range(unsigned long addr, unsigned long end, struct mm_walk *walk) { return 0; } #endif /* CONFIG_HUGETLB_PAGE */ /* * Decide whether we really walk over the current vma on [@start, @end) * or skip it via the returned value. Return 0 if we do walk over the * current vma, and return 1 if we skip the vma. Negative values means * error, where we abort the current walk. */ static int walk_page_test(unsigned long start, unsigned long end, struct mm_walk *walk) { struct vm_area_struct *vma = walk->vma; const struct mm_walk_ops *ops = walk->ops; if (ops->test_walk) return ops->test_walk(start, end, walk); /* * vma(VM_PFNMAP) doesn't have any valid struct pages behind VM_PFNMAP * range, so we don't walk over it as we do for normal vmas. However, * Some callers are interested in handling hole range and they don't * want to just ignore any single address range. Such users certainly * define their ->pte_hole() callbacks, so let's delegate them to handle * vma(VM_PFNMAP). */ if (vma->vm_flags & VM_PFNMAP) { int err = 1; if (ops->pte_hole) err = ops->pte_hole(start, end, -1, walk); return err ? err : 1; } return 0; } static int __walk_page_range(unsigned long start, unsigned long end, struct mm_walk *walk) { int err = 0; struct vm_area_struct *vma = walk->vma; const struct mm_walk_ops *ops = walk->ops; if (ops->pre_vma) { err = ops->pre_vma(start, end, walk); if (err) return err; } if (is_vm_hugetlb_page(vma)) { if (ops->hugetlb_entry) err = walk_hugetlb_range(start, end, walk); } else err = walk_pgd_range(start, end, walk); if (ops->post_vma) ops->post_vma(walk); return err; } static inline void process_mm_walk_lock(struct mm_struct *mm, enum page_walk_lock walk_lock) { if (walk_lock == PGWALK_RDLOCK) mmap_assert_locked(mm); else mmap_assert_write_locked(mm); } static inline void process_vma_walk_lock(struct vm_area_struct *vma, enum page_walk_lock walk_lock) { #ifdef CONFIG_PER_VMA_LOCK switch (walk_lock) { case PGWALK_WRLOCK: vma_start_write(vma); break; case PGWALK_WRLOCK_VERIFY: vma_assert_write_locked(vma); break; case PGWALK_RDLOCK: /* PGWALK_RDLOCK is handled by process_mm_walk_lock */ break; } #endif } /** * walk_page_range - walk page table with caller specific callbacks * @mm: mm_struct representing the target process of page table walk * @start: start address of the virtual address range * @end: end address of the virtual address range * @ops: operation to call during the walk * @private: private data for callbacks' usage * * Recursively walk the page table tree of the process represented by @mm * within the virtual address range [@start, @end). During walking, we can do * some caller-specific works for each entry, by setting up pmd_entry(), * pte_entry(), and/or hugetlb_entry(). If you don't set up for some of these * callbacks, the associated entries/pages are just ignored. * The return values of these callbacks are commonly defined like below: * * - 0 : succeeded to handle the current entry, and if you don't reach the * end address yet, continue to walk. * - >0 : succeeded to handle the current entry, and return to the caller * with caller specific value. * - <0 : failed to handle the current entry, and return to the caller * with error code. * * Before starting to walk page table, some callers want to check whether * they really want to walk over the current vma, typically by checking * its vm_flags. walk_page_test() and @ops->test_walk() are used for this * purpose. * * If operations need to be staged before and committed after a vma is walked, * there are two callbacks, pre_vma() and post_vma(). Note that post_vma(), * since it is intended to handle commit-type operations, can't return any * errors. * * struct mm_walk keeps current values of some common data like vma and pmd, * which are useful for the access from callbacks. If you want to pass some * caller-specific data to callbacks, @private should be helpful. * * Locking: * Callers of walk_page_range() and walk_page_vma() should hold @mm->mmap_lock, * because these function traverse vma list and/or access to vma's data. */ int walk_page_range(struct mm_struct *mm, unsigned long start, unsigned long end, const struct mm_walk_ops *ops, void *private) { int err = 0; unsigned long next; struct vm_area_struct *vma; struct mm_walk walk = { .ops = ops, .mm = mm, .private = private, }; if (start >= end) return -EINVAL; if (!walk.mm) return -EINVAL; process_mm_walk_lock(walk.mm, ops->walk_lock); vma = find_vma(walk.mm, start); do { if (!vma) { /* after the last vma */ walk.vma = NULL; next = end; if (ops->pte_hole) err = ops->pte_hole(start, next, -1, &walk); } else if (start < vma->vm_start) { /* outside vma */ walk.vma = NULL; next = min(end, vma->vm_start); if (ops->pte_hole) err = ops->pte_hole(start, next, -1, &walk); } else { /* inside vma */ process_vma_walk_lock(vma, ops->walk_lock); walk.vma = vma; next = min(end, vma->vm_end); vma = find_vma(mm, vma->vm_end); err = walk_page_test(start, next, &walk); if (err > 0) { /* * positive return values are purely for * controlling the pagewalk, so should never * be passed to the callers. */ err = 0; continue; } if (err < 0) break; err = __walk_page_range(start, next, &walk); } if (err) break; } while (start = next, start < end); return err; } /** * walk_page_range_novma - walk a range of pagetables not backed by a vma * @mm: mm_struct representing the target process of page table walk * @start: start address of the virtual address range * @end: end address of the virtual address range * @ops: operation to call during the walk * @pgd: pgd to walk if different from mm->pgd * @private: private data for callbacks' usage * * Similar to walk_page_range() but can walk any page tables even if they are * not backed by VMAs. Because 'unusual' entries may be walked this function * will also not lock the PTEs for the pte_entry() callback. This is useful for * walking the kernel pages tables or page tables for firmware. * * Note: Be careful to walk the kernel pages tables, the caller may be need to * take other effective approache (mmap lock may be insufficient) to prevent * the intermediate kernel page tables belonging to the specified address range * from being freed (e.g. memory hot-remove). */ int walk_page_range_novma(struct mm_struct *mm, unsigned long start, unsigned long end, const struct mm_walk_ops *ops, pgd_t *pgd, void *private) { struct mm_walk walk = { .ops = ops, .mm = mm, .pgd = pgd, .private = private, .no_vma = true }; if (start >= end || !walk.mm) return -EINVAL; /* * 1) For walking the user virtual address space: * * The mmap lock protects the page walker from changes to the page * tables during the walk. However a read lock is insufficient to * protect those areas which don't have a VMA as munmap() detaches * the VMAs before downgrading to a read lock and actually tearing * down PTEs/page tables. In which case, the mmap write lock should * be hold. * * 2) For walking the kernel virtual address space: * * The kernel intermediate page tables usually do not be freed, so * the mmap map read lock is sufficient. But there are some exceptions. * E.g. memory hot-remove. In which case, the mmap lock is insufficient * to prevent the intermediate kernel pages tables belonging to the * specified address range from being freed. The caller should take * other actions to prevent this race. */ if (mm == &init_mm) mmap_assert_locked(walk.mm); else mmap_assert_write_locked(walk.mm); return walk_pgd_range(start, end, &walk); } int walk_page_range_vma(struct vm_area_struct *vma, unsigned long start, unsigned long end, const struct mm_walk_ops *ops, void *private) { struct mm_walk walk = { .ops = ops, .mm = vma->vm_mm, .vma = vma, .private = private, }; if (start >= end || !walk.mm) return -EINVAL; if (start < vma->vm_start || end > vma->vm_end) return -EINVAL; process_mm_walk_lock(walk.mm, ops->walk_lock); process_vma_walk_lock(vma, ops->walk_lock); return __walk_page_range(start, end, &walk); } int walk_page_vma(struct vm_area_struct *vma, const struct mm_walk_ops *ops, void *private) { struct mm_walk walk = { .ops = ops, .mm = vma->vm_mm, .vma = vma, .private = private, }; if (!walk.mm) return -EINVAL; process_mm_walk_lock(walk.mm, ops->walk_lock); process_vma_walk_lock(vma, ops->walk_lock); return __walk_page_range(vma->vm_start, vma->vm_end, &walk); } /** * walk_page_mapping - walk all memory areas mapped into a struct address_space. * @mapping: Pointer to the struct address_space * @first_index: First page offset in the address_space * @nr: Number of incremental page offsets to cover * @ops: operation to call during the walk * @private: private data for callbacks' usage * * This function walks all memory areas mapped into a struct address_space. * The walk is limited to only the given page-size index range, but if * the index boundaries cross a huge page-table entry, that entry will be * included. * * Also see walk_page_range() for additional information. * * Locking: * This function can't require that the struct mm_struct::mmap_lock is held, * since @mapping may be mapped by multiple processes. Instead * @mapping->i_mmap_rwsem must be held. This might have implications in the * callbacks, and it's up tho the caller to ensure that the * struct mm_struct::mmap_lock is not needed. * * Also this means that a caller can't rely on the struct * vm_area_struct::vm_flags to be constant across a call, * except for immutable flags. Callers requiring this shouldn't use * this function. * * Return: 0 on success, negative error code on failure, positive number on * caller defined premature termination. */ int walk_page_mapping(struct address_space *mapping, pgoff_t first_index, pgoff_t nr, const struct mm_walk_ops *ops, void *private) { struct mm_walk walk = { .ops = ops, .private = private, }; struct vm_area_struct *vma; pgoff_t vba, vea, cba, cea; unsigned long start_addr, end_addr; int err = 0; lockdep_assert_held(&mapping->i_mmap_rwsem); vma_interval_tree_foreach(vma, &mapping->i_mmap, first_index, first_index + nr - 1) { /* Clip to the vma */ vba = vma->vm_pgoff; vea = vba + vma_pages(vma); cba = first_index; cba = max(cba, vba); cea = first_index + nr; cea = min(cea, vea); start_addr = ((cba - vba) << PAGE_SHIFT) + vma->vm_start; end_addr = ((cea - vba) << PAGE_SHIFT) + vma->vm_start; if (start_addr >= end_addr) continue; walk.vma = vma; walk.mm = vma->vm_mm; err = walk_page_test(vma->vm_start, vma->vm_end, &walk); if (err > 0) { err = 0; break; } else if (err < 0) break; err = __walk_page_range(start_addr, end_addr, &walk); if (err) break; } return err; }
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1