Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Linus Torvalds (pre-git) | 2442 | 32.65% | 26 | 13.83% |
John Fastabend | 1287 | 17.21% | 9 | 4.79% |
Américo Wang | 752 | 10.05% | 22 | 11.70% |
John Hurley | 481 | 6.43% | 1 | 0.53% |
Jiri Pirko | 368 | 4.92% | 8 | 4.26% |
Jamal Hadi Salim | 265 | 3.54% | 5 | 2.66% |
Patrick McHardy | 204 | 2.73% | 12 | 6.38% |
Victor Nogueira | 178 | 2.38% | 3 | 1.60% |
Alexander Aring | 156 | 2.09% | 5 | 2.66% |
Al Viro | 122 | 1.63% | 9 | 4.79% |
Changli Gao | 116 | 1.55% | 1 | 0.53% |
Jakub Kiciński | 101 | 1.35% | 8 | 4.26% |
Catalin(ux aka Dino) M. Boie | 101 | 1.35% | 1 | 0.53% |
Thomas Graf | 89 | 1.19% | 10 | 5.32% |
David S. Miller | 89 | 1.19% | 4 | 2.13% |
Pedro Tammela | 75 | 1.00% | 2 | 1.06% |
Eric Dumazet | 75 | 1.00% | 5 | 2.66% |
Sridhar Samudrala | 63 | 0.84% | 1 | 0.53% |
Gustavo A. R. Silva | 59 | 0.79% | 5 | 2.66% |
Kees Cook | 44 | 0.59% | 2 | 1.06% |
Paolo Abeni | 44 | 0.59% | 2 | 1.06% |
Johannes Berg | 42 | 0.56% | 3 | 1.60% |
Vlad Buslov | 42 | 0.56% | 3 | 1.60% |
Lee Jones | 41 | 0.55% | 1 | 0.53% |
Matthew Wilcox | 34 | 0.45% | 4 | 2.13% |
Or Gerlitz | 34 | 0.45% | 1 | 0.53% |
Stephen Hemminger | 30 | 0.40% | 4 | 2.13% |
Radu Rendec | 20 | 0.27% | 2 | 1.06% |
Benjamin LaHaise | 14 | 0.19% | 1 | 0.53% |
Baowen Zheng | 14 | 0.19% | 1 | 0.53% |
Jarek Poplawski | 14 | 0.19% | 2 | 1.06% |
Quentin Monnet | 13 | 0.17% | 2 | 1.06% |
Arnaldo Carvalho de Melo | 12 | 0.16% | 3 | 1.60% |
Zhengchao Shao | 12 | 0.16% | 2 | 1.06% |
Ivan Vecera | 10 | 0.13% | 1 | 0.53% |
Linus Torvalds | 7 | 0.09% | 3 | 1.60% |
Eric W. Biedermann | 5 | 0.07% | 1 | 0.53% |
Ilpo Järvinen | 4 | 0.05% | 1 | 0.53% |
Pablo Neira Ayuso | 3 | 0.04% | 1 | 0.53% |
Nicolas Dichtel | 3 | 0.04% | 1 | 0.53% |
Panagiotis Issaris | 3 | 0.04% | 1 | 0.53% |
Dan Carpenter | 2 | 0.03% | 1 | 0.53% |
Frans Pop | 2 | 0.03% | 1 | 0.53% |
Ralf Hildebrandt | 1 | 0.01% | 1 | 0.53% |
Zheng Yongjun | 1 | 0.01% | 1 | 0.53% |
Michal Kubeček | 1 | 0.01% | 1 | 0.53% |
Colin Ian King | 1 | 0.01% | 1 | 0.53% |
Thomas Gleixner | 1 | 0.01% | 1 | 0.53% |
Arnd Bergmann | 1 | 0.01% | 1 | 0.53% |
Joe Perches | 1 | 0.01% | 1 | 0.53% |
Total | 7479 | 188 |
// SPDX-License-Identifier: GPL-2.0-or-later /* * net/sched/cls_u32.c Ugly (or Universal) 32bit key Packet Classifier. * * Authors: Alexey Kuznetsov, <kuznet@ms2.inr.ac.ru> * * The filters are packed to hash tables of key nodes * with a set of 32bit key/mask pairs at every node. * Nodes reference next level hash tables etc. * * This scheme is the best universal classifier I managed to * invent; it is not super-fast, but it is not slow (provided you * program it correctly), and general enough. And its relative * speed grows as the number of rules becomes larger. * * It seems that it represents the best middle point between * speed and manageability both by human and by machine. * * It is especially useful for link sharing combined with QoS; * pure RSVP doesn't need such a general approach and can use * much simpler (and faster) schemes, sort of cls_rsvp.c. * * nfmark match added by Catalin(ux aka Dino) BOIE <catab at umbrella.ro> */ #include <linux/module.h> #include <linux/slab.h> #include <linux/types.h> #include <linux/kernel.h> #include <linux/string.h> #include <linux/errno.h> #include <linux/percpu.h> #include <linux/rtnetlink.h> #include <linux/skbuff.h> #include <linux/bitmap.h> #include <linux/netdevice.h> #include <linux/hash.h> #include <net/netlink.h> #include <net/act_api.h> #include <net/pkt_cls.h> #include <linux/idr.h> #include <net/tc_wrapper.h> struct tc_u_knode { struct tc_u_knode __rcu *next; u32 handle; struct tc_u_hnode __rcu *ht_up; struct tcf_exts exts; int ifindex; u8 fshift; struct tcf_result res; struct tc_u_hnode __rcu *ht_down; #ifdef CONFIG_CLS_U32_PERF struct tc_u32_pcnt __percpu *pf; #endif u32 flags; unsigned int in_hw_count; #ifdef CONFIG_CLS_U32_MARK u32 val; u32 mask; u32 __percpu *pcpu_success; #endif struct rcu_work rwork; /* The 'sel' field MUST be the last field in structure to allow for * tc_u32_keys allocated at end of structure. */ struct tc_u32_sel sel; }; struct tc_u_hnode { struct tc_u_hnode __rcu *next; u32 handle; u32 prio; refcount_t refcnt; unsigned int divisor; struct idr handle_idr; bool is_root; struct rcu_head rcu; u32 flags; /* The 'ht' field MUST be the last field in structure to allow for * more entries allocated at end of structure. */ struct tc_u_knode __rcu *ht[]; }; struct tc_u_common { struct tc_u_hnode __rcu *hlist; void *ptr; refcount_t refcnt; struct idr handle_idr; struct hlist_node hnode; long knodes; }; static inline unsigned int u32_hash_fold(__be32 key, const struct tc_u32_sel *sel, u8 fshift) { unsigned int h = ntohl(key & sel->hmask) >> fshift; return h; } TC_INDIRECT_SCOPE int u32_classify(struct sk_buff *skb, const struct tcf_proto *tp, struct tcf_result *res) { struct { struct tc_u_knode *knode; unsigned int off; } stack[TC_U32_MAXDEPTH]; struct tc_u_hnode *ht = rcu_dereference_bh(tp->root); unsigned int off = skb_network_offset(skb); struct tc_u_knode *n; int sdepth = 0; int off2 = 0; int sel = 0; #ifdef CONFIG_CLS_U32_PERF int j; #endif int i, r; next_ht: n = rcu_dereference_bh(ht->ht[sel]); next_knode: if (n) { struct tc_u32_key *key = n->sel.keys; #ifdef CONFIG_CLS_U32_PERF __this_cpu_inc(n->pf->rcnt); j = 0; #endif if (tc_skip_sw(n->flags)) { n = rcu_dereference_bh(n->next); goto next_knode; } #ifdef CONFIG_CLS_U32_MARK if ((skb->mark & n->mask) != n->val) { n = rcu_dereference_bh(n->next); goto next_knode; } else { __this_cpu_inc(*n->pcpu_success); } #endif for (i = n->sel.nkeys; i > 0; i--, key++) { int toff = off + key->off + (off2 & key->offmask); __be32 *data, hdata; if (skb_headroom(skb) + toff > INT_MAX) goto out; data = skb_header_pointer(skb, toff, 4, &hdata); if (!data) goto out; if ((*data ^ key->val) & key->mask) { n = rcu_dereference_bh(n->next); goto next_knode; } #ifdef CONFIG_CLS_U32_PERF __this_cpu_inc(n->pf->kcnts[j]); j++; #endif } ht = rcu_dereference_bh(n->ht_down); if (!ht) { check_terminal: if (n->sel.flags & TC_U32_TERMINAL) { *res = n->res; if (!tcf_match_indev(skb, n->ifindex)) { n = rcu_dereference_bh(n->next); goto next_knode; } #ifdef CONFIG_CLS_U32_PERF __this_cpu_inc(n->pf->rhit); #endif r = tcf_exts_exec(skb, &n->exts, res); if (r < 0) { n = rcu_dereference_bh(n->next); goto next_knode; } return r; } n = rcu_dereference_bh(n->next); goto next_knode; } /* PUSH */ if (sdepth >= TC_U32_MAXDEPTH) goto deadloop; stack[sdepth].knode = n; stack[sdepth].off = off; sdepth++; ht = rcu_dereference_bh(n->ht_down); sel = 0; if (ht->divisor) { __be32 *data, hdata; data = skb_header_pointer(skb, off + n->sel.hoff, 4, &hdata); if (!data) goto out; sel = ht->divisor & u32_hash_fold(*data, &n->sel, n->fshift); } if (!(n->sel.flags & (TC_U32_VAROFFSET | TC_U32_OFFSET | TC_U32_EAT))) goto next_ht; if (n->sel.flags & (TC_U32_OFFSET | TC_U32_VAROFFSET)) { off2 = n->sel.off + 3; if (n->sel.flags & TC_U32_VAROFFSET) { __be16 *data, hdata; data = skb_header_pointer(skb, off + n->sel.offoff, 2, &hdata); if (!data) goto out; off2 += ntohs(n->sel.offmask & *data) >> n->sel.offshift; } off2 &= ~3; } if (n->sel.flags & TC_U32_EAT) { off += off2; off2 = 0; } if (off < skb->len) goto next_ht; } /* POP */ if (sdepth--) { n = stack[sdepth].knode; ht = rcu_dereference_bh(n->ht_up); off = stack[sdepth].off; goto check_terminal; } out: return -1; deadloop: net_warn_ratelimited("cls_u32: dead loop\n"); return -1; } static struct tc_u_hnode *u32_lookup_ht(struct tc_u_common *tp_c, u32 handle) { struct tc_u_hnode *ht; for (ht = rtnl_dereference(tp_c->hlist); ht; ht = rtnl_dereference(ht->next)) if (ht->handle == handle) break; return ht; } static struct tc_u_knode *u32_lookup_key(struct tc_u_hnode *ht, u32 handle) { unsigned int sel; struct tc_u_knode *n = NULL; sel = TC_U32_HASH(handle); if (sel > ht->divisor) goto out; for (n = rtnl_dereference(ht->ht[sel]); n; n = rtnl_dereference(n->next)) if (n->handle == handle) break; out: return n; } static void *u32_get(struct tcf_proto *tp, u32 handle) { struct tc_u_hnode *ht; struct tc_u_common *tp_c = tp->data; if (TC_U32_HTID(handle) == TC_U32_ROOT) ht = rtnl_dereference(tp->root); else ht = u32_lookup_ht(tp_c, TC_U32_HTID(handle)); if (!ht) return NULL; if (TC_U32_KEY(handle) == 0) return ht; return u32_lookup_key(ht, handle); } /* Protected by rtnl lock */ static u32 gen_new_htid(struct tc_u_common *tp_c, struct tc_u_hnode *ptr) { int id = idr_alloc_cyclic(&tp_c->handle_idr, ptr, 1, 0x7FF, GFP_KERNEL); if (id < 0) return 0; return (id | 0x800U) << 20; } static struct hlist_head *tc_u_common_hash; #define U32_HASH_SHIFT 10 #define U32_HASH_SIZE (1 << U32_HASH_SHIFT) static void *tc_u_common_ptr(const struct tcf_proto *tp) { struct tcf_block *block = tp->chain->block; /* The block sharing is currently supported only * for classless qdiscs. In that case we use block * for tc_u_common identification. In case the * block is not shared, block->q is a valid pointer * and we can use that. That works for classful qdiscs. */ if (tcf_block_shared(block)) return block; else return block->q; } static struct hlist_head *tc_u_hash(void *key) { return tc_u_common_hash + hash_ptr(key, U32_HASH_SHIFT); } static struct tc_u_common *tc_u_common_find(void *key) { struct tc_u_common *tc; hlist_for_each_entry(tc, tc_u_hash(key), hnode) { if (tc->ptr == key) return tc; } return NULL; } static int u32_init(struct tcf_proto *tp) { struct tc_u_hnode *root_ht; void *key = tc_u_common_ptr(tp); struct tc_u_common *tp_c = tc_u_common_find(key); root_ht = kzalloc(struct_size(root_ht, ht, 1), GFP_KERNEL); if (root_ht == NULL) return -ENOBUFS; refcount_set(&root_ht->refcnt, 1); root_ht->handle = tp_c ? gen_new_htid(tp_c, root_ht) : 0x80000000; root_ht->prio = tp->prio; root_ht->is_root = true; idr_init(&root_ht->handle_idr); if (tp_c == NULL) { tp_c = kzalloc(sizeof(*tp_c), GFP_KERNEL); if (tp_c == NULL) { kfree(root_ht); return -ENOBUFS; } refcount_set(&tp_c->refcnt, 1); tp_c->ptr = key; INIT_HLIST_NODE(&tp_c->hnode); idr_init(&tp_c->handle_idr); hlist_add_head(&tp_c->hnode, tc_u_hash(key)); } else { refcount_inc(&tp_c->refcnt); } RCU_INIT_POINTER(root_ht->next, tp_c->hlist); rcu_assign_pointer(tp_c->hlist, root_ht); /* root_ht must be destroyed when tcf_proto is destroyed */ rcu_assign_pointer(tp->root, root_ht); tp->data = tp_c; return 0; } static void __u32_destroy_key(struct tc_u_knode *n) { struct tc_u_hnode *ht = rtnl_dereference(n->ht_down); tcf_exts_destroy(&n->exts); if (ht && refcount_dec_and_test(&ht->refcnt)) kfree(ht); kfree(n); } static void u32_destroy_key(struct tc_u_knode *n, bool free_pf) { tcf_exts_put_net(&n->exts); #ifdef CONFIG_CLS_U32_PERF if (free_pf) free_percpu(n->pf); #endif #ifdef CONFIG_CLS_U32_MARK if (free_pf) free_percpu(n->pcpu_success); #endif __u32_destroy_key(n); } /* u32_delete_key_rcu should be called when free'ing a copied * version of a tc_u_knode obtained from u32_init_knode(). When * copies are obtained from u32_init_knode() the statistics are * shared between the old and new copies to allow readers to * continue to update the statistics during the copy. To support * this the u32_delete_key_rcu variant does not free the percpu * statistics. */ static void u32_delete_key_work(struct work_struct *work) { struct tc_u_knode *key = container_of(to_rcu_work(work), struct tc_u_knode, rwork); rtnl_lock(); u32_destroy_key(key, false); rtnl_unlock(); } /* u32_delete_key_freepf_rcu is the rcu callback variant * that free's the entire structure including the statistics * percpu variables. Only use this if the key is not a copy * returned by u32_init_knode(). See u32_delete_key_rcu() * for the variant that should be used with keys return from * u32_init_knode() */ static void u32_delete_key_freepf_work(struct work_struct *work) { struct tc_u_knode *key = container_of(to_rcu_work(work), struct tc_u_knode, rwork); rtnl_lock(); u32_destroy_key(key, true); rtnl_unlock(); } static int u32_delete_key(struct tcf_proto *tp, struct tc_u_knode *key) { struct tc_u_common *tp_c = tp->data; struct tc_u_knode __rcu **kp; struct tc_u_knode *pkp; struct tc_u_hnode *ht = rtnl_dereference(key->ht_up); if (ht) { kp = &ht->ht[TC_U32_HASH(key->handle)]; for (pkp = rtnl_dereference(*kp); pkp; kp = &pkp->next, pkp = rtnl_dereference(*kp)) { if (pkp == key) { RCU_INIT_POINTER(*kp, key->next); tp_c->knodes--; tcf_unbind_filter(tp, &key->res); idr_remove(&ht->handle_idr, key->handle); tcf_exts_get_net(&key->exts); tcf_queue_work(&key->rwork, u32_delete_key_freepf_work); return 0; } } } WARN_ON(1); return 0; } static void u32_clear_hw_hnode(struct tcf_proto *tp, struct tc_u_hnode *h, struct netlink_ext_ack *extack) { struct tcf_block *block = tp->chain->block; struct tc_cls_u32_offload cls_u32 = {}; tc_cls_common_offload_init(&cls_u32.common, tp, h->flags, extack); cls_u32.command = TC_CLSU32_DELETE_HNODE; cls_u32.hnode.divisor = h->divisor; cls_u32.hnode.handle = h->handle; cls_u32.hnode.prio = h->prio; tc_setup_cb_call(block, TC_SETUP_CLSU32, &cls_u32, false, true); } static int u32_replace_hw_hnode(struct tcf_proto *tp, struct tc_u_hnode *h, u32 flags, struct netlink_ext_ack *extack) { struct tcf_block *block = tp->chain->block; struct tc_cls_u32_offload cls_u32 = {}; bool skip_sw = tc_skip_sw(flags); bool offloaded = false; int err; tc_cls_common_offload_init(&cls_u32.common, tp, flags, extack); cls_u32.command = TC_CLSU32_NEW_HNODE; cls_u32.hnode.divisor = h->divisor; cls_u32.hnode.handle = h->handle; cls_u32.hnode.prio = h->prio; err = tc_setup_cb_call(block, TC_SETUP_CLSU32, &cls_u32, skip_sw, true); if (err < 0) { u32_clear_hw_hnode(tp, h, NULL); return err; } else if (err > 0) { offloaded = true; } if (skip_sw && !offloaded) return -EINVAL; return 0; } static void u32_remove_hw_knode(struct tcf_proto *tp, struct tc_u_knode *n, struct netlink_ext_ack *extack) { struct tcf_block *block = tp->chain->block; struct tc_cls_u32_offload cls_u32 = {}; tc_cls_common_offload_init(&cls_u32.common, tp, n->flags, extack); cls_u32.command = TC_CLSU32_DELETE_KNODE; cls_u32.knode.handle = n->handle; tc_setup_cb_destroy(block, tp, TC_SETUP_CLSU32, &cls_u32, false, &n->flags, &n->in_hw_count, true); } static int u32_replace_hw_knode(struct tcf_proto *tp, struct tc_u_knode *n, u32 flags, struct netlink_ext_ack *extack) { struct tc_u_hnode *ht = rtnl_dereference(n->ht_down); struct tcf_block *block = tp->chain->block; struct tc_cls_u32_offload cls_u32 = {}; bool skip_sw = tc_skip_sw(flags); int err; tc_cls_common_offload_init(&cls_u32.common, tp, flags, extack); cls_u32.command = TC_CLSU32_REPLACE_KNODE; cls_u32.knode.handle = n->handle; cls_u32.knode.fshift = n->fshift; #ifdef CONFIG_CLS_U32_MARK cls_u32.knode.val = n->val; cls_u32.knode.mask = n->mask; #else cls_u32.knode.val = 0; cls_u32.knode.mask = 0; #endif cls_u32.knode.sel = &n->sel; cls_u32.knode.res = &n->res; cls_u32.knode.exts = &n->exts; if (n->ht_down) cls_u32.knode.link_handle = ht->handle; err = tc_setup_cb_add(block, tp, TC_SETUP_CLSU32, &cls_u32, skip_sw, &n->flags, &n->in_hw_count, true); if (err) { u32_remove_hw_knode(tp, n, NULL); return err; } if (skip_sw && !(n->flags & TCA_CLS_FLAGS_IN_HW)) return -EINVAL; return 0; } static void u32_clear_hnode(struct tcf_proto *tp, struct tc_u_hnode *ht, struct netlink_ext_ack *extack) { struct tc_u_common *tp_c = tp->data; struct tc_u_knode *n; unsigned int h; for (h = 0; h <= ht->divisor; h++) { while ((n = rtnl_dereference(ht->ht[h])) != NULL) { RCU_INIT_POINTER(ht->ht[h], rtnl_dereference(n->next)); tp_c->knodes--; tcf_unbind_filter(tp, &n->res); u32_remove_hw_knode(tp, n, extack); idr_remove(&ht->handle_idr, n->handle); if (tcf_exts_get_net(&n->exts)) tcf_queue_work(&n->rwork, u32_delete_key_freepf_work); else u32_destroy_key(n, true); } } } static int u32_destroy_hnode(struct tcf_proto *tp, struct tc_u_hnode *ht, struct netlink_ext_ack *extack) { struct tc_u_common *tp_c = tp->data; struct tc_u_hnode __rcu **hn; struct tc_u_hnode *phn; u32_clear_hnode(tp, ht, extack); hn = &tp_c->hlist; for (phn = rtnl_dereference(*hn); phn; hn = &phn->next, phn = rtnl_dereference(*hn)) { if (phn == ht) { u32_clear_hw_hnode(tp, ht, extack); idr_destroy(&ht->handle_idr); idr_remove(&tp_c->handle_idr, ht->handle); RCU_INIT_POINTER(*hn, ht->next); kfree_rcu(ht, rcu); return 0; } } return -ENOENT; } static void u32_destroy(struct tcf_proto *tp, bool rtnl_held, struct netlink_ext_ack *extack) { struct tc_u_common *tp_c = tp->data; struct tc_u_hnode *root_ht = rtnl_dereference(tp->root); WARN_ON(root_ht == NULL); if (root_ht && refcount_dec_and_test(&root_ht->refcnt)) u32_destroy_hnode(tp, root_ht, extack); if (refcount_dec_and_test(&tp_c->refcnt)) { struct tc_u_hnode *ht; hlist_del(&tp_c->hnode); while ((ht = rtnl_dereference(tp_c->hlist)) != NULL) { u32_clear_hnode(tp, ht, extack); RCU_INIT_POINTER(tp_c->hlist, ht->next); /* u32_destroy_key() will later free ht for us, if it's * still referenced by some knode */ if (refcount_dec_and_test(&ht->refcnt)) kfree_rcu(ht, rcu); } idr_destroy(&tp_c->handle_idr); kfree(tp_c); } tp->data = NULL; } static int u32_delete(struct tcf_proto *tp, void *arg, bool *last, bool rtnl_held, struct netlink_ext_ack *extack) { struct tc_u_hnode *ht = arg; struct tc_u_common *tp_c = tp->data; int ret = 0; if (TC_U32_KEY(ht->handle)) { u32_remove_hw_knode(tp, (struct tc_u_knode *)ht, extack); ret = u32_delete_key(tp, (struct tc_u_knode *)ht); goto out; } if (ht->is_root) { NL_SET_ERR_MSG_MOD(extack, "Not allowed to delete root node"); return -EINVAL; } if (refcount_dec_if_one(&ht->refcnt)) { u32_destroy_hnode(tp, ht, extack); } else { NL_SET_ERR_MSG_MOD(extack, "Can not delete in-use filter"); return -EBUSY; } out: *last = refcount_read(&tp_c->refcnt) == 1 && tp_c->knodes == 0; return ret; } static u32 gen_new_kid(struct tc_u_hnode *ht, u32 htid) { u32 index = htid | 0x800; u32 max = htid | 0xFFF; if (idr_alloc_u32(&ht->handle_idr, NULL, &index, max, GFP_KERNEL)) { index = htid + 1; if (idr_alloc_u32(&ht->handle_idr, NULL, &index, max, GFP_KERNEL)) index = max; } return index; } static const struct nla_policy u32_policy[TCA_U32_MAX + 1] = { [TCA_U32_CLASSID] = { .type = NLA_U32 }, [TCA_U32_HASH] = { .type = NLA_U32 }, [TCA_U32_LINK] = { .type = NLA_U32 }, [TCA_U32_DIVISOR] = { .type = NLA_U32 }, [TCA_U32_SEL] = { .len = sizeof(struct tc_u32_sel) }, [TCA_U32_INDEV] = { .type = NLA_STRING, .len = IFNAMSIZ }, [TCA_U32_MARK] = { .len = sizeof(struct tc_u32_mark) }, [TCA_U32_FLAGS] = { .type = NLA_U32 }, }; static void u32_unbind_filter(struct tcf_proto *tp, struct tc_u_knode *n, struct nlattr **tb) { if (tb[TCA_U32_CLASSID]) tcf_unbind_filter(tp, &n->res); } static void u32_bind_filter(struct tcf_proto *tp, struct tc_u_knode *n, unsigned long base, struct nlattr **tb) { if (tb[TCA_U32_CLASSID]) { n->res.classid = nla_get_u32(tb[TCA_U32_CLASSID]); tcf_bind_filter(tp, &n->res, base); } } static int u32_set_parms(struct net *net, struct tcf_proto *tp, struct tc_u_knode *n, struct nlattr **tb, struct nlattr *est, u32 flags, u32 fl_flags, struct netlink_ext_ack *extack) { int err, ifindex = -1; err = tcf_exts_validate_ex(net, tp, tb, est, &n->exts, flags, fl_flags, extack); if (err < 0) return err; if (tb[TCA_U32_INDEV]) { ifindex = tcf_change_indev(net, tb[TCA_U32_INDEV], extack); if (ifindex < 0) return -EINVAL; } if (tb[TCA_U32_LINK]) { u32 handle = nla_get_u32(tb[TCA_U32_LINK]); struct tc_u_hnode *ht_down = NULL, *ht_old; if (TC_U32_KEY(handle)) { NL_SET_ERR_MSG_MOD(extack, "u32 Link handle must be a hash table"); return -EINVAL; } if (handle) { ht_down = u32_lookup_ht(tp->data, handle); if (!ht_down) { NL_SET_ERR_MSG_MOD(extack, "Link hash table not found"); return -EINVAL; } if (ht_down->is_root) { NL_SET_ERR_MSG_MOD(extack, "Not linking to root node"); return -EINVAL; } refcount_inc(&ht_down->refcnt); } ht_old = rtnl_dereference(n->ht_down); rcu_assign_pointer(n->ht_down, ht_down); if (ht_old) refcount_dec(&ht_old->refcnt); } if (ifindex >= 0) n->ifindex = ifindex; return 0; } static void u32_replace_knode(struct tcf_proto *tp, struct tc_u_common *tp_c, struct tc_u_knode *n) { struct tc_u_knode __rcu **ins; struct tc_u_knode *pins; struct tc_u_hnode *ht; if (TC_U32_HTID(n->handle) == TC_U32_ROOT) ht = rtnl_dereference(tp->root); else ht = u32_lookup_ht(tp_c, TC_U32_HTID(n->handle)); ins = &ht->ht[TC_U32_HASH(n->handle)]; /* The node must always exist for it to be replaced if this is not the * case then something went very wrong elsewhere. */ for (pins = rtnl_dereference(*ins); ; ins = &pins->next, pins = rtnl_dereference(*ins)) if (pins->handle == n->handle) break; idr_replace(&ht->handle_idr, n, n->handle); RCU_INIT_POINTER(n->next, pins->next); rcu_assign_pointer(*ins, n); } static struct tc_u_knode *u32_init_knode(struct net *net, struct tcf_proto *tp, struct tc_u_knode *n) { struct tc_u_hnode *ht = rtnl_dereference(n->ht_down); struct tc_u32_sel *s = &n->sel; struct tc_u_knode *new; new = kzalloc(struct_size(new, sel.keys, s->nkeys), GFP_KERNEL); if (!new) return NULL; RCU_INIT_POINTER(new->next, n->next); new->handle = n->handle; RCU_INIT_POINTER(new->ht_up, n->ht_up); new->ifindex = n->ifindex; new->fshift = n->fshift; new->flags = n->flags; RCU_INIT_POINTER(new->ht_down, ht); #ifdef CONFIG_CLS_U32_PERF /* Statistics may be incremented by readers during update * so we must keep them in tact. When the node is later destroyed * a special destroy call must be made to not free the pf memory. */ new->pf = n->pf; #endif #ifdef CONFIG_CLS_U32_MARK new->val = n->val; new->mask = n->mask; /* Similarly success statistics must be moved as pointers */ new->pcpu_success = n->pcpu_success; #endif memcpy(&new->sel, s, struct_size(s, keys, s->nkeys)); if (tcf_exts_init(&new->exts, net, TCA_U32_ACT, TCA_U32_POLICE)) { kfree(new); return NULL; } /* bump reference count as long as we hold pointer to structure */ if (ht) refcount_inc(&ht->refcnt); return new; } static int u32_change(struct net *net, struct sk_buff *in_skb, struct tcf_proto *tp, unsigned long base, u32 handle, struct nlattr **tca, void **arg, u32 flags, struct netlink_ext_ack *extack) { struct tc_u_common *tp_c = tp->data; struct tc_u_hnode *ht; struct tc_u_knode *n; struct tc_u32_sel *s; struct nlattr *opt = tca[TCA_OPTIONS]; struct nlattr *tb[TCA_U32_MAX + 1]; u32 htid, userflags = 0; size_t sel_size; int err; if (!opt) { if (handle) { NL_SET_ERR_MSG_MOD(extack, "Filter handle requires options"); return -EINVAL; } else { return 0; } } err = nla_parse_nested_deprecated(tb, TCA_U32_MAX, opt, u32_policy, extack); if (err < 0) return err; if (tb[TCA_U32_FLAGS]) { userflags = nla_get_u32(tb[TCA_U32_FLAGS]); if (!tc_flags_valid(userflags)) { NL_SET_ERR_MSG_MOD(extack, "Invalid filter flags"); return -EINVAL; } } n = *arg; if (n) { struct tc_u_knode *new; if (TC_U32_KEY(n->handle) == 0) { NL_SET_ERR_MSG_MOD(extack, "Key node id cannot be zero"); return -EINVAL; } if ((n->flags ^ userflags) & ~(TCA_CLS_FLAGS_IN_HW | TCA_CLS_FLAGS_NOT_IN_HW)) { NL_SET_ERR_MSG_MOD(extack, "Key node flags do not match passed flags"); return -EINVAL; } new = u32_init_knode(net, tp, n); if (!new) return -ENOMEM; err = u32_set_parms(net, tp, new, tb, tca[TCA_RATE], flags, new->flags, extack); if (err) { __u32_destroy_key(new); return err; } u32_bind_filter(tp, new, base, tb); err = u32_replace_hw_knode(tp, new, flags, extack); if (err) { u32_unbind_filter(tp, new, tb); if (tb[TCA_U32_LINK]) { struct tc_u_hnode *ht_old; ht_old = rtnl_dereference(n->ht_down); if (ht_old) refcount_inc(&ht_old->refcnt); } __u32_destroy_key(new); return err; } if (!tc_in_hw(new->flags)) new->flags |= TCA_CLS_FLAGS_NOT_IN_HW; u32_replace_knode(tp, tp_c, new); tcf_unbind_filter(tp, &n->res); tcf_exts_get_net(&n->exts); tcf_queue_work(&n->rwork, u32_delete_key_work); return 0; } if (tb[TCA_U32_DIVISOR]) { unsigned int divisor = nla_get_u32(tb[TCA_U32_DIVISOR]); if (!is_power_of_2(divisor)) { NL_SET_ERR_MSG_MOD(extack, "Divisor is not a power of 2"); return -EINVAL; } if (divisor-- > 0x100) { NL_SET_ERR_MSG_MOD(extack, "Exceeded maximum 256 hash buckets"); return -EINVAL; } if (TC_U32_KEY(handle)) { NL_SET_ERR_MSG_MOD(extack, "Divisor can only be used on a hash table"); return -EINVAL; } ht = kzalloc(struct_size(ht, ht, divisor + 1), GFP_KERNEL); if (ht == NULL) return -ENOBUFS; if (handle == 0) { handle = gen_new_htid(tp->data, ht); if (handle == 0) { kfree(ht); return -ENOMEM; } } else { err = idr_alloc_u32(&tp_c->handle_idr, ht, &handle, handle, GFP_KERNEL); if (err) { kfree(ht); return err; } } refcount_set(&ht->refcnt, 1); ht->divisor = divisor; ht->handle = handle; ht->prio = tp->prio; idr_init(&ht->handle_idr); ht->flags = userflags; err = u32_replace_hw_hnode(tp, ht, userflags, extack); if (err) { idr_remove(&tp_c->handle_idr, handle); kfree(ht); return err; } RCU_INIT_POINTER(ht->next, tp_c->hlist); rcu_assign_pointer(tp_c->hlist, ht); *arg = ht; return 0; } if (tb[TCA_U32_HASH]) { htid = nla_get_u32(tb[TCA_U32_HASH]); if (TC_U32_HTID(htid) == TC_U32_ROOT) { ht = rtnl_dereference(tp->root); htid = ht->handle; } else { ht = u32_lookup_ht(tp->data, TC_U32_HTID(htid)); if (!ht) { NL_SET_ERR_MSG_MOD(extack, "Specified hash table not found"); return -EINVAL; } } } else { ht = rtnl_dereference(tp->root); htid = ht->handle; } if (ht->divisor < TC_U32_HASH(htid)) { NL_SET_ERR_MSG_MOD(extack, "Specified hash table buckets exceed configured value"); return -EINVAL; } /* At this point, we need to derive the new handle that will be used to * uniquely map the identity of this table match entry. The * identity of the entry that we need to construct is 32 bits made of: * htid(12b):bucketid(8b):node/entryid(12b) * * At this point _we have the table(ht)_ in which we will insert this * entry. We carry the table's id in variable "htid". * Note that earlier code picked the ht selection either by a) the user * providing the htid specified via TCA_U32_HASH attribute or b) when * no such attribute is passed then the root ht, is default to at ID * 0x[800][00][000]. Rule: the root table has a single bucket with ID 0. * If OTOH the user passed us the htid, they may also pass a bucketid of * choice. 0 is fine. For example a user htid is 0x[600][01][000] it is * indicating hash bucketid of 1. Rule: the entry/node ID _cannot_ be * passed via the htid, so even if it was non-zero it will be ignored. * * We may also have a handle, if the user passed one. The handle also * carries the same addressing of htid(12b):bucketid(8b):node/entryid(12b). * Rule: the bucketid on the handle is ignored even if one was passed; * rather the value on "htid" is always assumed to be the bucketid. */ if (handle) { /* Rule: The htid from handle and tableid from htid must match */ if (TC_U32_HTID(handle) && TC_U32_HTID(handle ^ htid)) { NL_SET_ERR_MSG_MOD(extack, "Handle specified hash table address mismatch"); return -EINVAL; } /* Ok, so far we have a valid htid(12b):bucketid(8b) but we * need to finalize the table entry identification with the last * part - the node/entryid(12b)). Rule: Nodeid _cannot be 0_ for * entries. Rule: nodeid of 0 is reserved only for tables(see * earlier code which processes TC_U32_DIVISOR attribute). * Rule: The nodeid can only be derived from the handle (and not * htid). * Rule: if the handle specified zero for the node id example * 0x60000000, then pick a new nodeid from the pool of IDs * this hash table has been allocating from. * If OTOH it is specified (i.e for example the user passed a * handle such as 0x60000123), then we use it generate our final * handle which is used to uniquely identify the match entry. */ if (!TC_U32_NODE(handle)) { handle = gen_new_kid(ht, htid); } else { handle = htid | TC_U32_NODE(handle); err = idr_alloc_u32(&ht->handle_idr, NULL, &handle, handle, GFP_KERNEL); if (err) return err; } } else { /* The user did not give us a handle; lets just generate one * from the table's pool of nodeids. */ handle = gen_new_kid(ht, htid); } if (tb[TCA_U32_SEL] == NULL) { NL_SET_ERR_MSG_MOD(extack, "Selector not specified"); err = -EINVAL; goto erridr; } s = nla_data(tb[TCA_U32_SEL]); sel_size = struct_size(s, keys, s->nkeys); if (nla_len(tb[TCA_U32_SEL]) < sel_size) { err = -EINVAL; goto erridr; } n = kzalloc(struct_size(n, sel.keys, s->nkeys), GFP_KERNEL); if (n == NULL) { err = -ENOBUFS; goto erridr; } #ifdef CONFIG_CLS_U32_PERF n->pf = __alloc_percpu(struct_size(n->pf, kcnts, s->nkeys), __alignof__(struct tc_u32_pcnt)); if (!n->pf) { err = -ENOBUFS; goto errfree; } #endif unsafe_memcpy(&n->sel, s, sel_size, /* A composite flex-array structure destination, * which was correctly sized with struct_size(), * bounds-checked against nla_len(), and allocated * above. */); RCU_INIT_POINTER(n->ht_up, ht); n->handle = handle; n->fshift = s->hmask ? ffs(ntohl(s->hmask)) - 1 : 0; n->flags = userflags; err = tcf_exts_init(&n->exts, net, TCA_U32_ACT, TCA_U32_POLICE); if (err < 0) goto errout; #ifdef CONFIG_CLS_U32_MARK n->pcpu_success = alloc_percpu(u32); if (!n->pcpu_success) { err = -ENOMEM; goto errout; } if (tb[TCA_U32_MARK]) { struct tc_u32_mark *mark; mark = nla_data(tb[TCA_U32_MARK]); n->val = mark->val; n->mask = mark->mask; } #endif err = u32_set_parms(net, tp, n, tb, tca[TCA_RATE], flags, n->flags, extack); u32_bind_filter(tp, n, base, tb); if (err == 0) { struct tc_u_knode __rcu **ins; struct tc_u_knode *pins; err = u32_replace_hw_knode(tp, n, flags, extack); if (err) goto errunbind; if (!tc_in_hw(n->flags)) n->flags |= TCA_CLS_FLAGS_NOT_IN_HW; ins = &ht->ht[TC_U32_HASH(handle)]; for (pins = rtnl_dereference(*ins); pins; ins = &pins->next, pins = rtnl_dereference(*ins)) if (TC_U32_NODE(handle) < TC_U32_NODE(pins->handle)) break; RCU_INIT_POINTER(n->next, pins); rcu_assign_pointer(*ins, n); tp_c->knodes++; *arg = n; return 0; } errunbind: u32_unbind_filter(tp, n, tb); #ifdef CONFIG_CLS_U32_MARK free_percpu(n->pcpu_success); #endif errout: tcf_exts_destroy(&n->exts); #ifdef CONFIG_CLS_U32_PERF errfree: free_percpu(n->pf); #endif kfree(n); erridr: idr_remove(&ht->handle_idr, handle); return err; } static void u32_walk(struct tcf_proto *tp, struct tcf_walker *arg, bool rtnl_held) { struct tc_u_common *tp_c = tp->data; struct tc_u_hnode *ht; struct tc_u_knode *n; unsigned int h; if (arg->stop) return; for (ht = rtnl_dereference(tp_c->hlist); ht; ht = rtnl_dereference(ht->next)) { if (ht->prio != tp->prio) continue; if (!tc_cls_stats_dump(tp, arg, ht)) return; for (h = 0; h <= ht->divisor; h++) { for (n = rtnl_dereference(ht->ht[h]); n; n = rtnl_dereference(n->next)) { if (!tc_cls_stats_dump(tp, arg, n)) return; } } } } static int u32_reoffload_hnode(struct tcf_proto *tp, struct tc_u_hnode *ht, bool add, flow_setup_cb_t *cb, void *cb_priv, struct netlink_ext_ack *extack) { struct tc_cls_u32_offload cls_u32 = {}; int err; tc_cls_common_offload_init(&cls_u32.common, tp, ht->flags, extack); cls_u32.command = add ? TC_CLSU32_NEW_HNODE : TC_CLSU32_DELETE_HNODE; cls_u32.hnode.divisor = ht->divisor; cls_u32.hnode.handle = ht->handle; cls_u32.hnode.prio = ht->prio; err = cb(TC_SETUP_CLSU32, &cls_u32, cb_priv); if (err && add && tc_skip_sw(ht->flags)) return err; return 0; } static int u32_reoffload_knode(struct tcf_proto *tp, struct tc_u_knode *n, bool add, flow_setup_cb_t *cb, void *cb_priv, struct netlink_ext_ack *extack) { struct tc_u_hnode *ht = rtnl_dereference(n->ht_down); struct tcf_block *block = tp->chain->block; struct tc_cls_u32_offload cls_u32 = {}; tc_cls_common_offload_init(&cls_u32.common, tp, n->flags, extack); cls_u32.command = add ? TC_CLSU32_REPLACE_KNODE : TC_CLSU32_DELETE_KNODE; cls_u32.knode.handle = n->handle; if (add) { cls_u32.knode.fshift = n->fshift; #ifdef CONFIG_CLS_U32_MARK cls_u32.knode.val = n->val; cls_u32.knode.mask = n->mask; #else cls_u32.knode.val = 0; cls_u32.knode.mask = 0; #endif cls_u32.knode.sel = &n->sel; cls_u32.knode.res = &n->res; cls_u32.knode.exts = &n->exts; if (n->ht_down) cls_u32.knode.link_handle = ht->handle; } return tc_setup_cb_reoffload(block, tp, add, cb, TC_SETUP_CLSU32, &cls_u32, cb_priv, &n->flags, &n->in_hw_count); } static int u32_reoffload(struct tcf_proto *tp, bool add, flow_setup_cb_t *cb, void *cb_priv, struct netlink_ext_ack *extack) { struct tc_u_common *tp_c = tp->data; struct tc_u_hnode *ht; struct tc_u_knode *n; unsigned int h; int err; for (ht = rtnl_dereference(tp_c->hlist); ht; ht = rtnl_dereference(ht->next)) { if (ht->prio != tp->prio) continue; /* When adding filters to a new dev, try to offload the * hashtable first. When removing, do the filters before the * hashtable. */ if (add && !tc_skip_hw(ht->flags)) { err = u32_reoffload_hnode(tp, ht, add, cb, cb_priv, extack); if (err) return err; } for (h = 0; h <= ht->divisor; h++) { for (n = rtnl_dereference(ht->ht[h]); n; n = rtnl_dereference(n->next)) { if (tc_skip_hw(n->flags)) continue; err = u32_reoffload_knode(tp, n, add, cb, cb_priv, extack); if (err) return err; } } if (!add && !tc_skip_hw(ht->flags)) u32_reoffload_hnode(tp, ht, add, cb, cb_priv, extack); } return 0; } static void u32_bind_class(void *fh, u32 classid, unsigned long cl, void *q, unsigned long base) { struct tc_u_knode *n = fh; tc_cls_bind_class(classid, cl, q, &n->res, base); } static int u32_dump(struct net *net, struct tcf_proto *tp, void *fh, struct sk_buff *skb, struct tcmsg *t, bool rtnl_held) { struct tc_u_knode *n = fh; struct tc_u_hnode *ht_up, *ht_down; struct nlattr *nest; if (n == NULL) return skb->len; t->tcm_handle = n->handle; nest = nla_nest_start_noflag(skb, TCA_OPTIONS); if (nest == NULL) goto nla_put_failure; if (TC_U32_KEY(n->handle) == 0) { struct tc_u_hnode *ht = fh; u32 divisor = ht->divisor + 1; if (nla_put_u32(skb, TCA_U32_DIVISOR, divisor)) goto nla_put_failure; } else { #ifdef CONFIG_CLS_U32_PERF struct tc_u32_pcnt *gpf; int cpu; #endif if (nla_put(skb, TCA_U32_SEL, struct_size(&n->sel, keys, n->sel.nkeys), &n->sel)) goto nla_put_failure; ht_up = rtnl_dereference(n->ht_up); if (ht_up) { u32 htid = n->handle & 0xFFFFF000; if (nla_put_u32(skb, TCA_U32_HASH, htid)) goto nla_put_failure; } if (n->res.classid && nla_put_u32(skb, TCA_U32_CLASSID, n->res.classid)) goto nla_put_failure; ht_down = rtnl_dereference(n->ht_down); if (ht_down && nla_put_u32(skb, TCA_U32_LINK, ht_down->handle)) goto nla_put_failure; if (n->flags && nla_put_u32(skb, TCA_U32_FLAGS, n->flags)) goto nla_put_failure; #ifdef CONFIG_CLS_U32_MARK if ((n->val || n->mask)) { struct tc_u32_mark mark = {.val = n->val, .mask = n->mask, .success = 0}; int cpum; for_each_possible_cpu(cpum) { __u32 cnt = *per_cpu_ptr(n->pcpu_success, cpum); mark.success += cnt; } if (nla_put(skb, TCA_U32_MARK, sizeof(mark), &mark)) goto nla_put_failure; } #endif if (tcf_exts_dump(skb, &n->exts) < 0) goto nla_put_failure; if (n->ifindex) { struct net_device *dev; dev = __dev_get_by_index(net, n->ifindex); if (dev && nla_put_string(skb, TCA_U32_INDEV, dev->name)) goto nla_put_failure; } #ifdef CONFIG_CLS_U32_PERF gpf = kzalloc(struct_size(gpf, kcnts, n->sel.nkeys), GFP_KERNEL); if (!gpf) goto nla_put_failure; for_each_possible_cpu(cpu) { int i; struct tc_u32_pcnt *pf = per_cpu_ptr(n->pf, cpu); gpf->rcnt += pf->rcnt; gpf->rhit += pf->rhit; for (i = 0; i < n->sel.nkeys; i++) gpf->kcnts[i] += pf->kcnts[i]; } if (nla_put_64bit(skb, TCA_U32_PCNT, struct_size(gpf, kcnts, n->sel.nkeys), gpf, TCA_U32_PAD)) { kfree(gpf); goto nla_put_failure; } kfree(gpf); #endif } nla_nest_end(skb, nest); if (TC_U32_KEY(n->handle)) if (tcf_exts_dump_stats(skb, &n->exts) < 0) goto nla_put_failure; return skb->len; nla_put_failure: nla_nest_cancel(skb, nest); return -1; } static struct tcf_proto_ops cls_u32_ops __read_mostly = { .kind = "u32", .classify = u32_classify, .init = u32_init, .destroy = u32_destroy, .get = u32_get, .change = u32_change, .delete = u32_delete, .walk = u32_walk, .reoffload = u32_reoffload, .dump = u32_dump, .bind_class = u32_bind_class, .owner = THIS_MODULE, }; static int __init init_u32(void) { int i, ret; pr_info("u32 classifier\n"); #ifdef CONFIG_CLS_U32_PERF pr_info(" Performance counters on\n"); #endif pr_info(" input device check on\n"); #ifdef CONFIG_NET_CLS_ACT pr_info(" Actions configured\n"); #endif tc_u_common_hash = kvmalloc_array(U32_HASH_SIZE, sizeof(struct hlist_head), GFP_KERNEL); if (!tc_u_common_hash) return -ENOMEM; for (i = 0; i < U32_HASH_SIZE; i++) INIT_HLIST_HEAD(&tc_u_common_hash[i]); ret = register_tcf_proto_ops(&cls_u32_ops); if (ret) kvfree(tc_u_common_hash); return ret; } static void __exit exit_u32(void) { unregister_tcf_proto_ops(&cls_u32_ops); kvfree(tc_u_common_hash); } module_init(init_u32) module_exit(exit_u32) MODULE_DESCRIPTION("Universal 32bit based TC Classifier"); MODULE_LICENSE("GPL");
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1