Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Terry Lam | 2782 | 94.02% | 2 | 7.69% |
Eric Dumazet | 45 | 1.52% | 4 | 15.38% |
Américo Wang | 44 | 1.49% | 3 | 11.54% |
John Fastabend | 33 | 1.12% | 2 | 7.69% |
Johannes Berg | 13 | 0.44% | 3 | 11.54% |
Michal Hocko | 10 | 0.34% | 1 | 3.85% |
Nikolay Aleksandrov | 8 | 0.27% | 1 | 3.85% |
Rob Gill | 5 | 0.17% | 1 | 3.85% |
Tom Herbert | 5 | 0.17% | 1 | 3.85% |
Kees Cook | 4 | 0.14% | 1 | 3.85% |
David S. Miller | 3 | 0.10% | 1 | 3.85% |
Yang Yingliang | 2 | 0.07% | 2 | 7.69% |
Alexander Aring | 2 | 0.07% | 1 | 3.85% |
Stephen Hemminger | 1 | 0.03% | 1 | 3.85% |
Thomas Gleixner | 1 | 0.03% | 1 | 3.85% |
Michal Kubeček | 1 | 0.03% | 1 | 3.85% |
Total | 2959 | 26 |
// SPDX-License-Identifier: GPL-2.0-only /* net/sched/sch_hhf.c Heavy-Hitter Filter (HHF) * * Copyright (C) 2013 Terry Lam <vtlam@google.com> * Copyright (C) 2013 Nandita Dukkipati <nanditad@google.com> */ #include <linux/jiffies.h> #include <linux/module.h> #include <linux/skbuff.h> #include <linux/vmalloc.h> #include <linux/siphash.h> #include <net/pkt_sched.h> #include <net/sock.h> /* Heavy-Hitter Filter (HHF) * * Principles : * Flows are classified into two buckets: non-heavy-hitter and heavy-hitter * buckets. Initially, a new flow starts as non-heavy-hitter. Once classified * as heavy-hitter, it is immediately switched to the heavy-hitter bucket. * The buckets are dequeued by a Weighted Deficit Round Robin (WDRR) scheduler, * in which the heavy-hitter bucket is served with less weight. * In other words, non-heavy-hitters (e.g., short bursts of critical traffic) * are isolated from heavy-hitters (e.g., persistent bulk traffic) and also have * higher share of bandwidth. * * To capture heavy-hitters, we use the "multi-stage filter" algorithm in the * following paper: * [EV02] C. Estan and G. Varghese, "New Directions in Traffic Measurement and * Accounting", in ACM SIGCOMM, 2002. * * Conceptually, a multi-stage filter comprises k independent hash functions * and k counter arrays. Packets are indexed into k counter arrays by k hash * functions, respectively. The counters are then increased by the packet sizes. * Therefore, * - For a heavy-hitter flow: *all* of its k array counters must be large. * - For a non-heavy-hitter flow: some of its k array counters can be large * due to hash collision with other small flows; however, with high * probability, not *all* k counters are large. * * By the design of the multi-stage filter algorithm, the false negative rate * (heavy-hitters getting away uncaptured) is zero. However, the algorithm is * susceptible to false positives (non-heavy-hitters mistakenly classified as * heavy-hitters). * Therefore, we also implement the following optimizations to reduce false * positives by avoiding unnecessary increment of the counter values: * - Optimization O1: once a heavy-hitter is identified, its bytes are not * accounted in the array counters. This technique is called "shielding" * in Section 3.3.1 of [EV02]. * - Optimization O2: conservative update of counters * (Section 3.3.2 of [EV02]), * New counter value = max {old counter value, * smallest counter value + packet bytes} * * Finally, we refresh the counters periodically since otherwise the counter * values will keep accumulating. * * Once a flow is classified as heavy-hitter, we also save its per-flow state * in an exact-matching flow table so that its subsequent packets can be * dispatched to the heavy-hitter bucket accordingly. * * * At a high level, this qdisc works as follows: * Given a packet p: * - If the flow-id of p (e.g., TCP 5-tuple) is already in the exact-matching * heavy-hitter flow table, denoted table T, then send p to the heavy-hitter * bucket. * - Otherwise, forward p to the multi-stage filter, denoted filter F * + If F decides that p belongs to a non-heavy-hitter flow, then send p * to the non-heavy-hitter bucket. * + Otherwise, if F decides that p belongs to a new heavy-hitter flow, * then set up a new flow entry for the flow-id of p in the table T and * send p to the heavy-hitter bucket. * * In this implementation: * - T is a fixed-size hash-table with 1024 entries. Hash collision is * resolved by linked-list chaining. * - F has four counter arrays, each array containing 1024 32-bit counters. * That means 4 * 1024 * 32 bits = 16KB of memory. * - Since each array in F contains 1024 counters, 10 bits are sufficient to * index into each array. * Hence, instead of having four hash functions, we chop the 32-bit * skb-hash into three 10-bit chunks, and the remaining 10-bit chunk is * computed as XOR sum of those three chunks. * - We need to clear the counter arrays periodically; however, directly * memsetting 16KB of memory can lead to cache eviction and unwanted delay. * So by representing each counter by a valid bit, we only need to reset * 4K of 1 bit (i.e. 512 bytes) instead of 16KB of memory. * - The Deficit Round Robin engine is taken from fq_codel implementation * (net/sched/sch_fq_codel.c). Note that wdrr_bucket corresponds to * fq_codel_flow in fq_codel implementation. * */ /* Non-configurable parameters */ #define HH_FLOWS_CNT 1024 /* number of entries in exact-matching table T */ #define HHF_ARRAYS_CNT 4 /* number of arrays in multi-stage filter F */ #define HHF_ARRAYS_LEN 1024 /* number of counters in each array of F */ #define HHF_BIT_MASK_LEN 10 /* masking 10 bits */ #define HHF_BIT_MASK 0x3FF /* bitmask of 10 bits */ #define WDRR_BUCKET_CNT 2 /* two buckets for Weighted DRR */ enum wdrr_bucket_idx { WDRR_BUCKET_FOR_HH = 0, /* bucket id for heavy-hitters */ WDRR_BUCKET_FOR_NON_HH = 1 /* bucket id for non-heavy-hitters */ }; #define hhf_time_before(a, b) \ (typecheck(u32, a) && typecheck(u32, b) && ((s32)((a) - (b)) < 0)) /* Heavy-hitter per-flow state */ struct hh_flow_state { u32 hash_id; /* hash of flow-id (e.g. TCP 5-tuple) */ u32 hit_timestamp; /* last time heavy-hitter was seen */ struct list_head flowchain; /* chaining under hash collision */ }; /* Weighted Deficit Round Robin (WDRR) scheduler */ struct wdrr_bucket { struct sk_buff *head; struct sk_buff *tail; struct list_head bucketchain; int deficit; }; struct hhf_sched_data { struct wdrr_bucket buckets[WDRR_BUCKET_CNT]; siphash_key_t perturbation; /* hash perturbation */ u32 quantum; /* psched_mtu(qdisc_dev(sch)); */ u32 drop_overlimit; /* number of times max qdisc packet * limit was hit */ struct list_head *hh_flows; /* table T (currently active HHs) */ u32 hh_flows_limit; /* max active HH allocs */ u32 hh_flows_overlimit; /* num of disallowed HH allocs */ u32 hh_flows_total_cnt; /* total admitted HHs */ u32 hh_flows_current_cnt; /* total current HHs */ u32 *hhf_arrays[HHF_ARRAYS_CNT]; /* HH filter F */ u32 hhf_arrays_reset_timestamp; /* last time hhf_arrays * was reset */ unsigned long *hhf_valid_bits[HHF_ARRAYS_CNT]; /* shadow valid bits * of hhf_arrays */ /* Similar to the "new_flows" vs. "old_flows" concept in fq_codel DRR */ struct list_head new_buckets; /* list of new buckets */ struct list_head old_buckets; /* list of old buckets */ /* Configurable HHF parameters */ u32 hhf_reset_timeout; /* interval to reset counter * arrays in filter F * (default 40ms) */ u32 hhf_admit_bytes; /* counter thresh to classify as * HH (default 128KB). * With these default values, * 128KB / 40ms = 25 Mbps * i.e., we expect to capture HHs * sending > 25 Mbps. */ u32 hhf_evict_timeout; /* aging threshold to evict idle * HHs out of table T. This should * be large enough to avoid * reordering during HH eviction. * (default 1s) */ u32 hhf_non_hh_weight; /* WDRR weight for non-HHs * (default 2, * i.e., non-HH : HH = 2 : 1) */ }; static u32 hhf_time_stamp(void) { return jiffies; } /* Looks up a heavy-hitter flow in a chaining list of table T. */ static struct hh_flow_state *seek_list(const u32 hash, struct list_head *head, struct hhf_sched_data *q) { struct hh_flow_state *flow, *next; u32 now = hhf_time_stamp(); if (list_empty(head)) return NULL; list_for_each_entry_safe(flow, next, head, flowchain) { u32 prev = flow->hit_timestamp + q->hhf_evict_timeout; if (hhf_time_before(prev, now)) { /* Delete expired heavy-hitters, but preserve one entry * to avoid kzalloc() when next time this slot is hit. */ if (list_is_last(&flow->flowchain, head)) return NULL; list_del(&flow->flowchain); kfree(flow); q->hh_flows_current_cnt--; } else if (flow->hash_id == hash) { return flow; } } return NULL; } /* Returns a flow state entry for a new heavy-hitter. Either reuses an expired * entry or dynamically alloc a new entry. */ static struct hh_flow_state *alloc_new_hh(struct list_head *head, struct hhf_sched_data *q) { struct hh_flow_state *flow; u32 now = hhf_time_stamp(); if (!list_empty(head)) { /* Find an expired heavy-hitter flow entry. */ list_for_each_entry(flow, head, flowchain) { u32 prev = flow->hit_timestamp + q->hhf_evict_timeout; if (hhf_time_before(prev, now)) return flow; } } if (q->hh_flows_current_cnt >= q->hh_flows_limit) { q->hh_flows_overlimit++; return NULL; } /* Create new entry. */ flow = kzalloc(sizeof(struct hh_flow_state), GFP_ATOMIC); if (!flow) return NULL; q->hh_flows_current_cnt++; INIT_LIST_HEAD(&flow->flowchain); list_add_tail(&flow->flowchain, head); return flow; } /* Assigns packets to WDRR buckets. Implements a multi-stage filter to * classify heavy-hitters. */ static enum wdrr_bucket_idx hhf_classify(struct sk_buff *skb, struct Qdisc *sch) { struct hhf_sched_data *q = qdisc_priv(sch); u32 tmp_hash, hash; u32 xorsum, filter_pos[HHF_ARRAYS_CNT], flow_pos; struct hh_flow_state *flow; u32 pkt_len, min_hhf_val; int i; u32 prev; u32 now = hhf_time_stamp(); /* Reset the HHF counter arrays if this is the right time. */ prev = q->hhf_arrays_reset_timestamp + q->hhf_reset_timeout; if (hhf_time_before(prev, now)) { for (i = 0; i < HHF_ARRAYS_CNT; i++) bitmap_zero(q->hhf_valid_bits[i], HHF_ARRAYS_LEN); q->hhf_arrays_reset_timestamp = now; } /* Get hashed flow-id of the skb. */ hash = skb_get_hash_perturb(skb, &q->perturbation); /* Check if this packet belongs to an already established HH flow. */ flow_pos = hash & HHF_BIT_MASK; flow = seek_list(hash, &q->hh_flows[flow_pos], q); if (flow) { /* found its HH flow */ flow->hit_timestamp = now; return WDRR_BUCKET_FOR_HH; } /* Now pass the packet through the multi-stage filter. */ tmp_hash = hash; xorsum = 0; for (i = 0; i < HHF_ARRAYS_CNT - 1; i++) { /* Split the skb_hash into three 10-bit chunks. */ filter_pos[i] = tmp_hash & HHF_BIT_MASK; xorsum ^= filter_pos[i]; tmp_hash >>= HHF_BIT_MASK_LEN; } /* The last chunk is computed as XOR sum of other chunks. */ filter_pos[HHF_ARRAYS_CNT - 1] = xorsum ^ tmp_hash; pkt_len = qdisc_pkt_len(skb); min_hhf_val = ~0U; for (i = 0; i < HHF_ARRAYS_CNT; i++) { u32 val; if (!test_bit(filter_pos[i], q->hhf_valid_bits[i])) { q->hhf_arrays[i][filter_pos[i]] = 0; __set_bit(filter_pos[i], q->hhf_valid_bits[i]); } val = q->hhf_arrays[i][filter_pos[i]] + pkt_len; if (min_hhf_val > val) min_hhf_val = val; } /* Found a new HH iff all counter values > HH admit threshold. */ if (min_hhf_val > q->hhf_admit_bytes) { /* Just captured a new heavy-hitter. */ flow = alloc_new_hh(&q->hh_flows[flow_pos], q); if (!flow) /* memory alloc problem */ return WDRR_BUCKET_FOR_NON_HH; flow->hash_id = hash; flow->hit_timestamp = now; q->hh_flows_total_cnt++; /* By returning without updating counters in q->hhf_arrays, * we implicitly implement "shielding" (see Optimization O1). */ return WDRR_BUCKET_FOR_HH; } /* Conservative update of HHF arrays (see Optimization O2). */ for (i = 0; i < HHF_ARRAYS_CNT; i++) { if (q->hhf_arrays[i][filter_pos[i]] < min_hhf_val) q->hhf_arrays[i][filter_pos[i]] = min_hhf_val; } return WDRR_BUCKET_FOR_NON_HH; } /* Removes one skb from head of bucket. */ static struct sk_buff *dequeue_head(struct wdrr_bucket *bucket) { struct sk_buff *skb = bucket->head; bucket->head = skb->next; skb_mark_not_on_list(skb); return skb; } /* Tail-adds skb to bucket. */ static void bucket_add(struct wdrr_bucket *bucket, struct sk_buff *skb) { if (bucket->head == NULL) bucket->head = skb; else bucket->tail->next = skb; bucket->tail = skb; skb->next = NULL; } static unsigned int hhf_drop(struct Qdisc *sch, struct sk_buff **to_free) { struct hhf_sched_data *q = qdisc_priv(sch); struct wdrr_bucket *bucket; /* Always try to drop from heavy-hitters first. */ bucket = &q->buckets[WDRR_BUCKET_FOR_HH]; if (!bucket->head) bucket = &q->buckets[WDRR_BUCKET_FOR_NON_HH]; if (bucket->head) { struct sk_buff *skb = dequeue_head(bucket); sch->q.qlen--; qdisc_qstats_backlog_dec(sch, skb); qdisc_drop(skb, sch, to_free); } /* Return id of the bucket from which the packet was dropped. */ return bucket - q->buckets; } static int hhf_enqueue(struct sk_buff *skb, struct Qdisc *sch, struct sk_buff **to_free) { struct hhf_sched_data *q = qdisc_priv(sch); enum wdrr_bucket_idx idx; struct wdrr_bucket *bucket; unsigned int prev_backlog; idx = hhf_classify(skb, sch); bucket = &q->buckets[idx]; bucket_add(bucket, skb); qdisc_qstats_backlog_inc(sch, skb); if (list_empty(&bucket->bucketchain)) { unsigned int weight; /* The logic of new_buckets vs. old_buckets is the same as * new_flows vs. old_flows in the implementation of fq_codel, * i.e., short bursts of non-HHs should have strict priority. */ if (idx == WDRR_BUCKET_FOR_HH) { /* Always move heavy-hitters to old bucket. */ weight = 1; list_add_tail(&bucket->bucketchain, &q->old_buckets); } else { weight = q->hhf_non_hh_weight; list_add_tail(&bucket->bucketchain, &q->new_buckets); } bucket->deficit = weight * q->quantum; } if (++sch->q.qlen <= sch->limit) return NET_XMIT_SUCCESS; prev_backlog = sch->qstats.backlog; q->drop_overlimit++; /* Return Congestion Notification only if we dropped a packet from this * bucket. */ if (hhf_drop(sch, to_free) == idx) return NET_XMIT_CN; /* As we dropped a packet, better let upper stack know this. */ qdisc_tree_reduce_backlog(sch, 1, prev_backlog - sch->qstats.backlog); return NET_XMIT_SUCCESS; } static struct sk_buff *hhf_dequeue(struct Qdisc *sch) { struct hhf_sched_data *q = qdisc_priv(sch); struct sk_buff *skb = NULL; struct wdrr_bucket *bucket; struct list_head *head; begin: head = &q->new_buckets; if (list_empty(head)) { head = &q->old_buckets; if (list_empty(head)) return NULL; } bucket = list_first_entry(head, struct wdrr_bucket, bucketchain); if (bucket->deficit <= 0) { int weight = (bucket - q->buckets == WDRR_BUCKET_FOR_HH) ? 1 : q->hhf_non_hh_weight; bucket->deficit += weight * q->quantum; list_move_tail(&bucket->bucketchain, &q->old_buckets); goto begin; } if (bucket->head) { skb = dequeue_head(bucket); sch->q.qlen--; qdisc_qstats_backlog_dec(sch, skb); } if (!skb) { /* Force a pass through old_buckets to prevent starvation. */ if ((head == &q->new_buckets) && !list_empty(&q->old_buckets)) list_move_tail(&bucket->bucketchain, &q->old_buckets); else list_del_init(&bucket->bucketchain); goto begin; } qdisc_bstats_update(sch, skb); bucket->deficit -= qdisc_pkt_len(skb); return skb; } static void hhf_reset(struct Qdisc *sch) { struct sk_buff *skb; while ((skb = hhf_dequeue(sch)) != NULL) rtnl_kfree_skbs(skb, skb); } static void hhf_destroy(struct Qdisc *sch) { int i; struct hhf_sched_data *q = qdisc_priv(sch); for (i = 0; i < HHF_ARRAYS_CNT; i++) { kvfree(q->hhf_arrays[i]); kvfree(q->hhf_valid_bits[i]); } if (!q->hh_flows) return; for (i = 0; i < HH_FLOWS_CNT; i++) { struct hh_flow_state *flow, *next; struct list_head *head = &q->hh_flows[i]; if (list_empty(head)) continue; list_for_each_entry_safe(flow, next, head, flowchain) { list_del(&flow->flowchain); kfree(flow); } } kvfree(q->hh_flows); } static const struct nla_policy hhf_policy[TCA_HHF_MAX + 1] = { [TCA_HHF_BACKLOG_LIMIT] = { .type = NLA_U32 }, [TCA_HHF_QUANTUM] = { .type = NLA_U32 }, [TCA_HHF_HH_FLOWS_LIMIT] = { .type = NLA_U32 }, [TCA_HHF_RESET_TIMEOUT] = { .type = NLA_U32 }, [TCA_HHF_ADMIT_BYTES] = { .type = NLA_U32 }, [TCA_HHF_EVICT_TIMEOUT] = { .type = NLA_U32 }, [TCA_HHF_NON_HH_WEIGHT] = { .type = NLA_U32 }, }; static int hhf_change(struct Qdisc *sch, struct nlattr *opt, struct netlink_ext_ack *extack) { struct hhf_sched_data *q = qdisc_priv(sch); struct nlattr *tb[TCA_HHF_MAX + 1]; unsigned int qlen, prev_backlog; int err; u64 non_hh_quantum; u32 new_quantum = q->quantum; u32 new_hhf_non_hh_weight = q->hhf_non_hh_weight; err = nla_parse_nested_deprecated(tb, TCA_HHF_MAX, opt, hhf_policy, NULL); if (err < 0) return err; if (tb[TCA_HHF_QUANTUM]) new_quantum = nla_get_u32(tb[TCA_HHF_QUANTUM]); if (tb[TCA_HHF_NON_HH_WEIGHT]) new_hhf_non_hh_weight = nla_get_u32(tb[TCA_HHF_NON_HH_WEIGHT]); non_hh_quantum = (u64)new_quantum * new_hhf_non_hh_weight; if (non_hh_quantum == 0 || non_hh_quantum > INT_MAX) return -EINVAL; sch_tree_lock(sch); if (tb[TCA_HHF_BACKLOG_LIMIT]) sch->limit = nla_get_u32(tb[TCA_HHF_BACKLOG_LIMIT]); q->quantum = new_quantum; q->hhf_non_hh_weight = new_hhf_non_hh_weight; if (tb[TCA_HHF_HH_FLOWS_LIMIT]) q->hh_flows_limit = nla_get_u32(tb[TCA_HHF_HH_FLOWS_LIMIT]); if (tb[TCA_HHF_RESET_TIMEOUT]) { u32 us = nla_get_u32(tb[TCA_HHF_RESET_TIMEOUT]); q->hhf_reset_timeout = usecs_to_jiffies(us); } if (tb[TCA_HHF_ADMIT_BYTES]) q->hhf_admit_bytes = nla_get_u32(tb[TCA_HHF_ADMIT_BYTES]); if (tb[TCA_HHF_EVICT_TIMEOUT]) { u32 us = nla_get_u32(tb[TCA_HHF_EVICT_TIMEOUT]); q->hhf_evict_timeout = usecs_to_jiffies(us); } qlen = sch->q.qlen; prev_backlog = sch->qstats.backlog; while (sch->q.qlen > sch->limit) { struct sk_buff *skb = hhf_dequeue(sch); rtnl_kfree_skbs(skb, skb); } qdisc_tree_reduce_backlog(sch, qlen - sch->q.qlen, prev_backlog - sch->qstats.backlog); sch_tree_unlock(sch); return 0; } static int hhf_init(struct Qdisc *sch, struct nlattr *opt, struct netlink_ext_ack *extack) { struct hhf_sched_data *q = qdisc_priv(sch); int i; sch->limit = 1000; q->quantum = psched_mtu(qdisc_dev(sch)); get_random_bytes(&q->perturbation, sizeof(q->perturbation)); INIT_LIST_HEAD(&q->new_buckets); INIT_LIST_HEAD(&q->old_buckets); /* Configurable HHF parameters */ q->hhf_reset_timeout = HZ / 25; /* 40 ms */ q->hhf_admit_bytes = 131072; /* 128 KB */ q->hhf_evict_timeout = HZ; /* 1 sec */ q->hhf_non_hh_weight = 2; if (opt) { int err = hhf_change(sch, opt, extack); if (err) return err; } if (!q->hh_flows) { /* Initialize heavy-hitter flow table. */ q->hh_flows = kvcalloc(HH_FLOWS_CNT, sizeof(struct list_head), GFP_KERNEL); if (!q->hh_flows) return -ENOMEM; for (i = 0; i < HH_FLOWS_CNT; i++) INIT_LIST_HEAD(&q->hh_flows[i]); /* Cap max active HHs at twice len of hh_flows table. */ q->hh_flows_limit = 2 * HH_FLOWS_CNT; q->hh_flows_overlimit = 0; q->hh_flows_total_cnt = 0; q->hh_flows_current_cnt = 0; /* Initialize heavy-hitter filter arrays. */ for (i = 0; i < HHF_ARRAYS_CNT; i++) { q->hhf_arrays[i] = kvcalloc(HHF_ARRAYS_LEN, sizeof(u32), GFP_KERNEL); if (!q->hhf_arrays[i]) { /* Note: hhf_destroy() will be called * by our caller. */ return -ENOMEM; } } q->hhf_arrays_reset_timestamp = hhf_time_stamp(); /* Initialize valid bits of heavy-hitter filter arrays. */ for (i = 0; i < HHF_ARRAYS_CNT; i++) { q->hhf_valid_bits[i] = kvzalloc(HHF_ARRAYS_LEN / BITS_PER_BYTE, GFP_KERNEL); if (!q->hhf_valid_bits[i]) { /* Note: hhf_destroy() will be called * by our caller. */ return -ENOMEM; } } /* Initialize Weighted DRR buckets. */ for (i = 0; i < WDRR_BUCKET_CNT; i++) { struct wdrr_bucket *bucket = q->buckets + i; INIT_LIST_HEAD(&bucket->bucketchain); } } return 0; } static int hhf_dump(struct Qdisc *sch, struct sk_buff *skb) { struct hhf_sched_data *q = qdisc_priv(sch); struct nlattr *opts; opts = nla_nest_start_noflag(skb, TCA_OPTIONS); if (opts == NULL) goto nla_put_failure; if (nla_put_u32(skb, TCA_HHF_BACKLOG_LIMIT, sch->limit) || nla_put_u32(skb, TCA_HHF_QUANTUM, q->quantum) || nla_put_u32(skb, TCA_HHF_HH_FLOWS_LIMIT, q->hh_flows_limit) || nla_put_u32(skb, TCA_HHF_RESET_TIMEOUT, jiffies_to_usecs(q->hhf_reset_timeout)) || nla_put_u32(skb, TCA_HHF_ADMIT_BYTES, q->hhf_admit_bytes) || nla_put_u32(skb, TCA_HHF_EVICT_TIMEOUT, jiffies_to_usecs(q->hhf_evict_timeout)) || nla_put_u32(skb, TCA_HHF_NON_HH_WEIGHT, q->hhf_non_hh_weight)) goto nla_put_failure; return nla_nest_end(skb, opts); nla_put_failure: return -1; } static int hhf_dump_stats(struct Qdisc *sch, struct gnet_dump *d) { struct hhf_sched_data *q = qdisc_priv(sch); struct tc_hhf_xstats st = { .drop_overlimit = q->drop_overlimit, .hh_overlimit = q->hh_flows_overlimit, .hh_tot_count = q->hh_flows_total_cnt, .hh_cur_count = q->hh_flows_current_cnt, }; return gnet_stats_copy_app(d, &st, sizeof(st)); } static struct Qdisc_ops hhf_qdisc_ops __read_mostly = { .id = "hhf", .priv_size = sizeof(struct hhf_sched_data), .enqueue = hhf_enqueue, .dequeue = hhf_dequeue, .peek = qdisc_peek_dequeued, .init = hhf_init, .reset = hhf_reset, .destroy = hhf_destroy, .change = hhf_change, .dump = hhf_dump, .dump_stats = hhf_dump_stats, .owner = THIS_MODULE, }; static int __init hhf_module_init(void) { return register_qdisc(&hhf_qdisc_ops); } static void __exit hhf_module_exit(void) { unregister_qdisc(&hhf_qdisc_ops); } module_init(hhf_module_init) module_exit(hhf_module_exit) MODULE_AUTHOR("Terry Lam"); MODULE_AUTHOR("Nandita Dukkipati"); MODULE_LICENSE("GPL"); MODULE_DESCRIPTION("Heavy-Hitter Filter (HHF)");
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1