Contributors: 24
Author Tokens Token Proportion Commits Commit Proportion
Jaroslav Kysela 4859 63.68% 19 19.39%
Benjamin Herrenschmidt 1403 18.39% 9 9.18%
Takashi Iwai 648 8.49% 13 13.27%
Linus Torvalds (pre-git) 292 3.83% 29 29.59%
Rusty Russell 121 1.59% 1 1.02%
Stephen Rothwell 86 1.13% 3 3.06%
Risto Suominen 81 1.06% 4 4.08%
Colin Leroy 41 0.54% 1 1.02%
Gabriel Paubert 16 0.21% 1 1.02%
David Howells 14 0.18% 1 1.02%
Rob Herring 12 0.16% 4 4.08%
Andrew Morton 9 0.12% 1 1.02%
Nishanth Aravamudan 8 0.10% 1 1.02%
Andreas Schwab 7 0.09% 1 1.02%
Yang Yingliang 6 0.08% 1 1.02%
Jeremy Kerr 5 0.07% 1 1.02%
Guido Günther 5 0.07% 1 1.02%
Bhumika Goyal 4 0.05% 1 1.02%
Michael Ellerman 4 0.05% 1 1.02%
Chris Wedgwood 3 0.04% 1 1.02%
Thomas Gleixner 2 0.03% 1 1.02%
Kamalesh Babulal 2 0.03% 1 1.02%
Linus Torvalds 1 0.01% 1 1.02%
Panagiotis Issaris 1 0.01% 1 1.02%
Total 7630 98


// SPDX-License-Identifier: GPL-2.0-or-later
/*
 * PMac Tumbler/Snapper lowlevel functions
 *
 * Copyright (c) by Takashi Iwai <tiwai@suse.de>
 *
 *   Rene Rebe <rene.rebe@gmx.net>:
 *     * update from shadow registers on wakeup and headphone plug
 *     * automatically toggle DRC on headphone plug
 */


#include <linux/init.h>
#include <linux/delay.h>
#include <linux/i2c.h>
#include <linux/kmod.h>
#include <linux/slab.h>
#include <linux/interrupt.h>
#include <linux/string.h>
#include <linux/of_irq.h>
#include <linux/io.h>
#include <sound/core.h>
#include <asm/irq.h>
#include <asm/machdep.h>
#include <asm/pmac_feature.h>
#include "pmac.h"
#include "tumbler_volume.h"

#undef DEBUG

#ifdef DEBUG
#define DBG(fmt...) printk(KERN_DEBUG fmt)
#else
#define DBG(fmt...)
#endif

#define IS_G4DA (of_machine_is_compatible("PowerMac3,4"))

/* i2c address for tumbler */
#define TAS_I2C_ADDR	0x34

/* registers */
#define TAS_REG_MCS	0x01	/* main control */
#define TAS_REG_DRC	0x02
#define TAS_REG_VOL	0x04
#define TAS_REG_TREBLE	0x05
#define TAS_REG_BASS	0x06
#define TAS_REG_INPUT1	0x07
#define TAS_REG_INPUT2	0x08

/* tas3001c */
#define TAS_REG_PCM	TAS_REG_INPUT1
 
/* tas3004 */
#define TAS_REG_LMIX	TAS_REG_INPUT1
#define TAS_REG_RMIX	TAS_REG_INPUT2
#define TAS_REG_MCS2	0x43		/* main control 2 */
#define TAS_REG_ACS	0x40		/* analog control */

/* mono volumes for tas3001c/tas3004 */
enum {
	VOL_IDX_PCM_MONO, /* tas3001c only */
	VOL_IDX_BASS, VOL_IDX_TREBLE,
	VOL_IDX_LAST_MONO
};

/* stereo volumes for tas3004 */
enum {
	VOL_IDX_PCM, VOL_IDX_PCM2, VOL_IDX_ADC,
	VOL_IDX_LAST_MIX
};

struct pmac_gpio {
	unsigned int addr;
	u8 active_val;
	u8 inactive_val;
	u8 active_state;
};

struct pmac_tumbler {
	struct pmac_keywest i2c;
	struct pmac_gpio audio_reset;
	struct pmac_gpio amp_mute;
	struct pmac_gpio line_mute;
	struct pmac_gpio line_detect;
	struct pmac_gpio hp_mute;
	struct pmac_gpio hp_detect;
	int headphone_irq;
	int lineout_irq;
	unsigned int save_master_vol[2];
	unsigned int master_vol[2];
	unsigned int save_master_switch[2];
	unsigned int master_switch[2];
	unsigned int mono_vol[VOL_IDX_LAST_MONO];
	unsigned int mix_vol[VOL_IDX_LAST_MIX][2]; /* stereo volumes for tas3004 */
	int drc_range;
	int drc_enable;
	int capture_source;
	int anded_reset;
	int auto_mute_notify;
	int reset_on_sleep;
	u8  acs;
};


/*
 */

static int send_init_client(struct pmac_keywest *i2c, const unsigned int *regs)
{
	while (*regs > 0) {
		int err, count = 10;
		do {
			err = i2c_smbus_write_byte_data(i2c->client,
							regs[0], regs[1]);
			if (err >= 0)
				break;
			DBG("(W) i2c error %d\n", err);
			mdelay(10);
		} while (count--);
		if (err < 0)
			return -ENXIO;
		regs += 2;
	}
	return 0;
}


static int tumbler_init_client(struct pmac_keywest *i2c)
{
	static const unsigned int regs[] = {
		/* normal operation, SCLK=64fps, i2s output, i2s input, 16bit width */
		TAS_REG_MCS, (1<<6)|(2<<4)|(2<<2)|0,
		0, /* terminator */
	};
	DBG("(I) tumbler init client\n");
	return send_init_client(i2c, regs);
}

static int snapper_init_client(struct pmac_keywest *i2c)
{
	static const unsigned int regs[] = {
		/* normal operation, SCLK=64fps, i2s output, 16bit width */
		TAS_REG_MCS, (1<<6)|(2<<4)|0,
		/* normal operation, all-pass mode */
		TAS_REG_MCS2, (1<<1),
		/* normal output, no deemphasis, A input, power-up, line-in */
		TAS_REG_ACS, 0,
		0, /* terminator */
	};
	DBG("(I) snapper init client\n");
	return send_init_client(i2c, regs);
}
	
/*
 * gpio access
 */
#define do_gpio_write(gp, val) \
	pmac_call_feature(PMAC_FTR_WRITE_GPIO, NULL, (gp)->addr, val)
#define do_gpio_read(gp) \
	pmac_call_feature(PMAC_FTR_READ_GPIO, NULL, (gp)->addr, 0)
#define tumbler_gpio_free(gp) /* NOP */

static void write_audio_gpio(struct pmac_gpio *gp, int active)
{
	if (! gp->addr)
		return;
	active = active ? gp->active_val : gp->inactive_val;
	do_gpio_write(gp, active);
	DBG("(I) gpio %x write %d\n", gp->addr, active);
}

static int check_audio_gpio(struct pmac_gpio *gp)
{
	int ret;

	if (! gp->addr)
		return 0;

	ret = do_gpio_read(gp);

	return (ret & 0x1) == (gp->active_val & 0x1);
}

static int read_audio_gpio(struct pmac_gpio *gp)
{
	int ret;
	if (! gp->addr)
		return 0;
	ret = do_gpio_read(gp);
	ret = (ret & 0x02) !=0;
	return ret == gp->active_state;
}

/*
 * update master volume
 */
static int tumbler_set_master_volume(struct pmac_tumbler *mix)
{
	unsigned char block[6];
	unsigned int left_vol, right_vol;
  
	if (! mix->i2c.client)
		return -ENODEV;
  
	if (! mix->master_switch[0])
		left_vol = 0;
	else {
		left_vol = mix->master_vol[0];
		if (left_vol >= ARRAY_SIZE(master_volume_table))
			left_vol = ARRAY_SIZE(master_volume_table) - 1;
		left_vol = master_volume_table[left_vol];
	}
	if (! mix->master_switch[1])
		right_vol = 0;
	else {
		right_vol = mix->master_vol[1];
		if (right_vol >= ARRAY_SIZE(master_volume_table))
			right_vol = ARRAY_SIZE(master_volume_table) - 1;
		right_vol = master_volume_table[right_vol];
	}

	block[0] = (left_vol >> 16) & 0xff;
	block[1] = (left_vol >> 8)  & 0xff;
	block[2] = (left_vol >> 0)  & 0xff;

	block[3] = (right_vol >> 16) & 0xff;
	block[4] = (right_vol >> 8)  & 0xff;
	block[5] = (right_vol >> 0)  & 0xff;
  
	if (i2c_smbus_write_i2c_block_data(mix->i2c.client, TAS_REG_VOL, 6,
					   block) < 0) {
		snd_printk(KERN_ERR "failed to set volume \n");
		return -EINVAL;
	}
	DBG("(I) succeeded to set volume (%u, %u)\n", left_vol, right_vol);
	return 0;
}


/* output volume */
static int tumbler_info_master_volume(struct snd_kcontrol *kcontrol,
				      struct snd_ctl_elem_info *uinfo)
{
	uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
	uinfo->count = 2;
	uinfo->value.integer.min = 0;
	uinfo->value.integer.max = ARRAY_SIZE(master_volume_table) - 1;
	return 0;
}

static int tumbler_get_master_volume(struct snd_kcontrol *kcontrol,
				     struct snd_ctl_elem_value *ucontrol)
{
	struct snd_pmac *chip = snd_kcontrol_chip(kcontrol);
	struct pmac_tumbler *mix = chip->mixer_data;

	ucontrol->value.integer.value[0] = mix->master_vol[0];
	ucontrol->value.integer.value[1] = mix->master_vol[1];
	return 0;
}

static int tumbler_put_master_volume(struct snd_kcontrol *kcontrol,
				     struct snd_ctl_elem_value *ucontrol)
{
	struct snd_pmac *chip = snd_kcontrol_chip(kcontrol);
	struct pmac_tumbler *mix = chip->mixer_data;
	unsigned int vol[2];
	int change;

	vol[0] = ucontrol->value.integer.value[0];
	vol[1] = ucontrol->value.integer.value[1];
	if (vol[0] >= ARRAY_SIZE(master_volume_table) ||
	    vol[1] >= ARRAY_SIZE(master_volume_table))
		return -EINVAL;
	change = mix->master_vol[0] != vol[0] ||
		mix->master_vol[1] != vol[1];
	if (change) {
		mix->master_vol[0] = vol[0];
		mix->master_vol[1] = vol[1];
		tumbler_set_master_volume(mix);
	}
	return change;
}

/* output switch */
static int tumbler_get_master_switch(struct snd_kcontrol *kcontrol,
				     struct snd_ctl_elem_value *ucontrol)
{
	struct snd_pmac *chip = snd_kcontrol_chip(kcontrol);
	struct pmac_tumbler *mix = chip->mixer_data;

	ucontrol->value.integer.value[0] = mix->master_switch[0];
	ucontrol->value.integer.value[1] = mix->master_switch[1];
	return 0;
}

static int tumbler_put_master_switch(struct snd_kcontrol *kcontrol,
				     struct snd_ctl_elem_value *ucontrol)
{
	struct snd_pmac *chip = snd_kcontrol_chip(kcontrol);
	struct pmac_tumbler *mix = chip->mixer_data;
	int change;

	change = mix->master_switch[0] != ucontrol->value.integer.value[0] ||
		mix->master_switch[1] != ucontrol->value.integer.value[1];
	if (change) {
		mix->master_switch[0] = !!ucontrol->value.integer.value[0];
		mix->master_switch[1] = !!ucontrol->value.integer.value[1];
		tumbler_set_master_volume(mix);
	}
	return change;
}


/*
 * TAS3001c dynamic range compression
 */

#define TAS3001_DRC_MAX		0x5f

static int tumbler_set_drc(struct pmac_tumbler *mix)
{
	unsigned char val[2];

	if (! mix->i2c.client)
		return -ENODEV;
  
	if (mix->drc_enable) {
		val[0] = 0xc1; /* enable, 3:1 compression */
		if (mix->drc_range > TAS3001_DRC_MAX)
			val[1] = 0xf0;
		else if (mix->drc_range < 0)
			val[1] = 0x91;
		else
			val[1] = mix->drc_range + 0x91;
	} else {
		val[0] = 0;
		val[1] = 0;
	}

	if (i2c_smbus_write_i2c_block_data(mix->i2c.client, TAS_REG_DRC,
					   2, val) < 0) {
		snd_printk(KERN_ERR "failed to set DRC\n");
		return -EINVAL;
	}
	DBG("(I) succeeded to set DRC (%u, %u)\n", val[0], val[1]);
	return 0;
}

/*
 * TAS3004
 */

#define TAS3004_DRC_MAX		0xef

static int snapper_set_drc(struct pmac_tumbler *mix)
{
	unsigned char val[6];

	if (! mix->i2c.client)
		return -ENODEV;
  
	if (mix->drc_enable)
		val[0] = 0x50; /* 3:1 above threshold */
	else
		val[0] = 0x51; /* disabled */
	val[1] = 0x02; /* 1:1 below threshold */
	if (mix->drc_range > 0xef)
		val[2] = 0xef;
	else if (mix->drc_range < 0)
		val[2] = 0x00;
	else
		val[2] = mix->drc_range;
	val[3] = 0xb0;
	val[4] = 0x60;
	val[5] = 0xa0;

	if (i2c_smbus_write_i2c_block_data(mix->i2c.client, TAS_REG_DRC,
					   6, val) < 0) {
		snd_printk(KERN_ERR "failed to set DRC\n");
		return -EINVAL;
	}
	DBG("(I) succeeded to set DRC (%u, %u)\n", val[0], val[1]);
	return 0;
}

static int tumbler_info_drc_value(struct snd_kcontrol *kcontrol,
				  struct snd_ctl_elem_info *uinfo)
{
	struct snd_pmac *chip = snd_kcontrol_chip(kcontrol);
	uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
	uinfo->count = 1;
	uinfo->value.integer.min = 0;
	uinfo->value.integer.max =
		chip->model == PMAC_TUMBLER ? TAS3001_DRC_MAX : TAS3004_DRC_MAX;
	return 0;
}

static int tumbler_get_drc_value(struct snd_kcontrol *kcontrol,
				 struct snd_ctl_elem_value *ucontrol)
{
	struct snd_pmac *chip = snd_kcontrol_chip(kcontrol);
	struct pmac_tumbler *mix;
	mix = chip->mixer_data;
	if (!mix)
		return -ENODEV;
	ucontrol->value.integer.value[0] = mix->drc_range;
	return 0;
}

static int tumbler_put_drc_value(struct snd_kcontrol *kcontrol,
				 struct snd_ctl_elem_value *ucontrol)
{
	struct snd_pmac *chip = snd_kcontrol_chip(kcontrol);
	struct pmac_tumbler *mix;
	unsigned int val;
	int change;

	mix = chip->mixer_data;
	if (!mix)
		return -ENODEV;
	val = ucontrol->value.integer.value[0];
	if (chip->model == PMAC_TUMBLER) {
		if (val > TAS3001_DRC_MAX)
			return -EINVAL;
	} else {
		if (val > TAS3004_DRC_MAX)
			return -EINVAL;
	}
	change = mix->drc_range != val;
	if (change) {
		mix->drc_range = val;
		if (chip->model == PMAC_TUMBLER)
			tumbler_set_drc(mix);
		else
			snapper_set_drc(mix);
	}
	return change;
}

static int tumbler_get_drc_switch(struct snd_kcontrol *kcontrol,
				  struct snd_ctl_elem_value *ucontrol)
{
	struct snd_pmac *chip = snd_kcontrol_chip(kcontrol);
	struct pmac_tumbler *mix;
	mix = chip->mixer_data;
	if (!mix)
		return -ENODEV;
	ucontrol->value.integer.value[0] = mix->drc_enable;
	return 0;
}

static int tumbler_put_drc_switch(struct snd_kcontrol *kcontrol,
				  struct snd_ctl_elem_value *ucontrol)
{
	struct snd_pmac *chip = snd_kcontrol_chip(kcontrol);
	struct pmac_tumbler *mix;
	int change;

	mix = chip->mixer_data;
	if (!mix)
		return -ENODEV;
	change = mix->drc_enable != ucontrol->value.integer.value[0];
	if (change) {
		mix->drc_enable = !!ucontrol->value.integer.value[0];
		if (chip->model == PMAC_TUMBLER)
			tumbler_set_drc(mix);
		else
			snapper_set_drc(mix);
	}
	return change;
}


/*
 * mono volumes
 */

struct tumbler_mono_vol {
	int index;
	int reg;
	int bytes;
	unsigned int max;
	const unsigned int *table;
};

static int tumbler_set_mono_volume(struct pmac_tumbler *mix,
				   const struct tumbler_mono_vol *info)
{
	unsigned char block[4];
	unsigned int vol;
	int i;
  
	if (! mix->i2c.client)
		return -ENODEV;
  
	vol = mix->mono_vol[info->index];
	if (vol >= info->max)
		vol = info->max - 1;
	vol = info->table[vol];
	for (i = 0; i < info->bytes; i++)
		block[i] = (vol >> ((info->bytes - i - 1) * 8)) & 0xff;
	if (i2c_smbus_write_i2c_block_data(mix->i2c.client, info->reg,
					   info->bytes, block) < 0) {
		snd_printk(KERN_ERR "failed to set mono volume %d\n",
			   info->index);
		return -EINVAL;
	}
	return 0;
}

static int tumbler_info_mono(struct snd_kcontrol *kcontrol,
			     struct snd_ctl_elem_info *uinfo)
{
	struct tumbler_mono_vol *info = (struct tumbler_mono_vol *)kcontrol->private_value;

	uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
	uinfo->count = 1;
	uinfo->value.integer.min = 0;
	uinfo->value.integer.max = info->max - 1;
	return 0;
}

static int tumbler_get_mono(struct snd_kcontrol *kcontrol,
			    struct snd_ctl_elem_value *ucontrol)
{
	struct tumbler_mono_vol *info = (struct tumbler_mono_vol *)kcontrol->private_value;
	struct snd_pmac *chip = snd_kcontrol_chip(kcontrol);
	struct pmac_tumbler *mix;
	mix = chip->mixer_data;
	if (!mix)
		return -ENODEV;
	ucontrol->value.integer.value[0] = mix->mono_vol[info->index];
	return 0;
}

static int tumbler_put_mono(struct snd_kcontrol *kcontrol,
			    struct snd_ctl_elem_value *ucontrol)
{
	struct tumbler_mono_vol *info = (struct tumbler_mono_vol *)kcontrol->private_value;
	struct snd_pmac *chip = snd_kcontrol_chip(kcontrol);
	struct pmac_tumbler *mix;
	unsigned int vol;
	int change;

	mix = chip->mixer_data;
	if (!mix)
		return -ENODEV;
	vol = ucontrol->value.integer.value[0];
	if (vol >= info->max)
		return -EINVAL;
	change = mix->mono_vol[info->index] != vol;
	if (change) {
		mix->mono_vol[info->index] = vol;
		tumbler_set_mono_volume(mix, info);
	}
	return change;
}

/* TAS3001c mono volumes */
static const struct tumbler_mono_vol tumbler_pcm_vol_info = {
	.index = VOL_IDX_PCM_MONO,
	.reg = TAS_REG_PCM,
	.bytes = 3,
	.max = ARRAY_SIZE(mixer_volume_table),
	.table = mixer_volume_table,
};

static const struct tumbler_mono_vol tumbler_bass_vol_info = {
	.index = VOL_IDX_BASS,
	.reg = TAS_REG_BASS,
	.bytes = 1,
	.max = ARRAY_SIZE(bass_volume_table),
	.table = bass_volume_table,
};

static const struct tumbler_mono_vol tumbler_treble_vol_info = {
	.index = VOL_IDX_TREBLE,
	.reg = TAS_REG_TREBLE,
	.bytes = 1,
	.max = ARRAY_SIZE(treble_volume_table),
	.table = treble_volume_table,
};

/* TAS3004 mono volumes */
static const struct tumbler_mono_vol snapper_bass_vol_info = {
	.index = VOL_IDX_BASS,
	.reg = TAS_REG_BASS,
	.bytes = 1,
	.max = ARRAY_SIZE(snapper_bass_volume_table),
	.table = snapper_bass_volume_table,
};

static const struct tumbler_mono_vol snapper_treble_vol_info = {
	.index = VOL_IDX_TREBLE,
	.reg = TAS_REG_TREBLE,
	.bytes = 1,
	.max = ARRAY_SIZE(snapper_treble_volume_table),
	.table = snapper_treble_volume_table,
};


#define DEFINE_MONO(xname,type) { \
	.iface = SNDRV_CTL_ELEM_IFACE_MIXER,\
	.name = xname, \
	.info = tumbler_info_mono, \
	.get = tumbler_get_mono, \
	.put = tumbler_put_mono, \
	.private_value = (unsigned long)(&tumbler_##type##_vol_info), \
}

#define DEFINE_SNAPPER_MONO(xname,type) { \
	.iface = SNDRV_CTL_ELEM_IFACE_MIXER,\
	.name = xname, \
	.info = tumbler_info_mono, \
	.get = tumbler_get_mono, \
	.put = tumbler_put_mono, \
	.private_value = (unsigned long)(&snapper_##type##_vol_info), \
}


/*
 * snapper mixer volumes
 */

static int snapper_set_mix_vol1(struct pmac_tumbler *mix, int idx, int ch, int reg)
{
	int i, j, vol;
	unsigned char block[9];

	vol = mix->mix_vol[idx][ch];
	if (vol >= ARRAY_SIZE(mixer_volume_table)) {
		vol = ARRAY_SIZE(mixer_volume_table) - 1;
		mix->mix_vol[idx][ch] = vol;
	}

	for (i = 0; i < 3; i++) {
		vol = mix->mix_vol[i][ch];
		vol = mixer_volume_table[vol];
		for (j = 0; j < 3; j++)
			block[i * 3 + j] = (vol >> ((2 - j) * 8)) & 0xff;
	}
	if (i2c_smbus_write_i2c_block_data(mix->i2c.client, reg,
					   9, block) < 0) {
		snd_printk(KERN_ERR "failed to set mono volume %d\n", reg);
		return -EINVAL;
	}
	return 0;
}

static int snapper_set_mix_vol(struct pmac_tumbler *mix, int idx)
{
	if (! mix->i2c.client)
		return -ENODEV;
	if (snapper_set_mix_vol1(mix, idx, 0, TAS_REG_LMIX) < 0 ||
	    snapper_set_mix_vol1(mix, idx, 1, TAS_REG_RMIX) < 0)
		return -EINVAL;
	return 0;
}

static int snapper_info_mix(struct snd_kcontrol *kcontrol,
			    struct snd_ctl_elem_info *uinfo)
{
	uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
	uinfo->count = 2;
	uinfo->value.integer.min = 0;
	uinfo->value.integer.max = ARRAY_SIZE(mixer_volume_table) - 1;
	return 0;
}

static int snapper_get_mix(struct snd_kcontrol *kcontrol,
			   struct snd_ctl_elem_value *ucontrol)
{
	int idx = (int)kcontrol->private_value;
	struct snd_pmac *chip = snd_kcontrol_chip(kcontrol);
	struct pmac_tumbler *mix;
	mix = chip->mixer_data;
	if (!mix)
		return -ENODEV;
	ucontrol->value.integer.value[0] = mix->mix_vol[idx][0];
	ucontrol->value.integer.value[1] = mix->mix_vol[idx][1];
	return 0;
}

static int snapper_put_mix(struct snd_kcontrol *kcontrol,
			   struct snd_ctl_elem_value *ucontrol)
{
	int idx = (int)kcontrol->private_value;
	struct snd_pmac *chip = snd_kcontrol_chip(kcontrol);
	struct pmac_tumbler *mix;
	unsigned int vol[2];
	int change;

	mix = chip->mixer_data;
	if (!mix)
		return -ENODEV;
	vol[0] = ucontrol->value.integer.value[0];
	vol[1] = ucontrol->value.integer.value[1];
	if (vol[0] >= ARRAY_SIZE(mixer_volume_table) ||
	    vol[1] >= ARRAY_SIZE(mixer_volume_table))
		return -EINVAL;
	change = mix->mix_vol[idx][0] != vol[0] ||
		mix->mix_vol[idx][1] != vol[1];
	if (change) {
		mix->mix_vol[idx][0] = vol[0];
		mix->mix_vol[idx][1] = vol[1];
		snapper_set_mix_vol(mix, idx);
	}
	return change;
}


/*
 * mute switches. FIXME: Turn that into software mute when both outputs are muted
 * to avoid codec reset on ibook M7
 */

enum { TUMBLER_MUTE_HP, TUMBLER_MUTE_AMP, TUMBLER_MUTE_LINE };

static int tumbler_get_mute_switch(struct snd_kcontrol *kcontrol,
				   struct snd_ctl_elem_value *ucontrol)
{
	struct snd_pmac *chip = snd_kcontrol_chip(kcontrol);
	struct pmac_tumbler *mix;
	struct pmac_gpio *gp;
	mix = chip->mixer_data;
	if (!mix)
		return -ENODEV;
	switch(kcontrol->private_value) {
	case TUMBLER_MUTE_HP:
		gp = &mix->hp_mute;	break;
	case TUMBLER_MUTE_AMP:
		gp = &mix->amp_mute;	break;
	case TUMBLER_MUTE_LINE:
		gp = &mix->line_mute;	break;
	default:
		gp = NULL;
	}
	if (gp == NULL)
		return -EINVAL;
	ucontrol->value.integer.value[0] = !check_audio_gpio(gp);
	return 0;
}

static int tumbler_put_mute_switch(struct snd_kcontrol *kcontrol,
				   struct snd_ctl_elem_value *ucontrol)
{
	struct snd_pmac *chip = snd_kcontrol_chip(kcontrol);
	struct pmac_tumbler *mix;
	struct pmac_gpio *gp;
	int val;
#ifdef PMAC_SUPPORT_AUTOMUTE
	if (chip->update_automute && chip->auto_mute)
		return 0; /* don't touch in the auto-mute mode */
#endif	
	mix = chip->mixer_data;
	if (!mix)
		return -ENODEV;
	switch(kcontrol->private_value) {
	case TUMBLER_MUTE_HP:
		gp = &mix->hp_mute;	break;
	case TUMBLER_MUTE_AMP:
		gp = &mix->amp_mute;	break;
	case TUMBLER_MUTE_LINE:
		gp = &mix->line_mute;	break;
	default:
		gp = NULL;
	}
	if (gp == NULL)
		return -EINVAL;
	val = ! check_audio_gpio(gp);
	if (val != ucontrol->value.integer.value[0]) {
		write_audio_gpio(gp, ! ucontrol->value.integer.value[0]);
		return 1;
	}
	return 0;
}

static int snapper_set_capture_source(struct pmac_tumbler *mix)
{
	if (! mix->i2c.client)
		return -ENODEV;
	if (mix->capture_source)
		mix->acs |= 2;
	else
		mix->acs &= ~2;
	return i2c_smbus_write_byte_data(mix->i2c.client, TAS_REG_ACS, mix->acs);
}

static int snapper_info_capture_source(struct snd_kcontrol *kcontrol,
				       struct snd_ctl_elem_info *uinfo)
{
	static const char * const texts[2] = {
		"Line", "Mic"
	};

	return snd_ctl_enum_info(uinfo, 1, 2, texts);
}

static int snapper_get_capture_source(struct snd_kcontrol *kcontrol,
				      struct snd_ctl_elem_value *ucontrol)
{
	struct snd_pmac *chip = snd_kcontrol_chip(kcontrol);
	struct pmac_tumbler *mix = chip->mixer_data;

	ucontrol->value.enumerated.item[0] = mix->capture_source;
	return 0;
}

static int snapper_put_capture_source(struct snd_kcontrol *kcontrol,
				      struct snd_ctl_elem_value *ucontrol)
{
	struct snd_pmac *chip = snd_kcontrol_chip(kcontrol);
	struct pmac_tumbler *mix = chip->mixer_data;
	int change;

	change = ucontrol->value.enumerated.item[0] != mix->capture_source;
	if (change) {
		mix->capture_source = !!ucontrol->value.enumerated.item[0];
		snapper_set_capture_source(mix);
	}
	return change;
}

#define DEFINE_SNAPPER_MIX(xname,idx,ofs) { \
	.iface = SNDRV_CTL_ELEM_IFACE_MIXER,\
	.name = xname, \
	.info = snapper_info_mix, \
	.get = snapper_get_mix, \
	.put = snapper_put_mix, \
	.index = idx,\
	.private_value = ofs, \
}


/*
 */
static const struct snd_kcontrol_new tumbler_mixers[] = {
	{ .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
	  .name = "Master Playback Volume",
	  .info = tumbler_info_master_volume,
	  .get = tumbler_get_master_volume,
	  .put = tumbler_put_master_volume
	},
	{ .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
	  .name = "Master Playback Switch",
	  .info = snd_pmac_boolean_stereo_info,
	  .get = tumbler_get_master_switch,
	  .put = tumbler_put_master_switch
	},
	DEFINE_MONO("Tone Control - Bass", bass),
	DEFINE_MONO("Tone Control - Treble", treble),
	DEFINE_MONO("PCM Playback Volume", pcm),
	{ .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
	  .name = "DRC Range",
	  .info = tumbler_info_drc_value,
	  .get = tumbler_get_drc_value,
	  .put = tumbler_put_drc_value
	},
};

static const struct snd_kcontrol_new snapper_mixers[] = {
	{ .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
	  .name = "Master Playback Volume",
	  .info = tumbler_info_master_volume,
	  .get = tumbler_get_master_volume,
	  .put = tumbler_put_master_volume
	},
	{ .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
	  .name = "Master Playback Switch",
	  .info = snd_pmac_boolean_stereo_info,
	  .get = tumbler_get_master_switch,
	  .put = tumbler_put_master_switch
	},
	DEFINE_SNAPPER_MIX("PCM Playback Volume", 0, VOL_IDX_PCM),
	/* Alternative PCM is assigned to Mic analog loopback on iBook G4 */
	DEFINE_SNAPPER_MIX("Mic Playback Volume", 0, VOL_IDX_PCM2),
	DEFINE_SNAPPER_MIX("Monitor Mix Volume", 0, VOL_IDX_ADC),
	DEFINE_SNAPPER_MONO("Tone Control - Bass", bass),
	DEFINE_SNAPPER_MONO("Tone Control - Treble", treble),
	{ .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
	  .name = "DRC Range",
	  .info = tumbler_info_drc_value,
	  .get = tumbler_get_drc_value,
	  .put = tumbler_put_drc_value
	},
	{ .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
	  .name = "Input Source", /* FIXME: "Capture Source" doesn't work properly */
	  .info = snapper_info_capture_source,
	  .get = snapper_get_capture_source,
	  .put = snapper_put_capture_source
	},
};

static const struct snd_kcontrol_new tumbler_hp_sw = {
	.iface = SNDRV_CTL_ELEM_IFACE_MIXER,
	.name = "Headphone Playback Switch",
	.info = snd_pmac_boolean_mono_info,
	.get = tumbler_get_mute_switch,
	.put = tumbler_put_mute_switch,
	.private_value = TUMBLER_MUTE_HP,
};
static const struct snd_kcontrol_new tumbler_speaker_sw = {
	.iface = SNDRV_CTL_ELEM_IFACE_MIXER,
	.name = "Speaker Playback Switch",
	.info = snd_pmac_boolean_mono_info,
	.get = tumbler_get_mute_switch,
	.put = tumbler_put_mute_switch,
	.private_value = TUMBLER_MUTE_AMP,
};
static const struct snd_kcontrol_new tumbler_lineout_sw = {
	.iface = SNDRV_CTL_ELEM_IFACE_MIXER,
	.name = "Line Out Playback Switch",
	.info = snd_pmac_boolean_mono_info,
	.get = tumbler_get_mute_switch,
	.put = tumbler_put_mute_switch,
	.private_value = TUMBLER_MUTE_LINE,
};
static const struct snd_kcontrol_new tumbler_drc_sw = {
	.iface = SNDRV_CTL_ELEM_IFACE_MIXER,
	.name = "DRC Switch",
	.info = snd_pmac_boolean_mono_info,
	.get = tumbler_get_drc_switch,
	.put = tumbler_put_drc_switch
};


#ifdef PMAC_SUPPORT_AUTOMUTE
/*
 * auto-mute stuffs
 */
static int tumbler_detect_headphone(struct snd_pmac *chip)
{
	struct pmac_tumbler *mix = chip->mixer_data;
	int detect = 0;

	if (mix->hp_detect.addr)
		detect |= read_audio_gpio(&mix->hp_detect);
	return detect;
}

static int tumbler_detect_lineout(struct snd_pmac *chip)
{
	struct pmac_tumbler *mix = chip->mixer_data;
	int detect = 0;

	if (mix->line_detect.addr)
		detect |= read_audio_gpio(&mix->line_detect);
	return detect;
}

static void check_mute(struct snd_pmac *chip, struct pmac_gpio *gp, int val, int do_notify,
		       struct snd_kcontrol *sw)
{
	if (check_audio_gpio(gp) != val) {
		write_audio_gpio(gp, val);
		if (do_notify)
			snd_ctl_notify(chip->card, SNDRV_CTL_EVENT_MASK_VALUE,
				       &sw->id);
	}
}

static struct work_struct device_change;
static struct snd_pmac *device_change_chip;

static void device_change_handler(struct work_struct *work)
{
	struct snd_pmac *chip = device_change_chip;
	struct pmac_tumbler *mix;
	int headphone, lineout;

	if (!chip)
		return;

	mix = chip->mixer_data;
	if (snd_BUG_ON(!mix))
		return;

	headphone = tumbler_detect_headphone(chip);
	lineout = tumbler_detect_lineout(chip);

	DBG("headphone: %d, lineout: %d\n", headphone, lineout);

	if (headphone || lineout) {
		/* unmute headphone/lineout & mute speaker */
		if (headphone)
			check_mute(chip, &mix->hp_mute, 0, mix->auto_mute_notify,
				   chip->master_sw_ctl);
		if (lineout && mix->line_mute.addr != 0)
			check_mute(chip, &mix->line_mute, 0, mix->auto_mute_notify,
				   chip->lineout_sw_ctl);
		if (mix->anded_reset)
			msleep(10);
		check_mute(chip, &mix->amp_mute, !IS_G4DA, mix->auto_mute_notify,
			   chip->speaker_sw_ctl);
	} else {
		/* unmute speaker, mute others */
		check_mute(chip, &mix->amp_mute, 0, mix->auto_mute_notify,
			   chip->speaker_sw_ctl);
		if (mix->anded_reset)
			msleep(10);
		check_mute(chip, &mix->hp_mute, 1, mix->auto_mute_notify,
			   chip->master_sw_ctl);
		if (mix->line_mute.addr != 0)
			check_mute(chip, &mix->line_mute, 1, mix->auto_mute_notify,
				   chip->lineout_sw_ctl);
	}
	if (mix->auto_mute_notify)
		snd_ctl_notify(chip->card, SNDRV_CTL_EVENT_MASK_VALUE,
				       &chip->hp_detect_ctl->id);

#ifdef CONFIG_SND_POWERMAC_AUTO_DRC
	mix->drc_enable = ! (headphone || lineout);
	if (mix->auto_mute_notify)
		snd_ctl_notify(chip->card, SNDRV_CTL_EVENT_MASK_VALUE,
			       &chip->drc_sw_ctl->id);
	if (chip->model == PMAC_TUMBLER)
		tumbler_set_drc(mix);
	else
		snapper_set_drc(mix);
#endif

	/* reset the master volume so the correct amplification is applied */
	tumbler_set_master_volume(mix);
}

static void tumbler_update_automute(struct snd_pmac *chip, int do_notify)
{
	if (chip->auto_mute) {
		struct pmac_tumbler *mix;
		mix = chip->mixer_data;
		if (snd_BUG_ON(!mix))
			return;
		mix->auto_mute_notify = do_notify;
		schedule_work(&device_change);
	}
}
#endif /* PMAC_SUPPORT_AUTOMUTE */


/* interrupt - headphone plug changed */
static irqreturn_t headphone_intr(int irq, void *devid)
{
	struct snd_pmac *chip = devid;
	if (chip->update_automute && chip->initialized) {
		chip->update_automute(chip, 1);
		return IRQ_HANDLED;
	}
	return IRQ_NONE;
}

/* look for audio-gpio device */
static struct device_node *find_audio_device(const char *name)
{
	struct device_node *gpiop;
	struct device_node *np;
  
	gpiop = of_find_node_by_name(NULL, "gpio");
	if (! gpiop)
		return NULL;
  
	for_each_child_of_node(gpiop, np) {
		const char *property = of_get_property(np, "audio-gpio", NULL);
		if (property && strcmp(property, name) == 0)
			break;
	}  
	of_node_put(gpiop);
	return np;
}

/* look for audio-gpio device */
static struct device_node *find_compatible_audio_device(const char *name)
{
	struct device_node *gpiop;
	struct device_node *np;
  
	gpiop = of_find_node_by_name(NULL, "gpio");
	if (!gpiop)
		return NULL;
  
	for_each_child_of_node(gpiop, np) {
		if (of_device_is_compatible(np, name))
			break;
	}  
	of_node_put(gpiop);
	return np;
}

/* find an audio device and get its address */
static long tumbler_find_device(const char *device, const char *platform,
				struct pmac_gpio *gp, int is_compatible)
{
	struct device_node *node;
	const u32 *base;
	u32 addr;
	long ret;

	if (is_compatible)
		node = find_compatible_audio_device(device);
	else
		node = find_audio_device(device);
	if (! node) {
		DBG("(W) cannot find audio device %s !\n", device);
		snd_printdd("cannot find device %s\n", device);
		return -ENODEV;
	}

	base = of_get_property(node, "AAPL,address", NULL);
	if (! base) {
		base = of_get_property(node, "reg", NULL);
		if (!base) {
			DBG("(E) cannot find address for device %s !\n", device);
			snd_printd("cannot find address for device %s\n", device);
			of_node_put(node);
			return -ENODEV;
		}
		addr = *base;
		if (addr < 0x50)
			addr += 0x50;
	} else
		addr = *base;

	gp->addr = addr & 0x0000ffff;
	/* Try to find the active state, default to 0 ! */
	base = of_get_property(node, "audio-gpio-active-state", NULL);
	if (base) {
		gp->active_state = *base;
		gp->active_val = (*base) ? 0x5 : 0x4;
		gp->inactive_val = (*base) ? 0x4 : 0x5;
	} else {
		const u32 *prop = NULL;
		gp->active_state = IS_G4DA
				&& !strncmp(device, "keywest-gpio1", 13);
		gp->active_val = 0x4;
		gp->inactive_val = 0x5;
		/* Here are some crude hacks to extract the GPIO polarity and
		 * open collector informations out of the do-platform script
		 * as we don't yet have an interpreter for these things
		 */
		if (platform)
			prop = of_get_property(node, platform, NULL);
		if (prop) {
			if (prop[3] == 0x9 && prop[4] == 0x9) {
				gp->active_val = 0xd;
				gp->inactive_val = 0xc;
			}
			if (prop[3] == 0x1 && prop[4] == 0x1) {
				gp->active_val = 0x5;
				gp->inactive_val = 0x4;
			}
		}
	}

	DBG("(I) GPIO device %s found, offset: %x, active state: %d !\n",
	    device, gp->addr, gp->active_state);

	ret = irq_of_parse_and_map(node, 0);
	of_node_put(node);
	return ret;
}

/* reset audio */
static void tumbler_reset_audio(struct snd_pmac *chip)
{
	struct pmac_tumbler *mix = chip->mixer_data;

	if (mix->anded_reset) {
		DBG("(I) codec anded reset !\n");
		write_audio_gpio(&mix->hp_mute, 0);
		write_audio_gpio(&mix->amp_mute, 0);
		msleep(200);
		write_audio_gpio(&mix->hp_mute, 1);
		write_audio_gpio(&mix->amp_mute, 1);
		msleep(100);
		write_audio_gpio(&mix->hp_mute, 0);
		write_audio_gpio(&mix->amp_mute, 0);
		msleep(100);
	} else {
		DBG("(I) codec normal reset !\n");

		write_audio_gpio(&mix->audio_reset, 0);
		msleep(200);
		write_audio_gpio(&mix->audio_reset, 1);
		msleep(100);
		write_audio_gpio(&mix->audio_reset, 0);
		msleep(100);
	}
}

#ifdef CONFIG_PM
/* suspend mixer */
static void tumbler_suspend(struct snd_pmac *chip)
{
	struct pmac_tumbler *mix = chip->mixer_data;

	if (mix->headphone_irq >= 0)
		disable_irq(mix->headphone_irq);
	if (mix->lineout_irq >= 0)
		disable_irq(mix->lineout_irq);
	mix->save_master_switch[0] = mix->master_switch[0];
	mix->save_master_switch[1] = mix->master_switch[1];
	mix->save_master_vol[0] = mix->master_vol[0];
	mix->save_master_vol[1] = mix->master_vol[1];
	mix->master_switch[0] = mix->master_switch[1] = 0;
	tumbler_set_master_volume(mix);
	if (!mix->anded_reset) {
		write_audio_gpio(&mix->amp_mute, 1);
		write_audio_gpio(&mix->hp_mute, 1);
	}
	if (chip->model == PMAC_SNAPPER) {
		mix->acs |= 1;
		i2c_smbus_write_byte_data(mix->i2c.client, TAS_REG_ACS, mix->acs);
	}
	if (mix->anded_reset) {
		write_audio_gpio(&mix->amp_mute, 1);
		write_audio_gpio(&mix->hp_mute, 1);
	} else
		write_audio_gpio(&mix->audio_reset, 1);
}

/* resume mixer */
static void tumbler_resume(struct snd_pmac *chip)
{
	struct pmac_tumbler *mix = chip->mixer_data;

	mix->acs &= ~1;
	mix->master_switch[0] = mix->save_master_switch[0];
	mix->master_switch[1] = mix->save_master_switch[1];
	mix->master_vol[0] = mix->save_master_vol[0];
	mix->master_vol[1] = mix->save_master_vol[1];
	tumbler_reset_audio(chip);
	if (mix->i2c.client && mix->i2c.init_client) {
		if (mix->i2c.init_client(&mix->i2c) < 0)
			printk(KERN_ERR "tumbler_init_client error\n");
	} else
		printk(KERN_ERR "tumbler: i2c is not initialized\n");
	if (chip->model == PMAC_TUMBLER) {
		tumbler_set_mono_volume(mix, &tumbler_pcm_vol_info);
		tumbler_set_mono_volume(mix, &tumbler_bass_vol_info);
		tumbler_set_mono_volume(mix, &tumbler_treble_vol_info);
		tumbler_set_drc(mix);
	} else {
		snapper_set_mix_vol(mix, VOL_IDX_PCM);
		snapper_set_mix_vol(mix, VOL_IDX_PCM2);
		snapper_set_mix_vol(mix, VOL_IDX_ADC);
		tumbler_set_mono_volume(mix, &snapper_bass_vol_info);
		tumbler_set_mono_volume(mix, &snapper_treble_vol_info);
		snapper_set_drc(mix);
		snapper_set_capture_source(mix);
	}
	tumbler_set_master_volume(mix);
	if (chip->update_automute)
		chip->update_automute(chip, 0);
	if (mix->headphone_irq >= 0) {
		unsigned char val;

		enable_irq(mix->headphone_irq);
		/* activate headphone status interrupts */
		val = do_gpio_read(&mix->hp_detect);
		do_gpio_write(&mix->hp_detect, val | 0x80);
	}
	if (mix->lineout_irq >= 0)
		enable_irq(mix->lineout_irq);
}
#endif

/* initialize tumbler */
static int tumbler_init(struct snd_pmac *chip)
{
	int irq;
	struct pmac_tumbler *mix = chip->mixer_data;

	if (tumbler_find_device("audio-hw-reset",
				"platform-do-hw-reset",
				&mix->audio_reset, 0) < 0)
		tumbler_find_device("hw-reset",
				    "platform-do-hw-reset",
				    &mix->audio_reset, 1);
	if (tumbler_find_device("amp-mute",
				"platform-do-amp-mute",
				&mix->amp_mute, 0) < 0)
		tumbler_find_device("amp-mute",
				    "platform-do-amp-mute",
				    &mix->amp_mute, 1);
	if (tumbler_find_device("headphone-mute",
				"platform-do-headphone-mute",
				&mix->hp_mute, 0) < 0)
		tumbler_find_device("headphone-mute",
				    "platform-do-headphone-mute",
				    &mix->hp_mute, 1);
	if (tumbler_find_device("line-output-mute",
				"platform-do-lineout-mute",
				&mix->line_mute, 0) < 0)
		tumbler_find_device("line-output-mute",
				   "platform-do-lineout-mute",
				    &mix->line_mute, 1);
	irq = tumbler_find_device("headphone-detect",
				  NULL, &mix->hp_detect, 0);
	if (irq <= 0)
		irq = tumbler_find_device("headphone-detect",
					  NULL, &mix->hp_detect, 1);
	if (irq <= 0)
		irq = tumbler_find_device("keywest-gpio15",
					  NULL, &mix->hp_detect, 1);
	mix->headphone_irq = irq;
 	irq = tumbler_find_device("line-output-detect",
				  NULL, &mix->line_detect, 0);
	if (irq <= 0)
		irq = tumbler_find_device("line-output-detect",
					  NULL, &mix->line_detect, 1);
	if (IS_G4DA && irq <= 0)
		irq = tumbler_find_device("keywest-gpio16",
					  NULL, &mix->line_detect, 1);
	mix->lineout_irq = irq;

	tumbler_reset_audio(chip);
  
	return 0;
}

static void tumbler_cleanup(struct snd_pmac *chip)
{
	struct pmac_tumbler *mix = chip->mixer_data;
	if (! mix)
		return;

	if (mix->headphone_irq >= 0)
		free_irq(mix->headphone_irq, chip);
	if (mix->lineout_irq >= 0)
		free_irq(mix->lineout_irq, chip);
	tumbler_gpio_free(&mix->audio_reset);
	tumbler_gpio_free(&mix->amp_mute);
	tumbler_gpio_free(&mix->hp_mute);
	tumbler_gpio_free(&mix->hp_detect);
	snd_pmac_keywest_cleanup(&mix->i2c);
	kfree(mix);
	chip->mixer_data = NULL;
}

/* exported */
int snd_pmac_tumbler_init(struct snd_pmac *chip)
{
	int i, err;
	struct pmac_tumbler *mix;
	const u32 *paddr;
	struct device_node *tas_node, *np;
	char *chipname;

	request_module("i2c-powermac");

	mix = kzalloc(sizeof(*mix), GFP_KERNEL);
	if (! mix)
		return -ENOMEM;
	mix->headphone_irq = -1;

	chip->mixer_data = mix;
	chip->mixer_free = tumbler_cleanup;
	mix->anded_reset = 0;
	mix->reset_on_sleep = 1;

	for_each_child_of_node(chip->node, np) {
		if (of_node_name_eq(np, "sound")) {
			if (of_property_read_bool(np, "has-anded-reset"))
				mix->anded_reset = 1;
			if (of_property_present(np, "layout-id"))
				mix->reset_on_sleep = 0;
			of_node_put(np);
			break;
		}
	}
	err = tumbler_init(chip);
	if (err < 0)
		return err;

	/* set up TAS */
	tas_node = of_find_node_by_name(NULL, "deq");
	if (tas_node == NULL)
		tas_node = of_find_node_by_name(NULL, "codec");
	if (tas_node == NULL)
		return -ENODEV;

	paddr = of_get_property(tas_node, "i2c-address", NULL);
	if (paddr == NULL)
		paddr = of_get_property(tas_node, "reg", NULL);
	if (paddr)
		mix->i2c.addr = (*paddr) >> 1;
	else
		mix->i2c.addr = TAS_I2C_ADDR;
	of_node_put(tas_node);

	DBG("(I) TAS i2c address is: %x\n", mix->i2c.addr);

	if (chip->model == PMAC_TUMBLER) {
		mix->i2c.init_client = tumbler_init_client;
		mix->i2c.name = "TAS3001c";
		chipname = "Tumbler";
	} else {
		mix->i2c.init_client = snapper_init_client;
		mix->i2c.name = "TAS3004";
		chipname = "Snapper";
	}

	err = snd_pmac_keywest_init(&mix->i2c);
	if (err < 0)
		return err;

	/*
	 * build mixers
	 */
	sprintf(chip->card->mixername, "PowerMac %s", chipname);

	if (chip->model == PMAC_TUMBLER) {
		for (i = 0; i < ARRAY_SIZE(tumbler_mixers); i++) {
			err = snd_ctl_add(chip->card, snd_ctl_new1(&tumbler_mixers[i], chip));
			if (err < 0)
				return err;
		}
	} else {
		for (i = 0; i < ARRAY_SIZE(snapper_mixers); i++) {
			err = snd_ctl_add(chip->card, snd_ctl_new1(&snapper_mixers[i], chip));
			if (err < 0)
				return err;
		}
	}
	chip->master_sw_ctl = snd_ctl_new1(&tumbler_hp_sw, chip);
	err = snd_ctl_add(chip->card, chip->master_sw_ctl);
	if (err < 0)
		return err;
	chip->speaker_sw_ctl = snd_ctl_new1(&tumbler_speaker_sw, chip);
	err = snd_ctl_add(chip->card, chip->speaker_sw_ctl);
	if (err < 0)
		return err;
	if (mix->line_mute.addr != 0) {
		chip->lineout_sw_ctl = snd_ctl_new1(&tumbler_lineout_sw, chip);
		err = snd_ctl_add(chip->card, chip->lineout_sw_ctl);
		if (err < 0)
			return err;
	}
	chip->drc_sw_ctl = snd_ctl_new1(&tumbler_drc_sw, chip);
	err = snd_ctl_add(chip->card, chip->drc_sw_ctl);
	if (err < 0)
		return err;

	/* set initial DRC range to 60% */
	if (chip->model == PMAC_TUMBLER)
		mix->drc_range = (TAS3001_DRC_MAX * 6) / 10;
	else
		mix->drc_range = (TAS3004_DRC_MAX * 6) / 10;
	mix->drc_enable = 1; /* will be changed later if AUTO_DRC is set */
	if (chip->model == PMAC_TUMBLER)
		tumbler_set_drc(mix);
	else
		snapper_set_drc(mix);

#ifdef CONFIG_PM
	chip->suspend = tumbler_suspend;
	chip->resume = tumbler_resume;
#endif

	INIT_WORK(&device_change, device_change_handler);
	device_change_chip = chip;

#ifdef PMAC_SUPPORT_AUTOMUTE
	if (mix->headphone_irq >= 0 || mix->lineout_irq >= 0) {
		err = snd_pmac_add_automute(chip);
		if (err < 0)
			return err;
	}
	chip->detect_headphone = tumbler_detect_headphone;
	chip->update_automute = tumbler_update_automute;
	tumbler_update_automute(chip, 0); /* update the status only */

	/* activate headphone status interrupts */
  	if (mix->headphone_irq >= 0) {
		unsigned char val;
		err = request_irq(mix->headphone_irq, headphone_intr, 0,
				  "Sound Headphone Detection", chip);
		if (err < 0)
			return 0;
		/* activate headphone status interrupts */
		val = do_gpio_read(&mix->hp_detect);
		do_gpio_write(&mix->hp_detect, val | 0x80);
	}
  	if (mix->lineout_irq >= 0) {
		unsigned char val;
		err = request_irq(mix->lineout_irq, headphone_intr, 0,
				  "Sound Lineout Detection", chip);
		if (err < 0)
			return 0;
		/* activate headphone status interrupts */
		val = do_gpio_read(&mix->line_detect);
		do_gpio_write(&mix->line_detect, val | 0x80);
	}
#endif

	return 0;
}