Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
James Schulman | 6700 | 64.57% | 1 | 1.09% |
Richard Fitzgerald | 2162 | 20.84% | 57 | 61.96% |
Lucas Tanure | 767 | 7.39% | 16 | 17.39% |
Stefan Binding | 360 | 3.47% | 4 | 4.35% |
Vitaly Rodionov | 184 | 1.77% | 4 | 4.35% |
Martin Povišer | 97 | 0.93% | 3 | 3.26% |
Kuninori Morimoto | 80 | 0.77% | 2 | 2.17% |
Charles Keepax | 19 | 0.18% | 1 | 1.09% |
Yang Yingliang | 3 | 0.03% | 1 | 1.09% |
Thomas Gleixner | 2 | 0.02% | 1 | 1.09% |
Gustavo A. R. Silva | 1 | 0.01% | 1 | 1.09% |
Mark Brown | 1 | 0.01% | 1 | 1.09% |
Total | 10376 | 92 |
// SPDX-License-Identifier: GPL-2.0-only /* * cs42l42.c -- CS42L42 ALSA SoC audio driver * * Copyright 2016 Cirrus Logic, Inc. * * Author: James Schulman <james.schulman@cirrus.com> * Author: Brian Austin <brian.austin@cirrus.com> * Author: Michael White <michael.white@cirrus.com> */ #include <linux/module.h> #include <linux/moduleparam.h> #include <linux/version.h> #include <linux/types.h> #include <linux/init.h> #include <linux/delay.h> #include <linux/regmap.h> #include <linux/slab.h> #include <linux/acpi.h> #include <linux/platform_device.h> #include <linux/pm_runtime.h> #include <linux/property.h> #include <linux/regulator/consumer.h> #include <linux/gpio/consumer.h> #include <sound/core.h> #include <sound/pcm.h> #include <sound/pcm_params.h> #include <sound/soc.h> #include <sound/soc-dapm.h> #include <sound/initval.h> #include <sound/tlv.h> #include <dt-bindings/sound/cs42l42.h> #include "cs42l42.h" #include "cirrus_legacy.h" static const char * const cs42l42_supply_names[] = { "VA", "VP", "VCP", "VD_FILT", "VL", }; static const struct reg_default cs42l42_reg_defaults[] = { { CS42L42_FRZ_CTL, 0x00 }, { CS42L42_SRC_CTL, 0x10 }, { CS42L42_MCLK_CTL, 0x02 }, { CS42L42_SFTRAMP_RATE, 0xA4 }, { CS42L42_SLOW_START_ENABLE, 0x70 }, { CS42L42_I2C_DEBOUNCE, 0x88 }, { CS42L42_I2C_STRETCH, 0x03 }, { CS42L42_I2C_TIMEOUT, 0xB7 }, { CS42L42_PWR_CTL1, 0xFF }, { CS42L42_PWR_CTL2, 0x84 }, { CS42L42_PWR_CTL3, 0x20 }, { CS42L42_RSENSE_CTL1, 0x40 }, { CS42L42_RSENSE_CTL2, 0x00 }, { CS42L42_OSC_SWITCH, 0x00 }, { CS42L42_RSENSE_CTL3, 0x1B }, { CS42L42_TSENSE_CTL, 0x1B }, { CS42L42_TSRS_INT_DISABLE, 0x00 }, { CS42L42_HSDET_CTL1, 0x77 }, { CS42L42_HSDET_CTL2, 0x00 }, { CS42L42_HS_SWITCH_CTL, 0xF3 }, { CS42L42_HS_CLAMP_DISABLE, 0x00 }, { CS42L42_MCLK_SRC_SEL, 0x00 }, { CS42L42_SPDIF_CLK_CFG, 0x00 }, { CS42L42_FSYNC_PW_LOWER, 0x00 }, { CS42L42_FSYNC_PW_UPPER, 0x00 }, { CS42L42_FSYNC_P_LOWER, 0xF9 }, { CS42L42_FSYNC_P_UPPER, 0x00 }, { CS42L42_ASP_CLK_CFG, 0x00 }, { CS42L42_ASP_FRM_CFG, 0x10 }, { CS42L42_FS_RATE_EN, 0x00 }, { CS42L42_IN_ASRC_CLK, 0x00 }, { CS42L42_OUT_ASRC_CLK, 0x00 }, { CS42L42_PLL_DIV_CFG1, 0x00 }, { CS42L42_ADC_OVFL_INT_MASK, 0x01 }, { CS42L42_MIXER_INT_MASK, 0x0F }, { CS42L42_SRC_INT_MASK, 0x0F }, { CS42L42_ASP_RX_INT_MASK, 0x1F }, { CS42L42_ASP_TX_INT_MASK, 0x0F }, { CS42L42_CODEC_INT_MASK, 0x03 }, { CS42L42_SRCPL_INT_MASK, 0x7F }, { CS42L42_VPMON_INT_MASK, 0x01 }, { CS42L42_PLL_LOCK_INT_MASK, 0x01 }, { CS42L42_TSRS_PLUG_INT_MASK, 0x0F }, { CS42L42_PLL_CTL1, 0x00 }, { CS42L42_PLL_DIV_FRAC0, 0x00 }, { CS42L42_PLL_DIV_FRAC1, 0x00 }, { CS42L42_PLL_DIV_FRAC2, 0x00 }, { CS42L42_PLL_DIV_INT, 0x40 }, { CS42L42_PLL_CTL3, 0x10 }, { CS42L42_PLL_CAL_RATIO, 0x80 }, { CS42L42_PLL_CTL4, 0x03 }, { CS42L42_LOAD_DET_EN, 0x00 }, { CS42L42_HSBIAS_SC_AUTOCTL, 0x03 }, { CS42L42_WAKE_CTL, 0xC0 }, { CS42L42_ADC_DISABLE_MUTE, 0x00 }, { CS42L42_TIPSENSE_CTL, 0x02 }, { CS42L42_MISC_DET_CTL, 0x03 }, { CS42L42_MIC_DET_CTL1, 0x1F }, { CS42L42_MIC_DET_CTL2, 0x2F }, { CS42L42_DET_INT1_MASK, 0xE0 }, { CS42L42_DET_INT2_MASK, 0xFF }, { CS42L42_HS_BIAS_CTL, 0xC2 }, { CS42L42_ADC_CTL, 0x00 }, { CS42L42_ADC_VOLUME, 0x00 }, { CS42L42_ADC_WNF_HPF_CTL, 0x71 }, { CS42L42_DAC_CTL1, 0x00 }, { CS42L42_DAC_CTL2, 0x02 }, { CS42L42_HP_CTL, 0x0D }, { CS42L42_CLASSH_CTL, 0x07 }, { CS42L42_MIXER_CHA_VOL, 0x3F }, { CS42L42_MIXER_ADC_VOL, 0x3F }, { CS42L42_MIXER_CHB_VOL, 0x3F }, { CS42L42_EQ_COEF_IN0, 0x00 }, { CS42L42_EQ_COEF_IN1, 0x00 }, { CS42L42_EQ_COEF_IN2, 0x00 }, { CS42L42_EQ_COEF_IN3, 0x00 }, { CS42L42_EQ_COEF_RW, 0x00 }, { CS42L42_EQ_COEF_OUT0, 0x00 }, { CS42L42_EQ_COEF_OUT1, 0x00 }, { CS42L42_EQ_COEF_OUT2, 0x00 }, { CS42L42_EQ_COEF_OUT3, 0x00 }, { CS42L42_EQ_INIT_STAT, 0x00 }, { CS42L42_EQ_START_FILT, 0x00 }, { CS42L42_EQ_MUTE_CTL, 0x00 }, { CS42L42_SP_RX_CH_SEL, 0x04 }, { CS42L42_SP_RX_ISOC_CTL, 0x04 }, { CS42L42_SP_RX_FS, 0x8C }, { CS42l42_SPDIF_CH_SEL, 0x0E }, { CS42L42_SP_TX_ISOC_CTL, 0x04 }, { CS42L42_SP_TX_FS, 0xCC }, { CS42L42_SPDIF_SW_CTL1, 0x3F }, { CS42L42_SRC_SDIN_FS, 0x40 }, { CS42L42_SRC_SDOUT_FS, 0x40 }, { CS42L42_SPDIF_CTL1, 0x01 }, { CS42L42_SPDIF_CTL2, 0x00 }, { CS42L42_SPDIF_CTL3, 0x00 }, { CS42L42_SPDIF_CTL4, 0x42 }, { CS42L42_ASP_TX_SZ_EN, 0x00 }, { CS42L42_ASP_TX_CH_EN, 0x00 }, { CS42L42_ASP_TX_CH_AP_RES, 0x0F }, { CS42L42_ASP_TX_CH1_BIT_MSB, 0x00 }, { CS42L42_ASP_TX_CH1_BIT_LSB, 0x00 }, { CS42L42_ASP_TX_HIZ_DLY_CFG, 0x00 }, { CS42L42_ASP_TX_CH2_BIT_MSB, 0x00 }, { CS42L42_ASP_TX_CH2_BIT_LSB, 0x00 }, { CS42L42_ASP_RX_DAI0_EN, 0x00 }, { CS42L42_ASP_RX_DAI0_CH1_AP_RES, 0x03 }, { CS42L42_ASP_RX_DAI0_CH1_BIT_MSB, 0x00 }, { CS42L42_ASP_RX_DAI0_CH1_BIT_LSB, 0x00 }, { CS42L42_ASP_RX_DAI0_CH2_AP_RES, 0x03 }, { CS42L42_ASP_RX_DAI0_CH2_BIT_MSB, 0x00 }, { CS42L42_ASP_RX_DAI0_CH2_BIT_LSB, 0x00 }, { CS42L42_ASP_RX_DAI0_CH3_AP_RES, 0x03 }, { CS42L42_ASP_RX_DAI0_CH3_BIT_MSB, 0x00 }, { CS42L42_ASP_RX_DAI0_CH3_BIT_LSB, 0x00 }, { CS42L42_ASP_RX_DAI0_CH4_AP_RES, 0x03 }, { CS42L42_ASP_RX_DAI0_CH4_BIT_MSB, 0x00 }, { CS42L42_ASP_RX_DAI0_CH4_BIT_LSB, 0x00 }, { CS42L42_ASP_RX_DAI1_CH1_AP_RES, 0x03 }, { CS42L42_ASP_RX_DAI1_CH1_BIT_MSB, 0x00 }, { CS42L42_ASP_RX_DAI1_CH1_BIT_LSB, 0x00 }, { CS42L42_ASP_RX_DAI1_CH2_AP_RES, 0x03 }, { CS42L42_ASP_RX_DAI1_CH2_BIT_MSB, 0x00 }, { CS42L42_ASP_RX_DAI1_CH2_BIT_LSB, 0x00 }, }; bool cs42l42_readable_register(struct device *dev, unsigned int reg) { switch (reg) { case CS42L42_PAGE_REGISTER: case CS42L42_DEVID_AB: case CS42L42_DEVID_CD: case CS42L42_DEVID_E: case CS42L42_FABID: case CS42L42_REVID: case CS42L42_FRZ_CTL: case CS42L42_SRC_CTL: case CS42L42_MCLK_STATUS: case CS42L42_MCLK_CTL: case CS42L42_SFTRAMP_RATE: case CS42L42_SLOW_START_ENABLE: case CS42L42_I2C_DEBOUNCE: case CS42L42_I2C_STRETCH: case CS42L42_I2C_TIMEOUT: case CS42L42_PWR_CTL1: case CS42L42_PWR_CTL2: case CS42L42_PWR_CTL3: case CS42L42_RSENSE_CTL1: case CS42L42_RSENSE_CTL2: case CS42L42_OSC_SWITCH: case CS42L42_OSC_SWITCH_STATUS: case CS42L42_RSENSE_CTL3: case CS42L42_TSENSE_CTL: case CS42L42_TSRS_INT_DISABLE: case CS42L42_TRSENSE_STATUS: case CS42L42_HSDET_CTL1: case CS42L42_HSDET_CTL2: case CS42L42_HS_SWITCH_CTL: case CS42L42_HS_DET_STATUS: case CS42L42_HS_CLAMP_DISABLE: case CS42L42_MCLK_SRC_SEL: case CS42L42_SPDIF_CLK_CFG: case CS42L42_FSYNC_PW_LOWER: case CS42L42_FSYNC_PW_UPPER: case CS42L42_FSYNC_P_LOWER: case CS42L42_FSYNC_P_UPPER: case CS42L42_ASP_CLK_CFG: case CS42L42_ASP_FRM_CFG: case CS42L42_FS_RATE_EN: case CS42L42_IN_ASRC_CLK: case CS42L42_OUT_ASRC_CLK: case CS42L42_PLL_DIV_CFG1: case CS42L42_ADC_OVFL_STATUS: case CS42L42_MIXER_STATUS: case CS42L42_SRC_STATUS: case CS42L42_ASP_RX_STATUS: case CS42L42_ASP_TX_STATUS: case CS42L42_CODEC_STATUS: case CS42L42_DET_INT_STATUS1: case CS42L42_DET_INT_STATUS2: case CS42L42_SRCPL_INT_STATUS: case CS42L42_VPMON_STATUS: case CS42L42_PLL_LOCK_STATUS: case CS42L42_TSRS_PLUG_STATUS: case CS42L42_ADC_OVFL_INT_MASK: case CS42L42_MIXER_INT_MASK: case CS42L42_SRC_INT_MASK: case CS42L42_ASP_RX_INT_MASK: case CS42L42_ASP_TX_INT_MASK: case CS42L42_CODEC_INT_MASK: case CS42L42_SRCPL_INT_MASK: case CS42L42_VPMON_INT_MASK: case CS42L42_PLL_LOCK_INT_MASK: case CS42L42_TSRS_PLUG_INT_MASK: case CS42L42_PLL_CTL1: case CS42L42_PLL_DIV_FRAC0: case CS42L42_PLL_DIV_FRAC1: case CS42L42_PLL_DIV_FRAC2: case CS42L42_PLL_DIV_INT: case CS42L42_PLL_CTL3: case CS42L42_PLL_CAL_RATIO: case CS42L42_PLL_CTL4: case CS42L42_LOAD_DET_RCSTAT: case CS42L42_LOAD_DET_DONE: case CS42L42_LOAD_DET_EN: case CS42L42_HSBIAS_SC_AUTOCTL: case CS42L42_WAKE_CTL: case CS42L42_ADC_DISABLE_MUTE: case CS42L42_TIPSENSE_CTL: case CS42L42_MISC_DET_CTL: case CS42L42_MIC_DET_CTL1: case CS42L42_MIC_DET_CTL2: case CS42L42_DET_STATUS1: case CS42L42_DET_STATUS2: case CS42L42_DET_INT1_MASK: case CS42L42_DET_INT2_MASK: case CS42L42_HS_BIAS_CTL: case CS42L42_ADC_CTL: case CS42L42_ADC_VOLUME: case CS42L42_ADC_WNF_HPF_CTL: case CS42L42_DAC_CTL1: case CS42L42_DAC_CTL2: case CS42L42_HP_CTL: case CS42L42_CLASSH_CTL: case CS42L42_MIXER_CHA_VOL: case CS42L42_MIXER_ADC_VOL: case CS42L42_MIXER_CHB_VOL: case CS42L42_EQ_COEF_IN0: case CS42L42_EQ_COEF_IN1: case CS42L42_EQ_COEF_IN2: case CS42L42_EQ_COEF_IN3: case CS42L42_EQ_COEF_RW: case CS42L42_EQ_COEF_OUT0: case CS42L42_EQ_COEF_OUT1: case CS42L42_EQ_COEF_OUT2: case CS42L42_EQ_COEF_OUT3: case CS42L42_EQ_INIT_STAT: case CS42L42_EQ_START_FILT: case CS42L42_EQ_MUTE_CTL: case CS42L42_SP_RX_CH_SEL: case CS42L42_SP_RX_ISOC_CTL: case CS42L42_SP_RX_FS: case CS42l42_SPDIF_CH_SEL: case CS42L42_SP_TX_ISOC_CTL: case CS42L42_SP_TX_FS: case CS42L42_SPDIF_SW_CTL1: case CS42L42_SRC_SDIN_FS: case CS42L42_SRC_SDOUT_FS: case CS42L42_SOFT_RESET_REBOOT: case CS42L42_SPDIF_CTL1: case CS42L42_SPDIF_CTL2: case CS42L42_SPDIF_CTL3: case CS42L42_SPDIF_CTL4: case CS42L42_ASP_TX_SZ_EN: case CS42L42_ASP_TX_CH_EN: case CS42L42_ASP_TX_CH_AP_RES: case CS42L42_ASP_TX_CH1_BIT_MSB: case CS42L42_ASP_TX_CH1_BIT_LSB: case CS42L42_ASP_TX_HIZ_DLY_CFG: case CS42L42_ASP_TX_CH2_BIT_MSB: case CS42L42_ASP_TX_CH2_BIT_LSB: case CS42L42_ASP_RX_DAI0_EN: case CS42L42_ASP_RX_DAI0_CH1_AP_RES: case CS42L42_ASP_RX_DAI0_CH1_BIT_MSB: case CS42L42_ASP_RX_DAI0_CH1_BIT_LSB: case CS42L42_ASP_RX_DAI0_CH2_AP_RES: case CS42L42_ASP_RX_DAI0_CH2_BIT_MSB: case CS42L42_ASP_RX_DAI0_CH2_BIT_LSB: case CS42L42_ASP_RX_DAI0_CH3_AP_RES: case CS42L42_ASP_RX_DAI0_CH3_BIT_MSB: case CS42L42_ASP_RX_DAI0_CH3_BIT_LSB: case CS42L42_ASP_RX_DAI0_CH4_AP_RES: case CS42L42_ASP_RX_DAI0_CH4_BIT_MSB: case CS42L42_ASP_RX_DAI0_CH4_BIT_LSB: case CS42L42_ASP_RX_DAI1_CH1_AP_RES: case CS42L42_ASP_RX_DAI1_CH1_BIT_MSB: case CS42L42_ASP_RX_DAI1_CH1_BIT_LSB: case CS42L42_ASP_RX_DAI1_CH2_AP_RES: case CS42L42_ASP_RX_DAI1_CH2_BIT_MSB: case CS42L42_ASP_RX_DAI1_CH2_BIT_LSB: case CS42L42_SUB_REVID: return true; default: return false; } } EXPORT_SYMBOL_NS_GPL(cs42l42_readable_register, SND_SOC_CS42L42_CORE); bool cs42l42_volatile_register(struct device *dev, unsigned int reg) { switch (reg) { case CS42L42_DEVID_AB: case CS42L42_DEVID_CD: case CS42L42_DEVID_E: case CS42L42_MCLK_STATUS: case CS42L42_OSC_SWITCH_STATUS: case CS42L42_TRSENSE_STATUS: case CS42L42_HS_DET_STATUS: case CS42L42_ADC_OVFL_STATUS: case CS42L42_MIXER_STATUS: case CS42L42_SRC_STATUS: case CS42L42_ASP_RX_STATUS: case CS42L42_ASP_TX_STATUS: case CS42L42_CODEC_STATUS: case CS42L42_DET_INT_STATUS1: case CS42L42_DET_INT_STATUS2: case CS42L42_SRCPL_INT_STATUS: case CS42L42_VPMON_STATUS: case CS42L42_PLL_LOCK_STATUS: case CS42L42_TSRS_PLUG_STATUS: case CS42L42_LOAD_DET_RCSTAT: case CS42L42_LOAD_DET_DONE: case CS42L42_DET_STATUS1: case CS42L42_DET_STATUS2: case CS42L42_SOFT_RESET_REBOOT: return true; default: return false; } } EXPORT_SYMBOL_NS_GPL(cs42l42_volatile_register, SND_SOC_CS42L42_CORE); const struct regmap_range_cfg cs42l42_page_range = { .name = "Pages", .range_min = 0, .range_max = CS42L42_MAX_REGISTER, .selector_reg = CS42L42_PAGE_REGISTER, .selector_mask = 0xff, .selector_shift = 0, .window_start = 0, .window_len = 256, }; EXPORT_SYMBOL_NS_GPL(cs42l42_page_range, SND_SOC_CS42L42_CORE); const struct regmap_config cs42l42_regmap = { .reg_bits = 8, .val_bits = 8, .readable_reg = cs42l42_readable_register, .volatile_reg = cs42l42_volatile_register, .ranges = &cs42l42_page_range, .num_ranges = 1, .max_register = CS42L42_MAX_REGISTER, .reg_defaults = cs42l42_reg_defaults, .num_reg_defaults = ARRAY_SIZE(cs42l42_reg_defaults), .cache_type = REGCACHE_MAPLE, .use_single_read = true, .use_single_write = true, }; EXPORT_SYMBOL_NS_GPL(cs42l42_regmap, SND_SOC_CS42L42_CORE); static DECLARE_TLV_DB_SCALE(adc_tlv, -9700, 100, true); static DECLARE_TLV_DB_SCALE(mixer_tlv, -6300, 100, true); static int cs42l42_slow_start_put(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) { struct snd_soc_component *component = snd_soc_kcontrol_component(kcontrol); u8 val; /* all bits of SLOW_START_EN must change together */ switch (ucontrol->value.integer.value[0]) { case 0: val = 0; break; case 1: val = CS42L42_SLOW_START_EN_MASK; break; default: return -EINVAL; } return snd_soc_component_update_bits(component, CS42L42_SLOW_START_ENABLE, CS42L42_SLOW_START_EN_MASK, val); } static const char * const cs42l42_hpf_freq_text[] = { "1.86Hz", "120Hz", "235Hz", "466Hz" }; static SOC_ENUM_SINGLE_DECL(cs42l42_hpf_freq_enum, CS42L42_ADC_WNF_HPF_CTL, CS42L42_ADC_HPF_CF_SHIFT, cs42l42_hpf_freq_text); static const char * const cs42l42_wnf3_freq_text[] = { "160Hz", "180Hz", "200Hz", "220Hz", "240Hz", "260Hz", "280Hz", "300Hz" }; static SOC_ENUM_SINGLE_DECL(cs42l42_wnf3_freq_enum, CS42L42_ADC_WNF_HPF_CTL, CS42L42_ADC_WNF_CF_SHIFT, cs42l42_wnf3_freq_text); static const struct snd_kcontrol_new cs42l42_snd_controls[] = { /* ADC Volume and Filter Controls */ SOC_SINGLE("ADC Notch Switch", CS42L42_ADC_CTL, CS42L42_ADC_NOTCH_DIS_SHIFT, true, true), SOC_SINGLE("ADC Weak Force Switch", CS42L42_ADC_CTL, CS42L42_ADC_FORCE_WEAK_VCM_SHIFT, true, false), SOC_SINGLE("ADC Invert Switch", CS42L42_ADC_CTL, CS42L42_ADC_INV_SHIFT, true, false), SOC_SINGLE("ADC Boost Switch", CS42L42_ADC_CTL, CS42L42_ADC_DIG_BOOST_SHIFT, true, false), SOC_SINGLE_S8_TLV("ADC Volume", CS42L42_ADC_VOLUME, -97, 12, adc_tlv), SOC_SINGLE("ADC WNF Switch", CS42L42_ADC_WNF_HPF_CTL, CS42L42_ADC_WNF_EN_SHIFT, true, false), SOC_SINGLE("ADC HPF Switch", CS42L42_ADC_WNF_HPF_CTL, CS42L42_ADC_HPF_EN_SHIFT, true, false), SOC_ENUM("HPF Corner Freq", cs42l42_hpf_freq_enum), SOC_ENUM("WNF 3dB Freq", cs42l42_wnf3_freq_enum), /* DAC Volume and Filter Controls */ SOC_SINGLE("DACA Invert Switch", CS42L42_DAC_CTL1, CS42L42_DACA_INV_SHIFT, true, false), SOC_SINGLE("DACB Invert Switch", CS42L42_DAC_CTL1, CS42L42_DACB_INV_SHIFT, true, false), SOC_SINGLE("DAC HPF Switch", CS42L42_DAC_CTL2, CS42L42_DAC_HPF_EN_SHIFT, true, false), SOC_DOUBLE_R_TLV("Mixer Volume", CS42L42_MIXER_CHA_VOL, CS42L42_MIXER_CHB_VOL, CS42L42_MIXER_CH_VOL_SHIFT, 0x3f, 1, mixer_tlv), SOC_SINGLE_EXT("Slow Start Switch", CS42L42_SLOW_START_ENABLE, CS42L42_SLOW_START_EN_SHIFT, true, false, snd_soc_get_volsw, cs42l42_slow_start_put), }; static int cs42l42_hp_adc_ev(struct snd_soc_dapm_widget *w, struct snd_kcontrol *kcontrol, int event) { struct snd_soc_component *component = snd_soc_dapm_to_component(w->dapm); struct cs42l42_private *cs42l42 = snd_soc_component_get_drvdata(component); switch (event) { case SND_SOC_DAPM_PRE_PMU: cs42l42->hp_adc_up_pending = true; break; case SND_SOC_DAPM_POST_PMU: /* Only need one delay if HP and ADC are both powering-up */ if (cs42l42->hp_adc_up_pending) { usleep_range(CS42L42_HP_ADC_EN_TIME_US, CS42L42_HP_ADC_EN_TIME_US + 1000); cs42l42->hp_adc_up_pending = false; } break; default: break; } return 0; } static const struct snd_soc_dapm_widget cs42l42_dapm_widgets[] = { /* Playback Path */ SND_SOC_DAPM_OUTPUT("HP"), SND_SOC_DAPM_DAC_E("DAC", NULL, CS42L42_PWR_CTL1, CS42L42_HP_PDN_SHIFT, 1, cs42l42_hp_adc_ev, SND_SOC_DAPM_PRE_PMU | SND_SOC_DAPM_POST_PMU), SND_SOC_DAPM_MIXER("MIXER", CS42L42_PWR_CTL1, CS42L42_MIXER_PDN_SHIFT, 1, NULL, 0), SND_SOC_DAPM_AIF_IN("SDIN1", NULL, 0, SND_SOC_NOPM, 0, 0), SND_SOC_DAPM_AIF_IN("SDIN2", NULL, 1, SND_SOC_NOPM, 0, 0), /* Playback Requirements */ SND_SOC_DAPM_SUPPLY("ASP DAI0", CS42L42_PWR_CTL1, CS42L42_ASP_DAI_PDN_SHIFT, 1, NULL, 0), /* Capture Path */ SND_SOC_DAPM_INPUT("HS"), SND_SOC_DAPM_ADC_E("ADC", NULL, CS42L42_PWR_CTL1, CS42L42_ADC_PDN_SHIFT, 1, cs42l42_hp_adc_ev, SND_SOC_DAPM_PRE_PMU | SND_SOC_DAPM_POST_PMU), SND_SOC_DAPM_AIF_OUT("SDOUT1", NULL, 0, CS42L42_ASP_TX_CH_EN, CS42L42_ASP_TX0_CH1_SHIFT, 0), SND_SOC_DAPM_AIF_OUT("SDOUT2", NULL, 1, CS42L42_ASP_TX_CH_EN, CS42L42_ASP_TX0_CH2_SHIFT, 0), /* Capture Requirements */ SND_SOC_DAPM_SUPPLY("ASP DAO0", CS42L42_PWR_CTL1, CS42L42_ASP_DAO_PDN_SHIFT, 1, NULL, 0), SND_SOC_DAPM_SUPPLY("ASP TX EN", CS42L42_ASP_TX_SZ_EN, CS42L42_ASP_TX_EN_SHIFT, 0, NULL, 0), /* Playback/Capture Requirements */ SND_SOC_DAPM_SUPPLY("SCLK", CS42L42_ASP_CLK_CFG, CS42L42_ASP_SCLK_EN_SHIFT, 0, NULL, 0), /* Soundwire SRC power control */ SND_SOC_DAPM_PGA("DACSRC", CS42L42_PWR_CTL2, CS42L42_DAC_SRC_PDNB_SHIFT, 0, NULL, 0), SND_SOC_DAPM_PGA("ADCSRC", CS42L42_PWR_CTL2, CS42L42_ADC_SRC_PDNB_SHIFT, 0, NULL, 0), }; static const struct snd_soc_dapm_route cs42l42_audio_map[] = { /* Playback Path */ {"HP", NULL, "DAC"}, {"DAC", NULL, "MIXER"}, {"MIXER", NULL, "SDIN1"}, {"MIXER", NULL, "SDIN2"}, {"SDIN1", NULL, "Playback"}, {"SDIN2", NULL, "Playback"}, /* Playback Requirements */ {"SDIN1", NULL, "ASP DAI0"}, {"SDIN2", NULL, "ASP DAI0"}, {"SDIN1", NULL, "SCLK"}, {"SDIN2", NULL, "SCLK"}, /* Capture Path */ {"ADC", NULL, "HS"}, { "SDOUT1", NULL, "ADC" }, { "SDOUT2", NULL, "ADC" }, { "Capture", NULL, "SDOUT1" }, { "Capture", NULL, "SDOUT2" }, /* Capture Requirements */ { "SDOUT1", NULL, "ASP DAO0" }, { "SDOUT2", NULL, "ASP DAO0" }, { "SDOUT1", NULL, "SCLK" }, { "SDOUT2", NULL, "SCLK" }, { "SDOUT1", NULL, "ASP TX EN" }, { "SDOUT2", NULL, "ASP TX EN" }, }; static int cs42l42_set_jack(struct snd_soc_component *component, struct snd_soc_jack *jk, void *d) { struct cs42l42_private *cs42l42 = snd_soc_component_get_drvdata(component); /* Prevent race with interrupt handler */ mutex_lock(&cs42l42->irq_lock); cs42l42->jack = jk; if (jk) { switch (cs42l42->hs_type) { case CS42L42_PLUG_CTIA: case CS42L42_PLUG_OMTP: snd_soc_jack_report(jk, SND_JACK_HEADSET, SND_JACK_HEADSET); break; case CS42L42_PLUG_HEADPHONE: snd_soc_jack_report(jk, SND_JACK_HEADPHONE, SND_JACK_HEADPHONE); break; default: break; } } mutex_unlock(&cs42l42->irq_lock); return 0; } const struct snd_soc_component_driver cs42l42_soc_component = { .set_jack = cs42l42_set_jack, .dapm_widgets = cs42l42_dapm_widgets, .num_dapm_widgets = ARRAY_SIZE(cs42l42_dapm_widgets), .dapm_routes = cs42l42_audio_map, .num_dapm_routes = ARRAY_SIZE(cs42l42_audio_map), .controls = cs42l42_snd_controls, .num_controls = ARRAY_SIZE(cs42l42_snd_controls), .endianness = 1, }; EXPORT_SYMBOL_NS_GPL(cs42l42_soc_component, SND_SOC_CS42L42_CORE); /* Switch to SCLK. Atomic delay after the write to allow the switch to complete. */ static const struct reg_sequence cs42l42_to_sclk_seq[] = { { .reg = CS42L42_OSC_SWITCH, .def = CS42L42_SCLK_PRESENT_MASK, .delay_us = CS42L42_CLOCK_SWITCH_DELAY_US, }, }; /* Switch to OSC. Atomic delay after the write to allow the switch to complete. */ static const struct reg_sequence cs42l42_to_osc_seq[] = { { .reg = CS42L42_OSC_SWITCH, .def = 0, .delay_us = CS42L42_CLOCK_SWITCH_DELAY_US, }, }; struct cs42l42_pll_params { u32 sclk; u8 mclk_src_sel; u8 sclk_prediv; u8 pll_div_int; u32 pll_div_frac; u8 pll_mode; u8 pll_divout; u32 mclk_int; u8 pll_cal_ratio; u8 n; }; /* * Common PLL Settings for given SCLK * Table 4-5 from the Datasheet */ static const struct cs42l42_pll_params pll_ratio_table[] = { { 1411200, 1, 0x00, 0x80, 0x000000, 0x03, 0x10, 11289600, 128, 2}, { 1536000, 1, 0x00, 0x7D, 0x000000, 0x03, 0x10, 12000000, 125, 2}, { 2304000, 1, 0x00, 0x55, 0xC00000, 0x02, 0x10, 12288000, 85, 2}, { 2400000, 1, 0x00, 0x50, 0x000000, 0x03, 0x10, 12000000, 80, 2}, { 2822400, 1, 0x00, 0x40, 0x000000, 0x03, 0x10, 11289600, 128, 1}, { 3000000, 1, 0x00, 0x40, 0x000000, 0x03, 0x10, 12000000, 128, 1}, { 3072000, 1, 0x00, 0x3E, 0x800000, 0x03, 0x10, 12000000, 125, 1}, { 4000000, 1, 0x00, 0x30, 0x800000, 0x03, 0x10, 12000000, 96, 1}, { 4096000, 1, 0x00, 0x2E, 0xE00000, 0x03, 0x10, 12000000, 94, 1}, { 4800000, 1, 0x01, 0x50, 0x000000, 0x03, 0x10, 12000000, 80, 2}, { 4800000, 1, 0x01, 0x50, 0x000000, 0x01, 0x10, 12288000, 82, 2}, { 5644800, 1, 0x01, 0x40, 0x000000, 0x03, 0x10, 11289600, 128, 1}, { 6000000, 1, 0x01, 0x40, 0x000000, 0x03, 0x10, 12000000, 128, 1}, { 6144000, 1, 0x01, 0x3E, 0x800000, 0x03, 0x10, 12000000, 125, 1}, { 6144000, 1, 0x01, 0x40, 0x000000, 0x03, 0x10, 12288000, 128, 1}, { 9600000, 1, 0x02, 0x50, 0x000000, 0x03, 0x10, 12000000, 80, 2}, { 9600000, 1, 0x02, 0x50, 0x000000, 0x01, 0x10, 12288000, 82, 2}, { 11289600, 0, 0, 0, 0, 0, 0, 11289600, 0, 1}, { 12000000, 0, 0, 0, 0, 0, 0, 12000000, 0, 1}, { 12288000, 0, 0, 0, 0, 0, 0, 12288000, 0, 1}, { 19200000, 1, 0x03, 0x50, 0x000000, 0x03, 0x10, 12000000, 80, 2}, { 19200000, 1, 0x03, 0x50, 0x000000, 0x01, 0x10, 12288000, 82, 2}, { 22579200, 1, 0x03, 0x40, 0x000000, 0x03, 0x10, 11289600, 128, 1}, { 24000000, 1, 0x03, 0x40, 0x000000, 0x03, 0x10, 12000000, 128, 1}, { 24576000, 1, 0x03, 0x40, 0x000000, 0x03, 0x10, 12288000, 128, 1} }; int cs42l42_pll_config(struct snd_soc_component *component, unsigned int clk, unsigned int sample_rate) { struct cs42l42_private *cs42l42 = snd_soc_component_get_drvdata(component); int i; /* Don't reconfigure if there is an audio stream running */ if (cs42l42->stream_use) { if (pll_ratio_table[cs42l42->pll_config].sclk == clk) return 0; else return -EBUSY; } for (i = 0; i < ARRAY_SIZE(pll_ratio_table); i++) { /* MCLKint must be a multiple of the sample rate */ if (pll_ratio_table[i].mclk_int % sample_rate) continue; if (pll_ratio_table[i].sclk == clk) { cs42l42->pll_config = i; /* Configure the internal sample rate */ snd_soc_component_update_bits(component, CS42L42_MCLK_CTL, CS42L42_INTERNAL_FS_MASK, ((pll_ratio_table[i].mclk_int != 12000000) && (pll_ratio_table[i].mclk_int != 24000000)) << CS42L42_INTERNAL_FS_SHIFT); if (pll_ratio_table[i].mclk_src_sel == 0) { /* Pass the clock straight through */ snd_soc_component_update_bits(component, CS42L42_PLL_CTL1, CS42L42_PLL_START_MASK, 0); } else { /* Configure PLL per table 4-5 */ snd_soc_component_update_bits(component, CS42L42_PLL_DIV_CFG1, CS42L42_SCLK_PREDIV_MASK, pll_ratio_table[i].sclk_prediv << CS42L42_SCLK_PREDIV_SHIFT); snd_soc_component_update_bits(component, CS42L42_PLL_DIV_INT, CS42L42_PLL_DIV_INT_MASK, pll_ratio_table[i].pll_div_int << CS42L42_PLL_DIV_INT_SHIFT); snd_soc_component_update_bits(component, CS42L42_PLL_DIV_FRAC0, CS42L42_PLL_DIV_FRAC_MASK, CS42L42_FRAC0_VAL( pll_ratio_table[i].pll_div_frac) << CS42L42_PLL_DIV_FRAC_SHIFT); snd_soc_component_update_bits(component, CS42L42_PLL_DIV_FRAC1, CS42L42_PLL_DIV_FRAC_MASK, CS42L42_FRAC1_VAL( pll_ratio_table[i].pll_div_frac) << CS42L42_PLL_DIV_FRAC_SHIFT); snd_soc_component_update_bits(component, CS42L42_PLL_DIV_FRAC2, CS42L42_PLL_DIV_FRAC_MASK, CS42L42_FRAC2_VAL( pll_ratio_table[i].pll_div_frac) << CS42L42_PLL_DIV_FRAC_SHIFT); snd_soc_component_update_bits(component, CS42L42_PLL_CTL4, CS42L42_PLL_MODE_MASK, pll_ratio_table[i].pll_mode << CS42L42_PLL_MODE_SHIFT); snd_soc_component_update_bits(component, CS42L42_PLL_CTL3, CS42L42_PLL_DIVOUT_MASK, (pll_ratio_table[i].pll_divout * pll_ratio_table[i].n) << CS42L42_PLL_DIVOUT_SHIFT); snd_soc_component_update_bits(component, CS42L42_PLL_CAL_RATIO, CS42L42_PLL_CAL_RATIO_MASK, pll_ratio_table[i].pll_cal_ratio << CS42L42_PLL_CAL_RATIO_SHIFT); } return 0; } } return -EINVAL; } EXPORT_SYMBOL_NS_GPL(cs42l42_pll_config, SND_SOC_CS42L42_CORE); void cs42l42_src_config(struct snd_soc_component *component, unsigned int sample_rate) { struct cs42l42_private *cs42l42 = snd_soc_component_get_drvdata(component); unsigned int fs; /* Don't reconfigure if there is an audio stream running */ if (cs42l42->stream_use) return; /* SRC MCLK must be as close as possible to 125 * sample rate */ if (sample_rate <= 48000) fs = CS42L42_CLK_IASRC_SEL_6; else fs = CS42L42_CLK_IASRC_SEL_12; /* Set the sample rates (96k or lower) */ snd_soc_component_update_bits(component, CS42L42_FS_RATE_EN, CS42L42_FS_EN_MASK, (CS42L42_FS_EN_IASRC_96K | CS42L42_FS_EN_OASRC_96K) << CS42L42_FS_EN_SHIFT); snd_soc_component_update_bits(component, CS42L42_IN_ASRC_CLK, CS42L42_CLK_IASRC_SEL_MASK, fs << CS42L42_CLK_IASRC_SEL_SHIFT); snd_soc_component_update_bits(component, CS42L42_OUT_ASRC_CLK, CS42L42_CLK_OASRC_SEL_MASK, fs << CS42L42_CLK_OASRC_SEL_SHIFT); } EXPORT_SYMBOL_NS_GPL(cs42l42_src_config, SND_SOC_CS42L42_CORE); static int cs42l42_asp_config(struct snd_soc_component *component, unsigned int sclk, unsigned int sample_rate) { u32 fsync = sclk / sample_rate; /* Set up the LRCLK */ if (((fsync * sample_rate) != sclk) || ((fsync % 2) != 0)) { dev_err(component->dev, "Unsupported sclk %d/sample rate %d\n", sclk, sample_rate); return -EINVAL; } /* Set the LRCLK period */ snd_soc_component_update_bits(component, CS42L42_FSYNC_P_LOWER, CS42L42_FSYNC_PERIOD_MASK, CS42L42_FRAC0_VAL(fsync - 1) << CS42L42_FSYNC_PERIOD_SHIFT); snd_soc_component_update_bits(component, CS42L42_FSYNC_P_UPPER, CS42L42_FSYNC_PERIOD_MASK, CS42L42_FRAC1_VAL(fsync - 1) << CS42L42_FSYNC_PERIOD_SHIFT); /* Set the LRCLK to 50% duty cycle */ fsync = fsync / 2; snd_soc_component_update_bits(component, CS42L42_FSYNC_PW_LOWER, CS42L42_FSYNC_PULSE_WIDTH_MASK, CS42L42_FRAC0_VAL(fsync - 1) << CS42L42_FSYNC_PULSE_WIDTH_SHIFT); snd_soc_component_update_bits(component, CS42L42_FSYNC_PW_UPPER, CS42L42_FSYNC_PULSE_WIDTH_MASK, CS42L42_FRAC1_VAL(fsync - 1) << CS42L42_FSYNC_PULSE_WIDTH_SHIFT); return 0; } static int cs42l42_set_dai_fmt(struct snd_soc_dai *codec_dai, unsigned int fmt) { struct snd_soc_component *component = codec_dai->component; u32 asp_cfg_val = 0; switch (fmt & SND_SOC_DAIFMT_MASTER_MASK) { case SND_SOC_DAIFMT_CBS_CFM: asp_cfg_val |= CS42L42_ASP_MASTER_MODE << CS42L42_ASP_MODE_SHIFT; break; case SND_SOC_DAIFMT_CBS_CFS: asp_cfg_val |= CS42L42_ASP_SLAVE_MODE << CS42L42_ASP_MODE_SHIFT; break; default: return -EINVAL; } /* interface format */ switch (fmt & SND_SOC_DAIFMT_FORMAT_MASK) { case SND_SOC_DAIFMT_I2S: /* * 5050 mode, frame starts on falling edge of LRCLK, * frame delayed by 1.0 SCLKs */ snd_soc_component_update_bits(component, CS42L42_ASP_FRM_CFG, CS42L42_ASP_STP_MASK | CS42L42_ASP_5050_MASK | CS42L42_ASP_FSD_MASK, CS42L42_ASP_5050_MASK | (CS42L42_ASP_FSD_1_0 << CS42L42_ASP_FSD_SHIFT)); break; default: return -EINVAL; } /* Bitclock/frame inversion */ switch (fmt & SND_SOC_DAIFMT_INV_MASK) { case SND_SOC_DAIFMT_NB_NF: asp_cfg_val |= CS42L42_ASP_SCPOL_NOR << CS42L42_ASP_SCPOL_SHIFT; break; case SND_SOC_DAIFMT_NB_IF: asp_cfg_val |= CS42L42_ASP_SCPOL_NOR << CS42L42_ASP_SCPOL_SHIFT; asp_cfg_val |= CS42L42_ASP_LCPOL_INV << CS42L42_ASP_LCPOL_SHIFT; break; case SND_SOC_DAIFMT_IB_NF: break; case SND_SOC_DAIFMT_IB_IF: asp_cfg_val |= CS42L42_ASP_LCPOL_INV << CS42L42_ASP_LCPOL_SHIFT; break; } snd_soc_component_update_bits(component, CS42L42_ASP_CLK_CFG, CS42L42_ASP_MODE_MASK | CS42L42_ASP_SCPOL_MASK | CS42L42_ASP_LCPOL_MASK, asp_cfg_val); return 0; } static int cs42l42_dai_startup(struct snd_pcm_substream *substream, struct snd_soc_dai *dai) { struct snd_soc_component *component = dai->component; struct cs42l42_private *cs42l42 = snd_soc_component_get_drvdata(component); /* * Sample rates < 44.1 kHz would produce an out-of-range SCLK with * a standard I2S frame. If the machine driver sets SCLK it must be * legal. */ if (cs42l42->sclk) return 0; /* Machine driver has not set a SCLK, limit bottom end to 44.1 kHz */ return snd_pcm_hw_constraint_minmax(substream->runtime, SNDRV_PCM_HW_PARAM_RATE, 44100, 96000); } static int cs42l42_pcm_hw_params(struct snd_pcm_substream *substream, struct snd_pcm_hw_params *params, struct snd_soc_dai *dai) { struct snd_soc_component *component = dai->component; struct cs42l42_private *cs42l42 = snd_soc_component_get_drvdata(component); unsigned int channels = params_channels(params); unsigned int width = (params_width(params) / 8) - 1; unsigned int sample_rate = params_rate(params); unsigned int slot_width = 0; unsigned int val = 0; unsigned int bclk; int ret; if (cs42l42->bclk_ratio) { /* machine driver has set the BCLK/samp-rate ratio */ bclk = cs42l42->bclk_ratio * params_rate(params); } else if (cs42l42->sclk) { /* machine driver has set the SCLK */ bclk = cs42l42->sclk; } else { /* * Assume 24-bit samples are in 32-bit slots, to prevent SCLK being * more than assumed (which would result in overclocking). */ if (params_width(params) == 24) slot_width = 32; /* I2S frame always has multiple of 2 channels */ bclk = snd_soc_tdm_params_to_bclk(params, slot_width, 0, 2); } switch (substream->stream) { case SNDRV_PCM_STREAM_CAPTURE: /* channel 2 on high LRCLK */ val = CS42L42_ASP_TX_CH2_AP_MASK | (width << CS42L42_ASP_TX_CH2_RES_SHIFT) | (width << CS42L42_ASP_TX_CH1_RES_SHIFT); snd_soc_component_update_bits(component, CS42L42_ASP_TX_CH_AP_RES, CS42L42_ASP_TX_CH1_AP_MASK | CS42L42_ASP_TX_CH2_AP_MASK | CS42L42_ASP_TX_CH2_RES_MASK | CS42L42_ASP_TX_CH1_RES_MASK, val); break; case SNDRV_PCM_STREAM_PLAYBACK: val |= width << CS42L42_ASP_RX_CH_RES_SHIFT; /* channel 1 on low LRCLK */ snd_soc_component_update_bits(component, CS42L42_ASP_RX_DAI0_CH1_AP_RES, CS42L42_ASP_RX_CH_AP_MASK | CS42L42_ASP_RX_CH_RES_MASK, val); /* Channel 2 on high LRCLK */ val |= CS42L42_ASP_RX_CH_AP_HI << CS42L42_ASP_RX_CH_AP_SHIFT; snd_soc_component_update_bits(component, CS42L42_ASP_RX_DAI0_CH2_AP_RES, CS42L42_ASP_RX_CH_AP_MASK | CS42L42_ASP_RX_CH_RES_MASK, val); /* Channel B comes from the last active channel */ snd_soc_component_update_bits(component, CS42L42_SP_RX_CH_SEL, CS42L42_SP_RX_CHB_SEL_MASK, (channels - 1) << CS42L42_SP_RX_CHB_SEL_SHIFT); /* Both LRCLK slots must be enabled */ snd_soc_component_update_bits(component, CS42L42_ASP_RX_DAI0_EN, CS42L42_ASP_RX0_CH_EN_MASK, BIT(CS42L42_ASP_RX0_CH1_SHIFT) | BIT(CS42L42_ASP_RX0_CH2_SHIFT)); break; default: break; } ret = cs42l42_pll_config(component, bclk, sample_rate); if (ret) return ret; ret = cs42l42_asp_config(component, bclk, sample_rate); if (ret) return ret; cs42l42_src_config(component, sample_rate); return 0; } static int cs42l42_set_sysclk(struct snd_soc_dai *dai, int clk_id, unsigned int freq, int dir) { struct snd_soc_component *component = dai->component; struct cs42l42_private *cs42l42 = snd_soc_component_get_drvdata(component); int i; if (freq == 0) { cs42l42->sclk = 0; return 0; } for (i = 0; i < ARRAY_SIZE(pll_ratio_table); i++) { if (pll_ratio_table[i].sclk == freq) { cs42l42->sclk = freq; return 0; } } dev_err(component->dev, "SCLK %u not supported\n", freq); return -EINVAL; } static int cs42l42_set_bclk_ratio(struct snd_soc_dai *dai, unsigned int bclk_ratio) { struct snd_soc_component *component = dai->component; struct cs42l42_private *cs42l42 = snd_soc_component_get_drvdata(component); cs42l42->bclk_ratio = bclk_ratio; return 0; } int cs42l42_mute_stream(struct snd_soc_dai *dai, int mute, int stream) { struct snd_soc_component *component = dai->component; struct cs42l42_private *cs42l42 = snd_soc_component_get_drvdata(component); unsigned int regval; int ret; if (mute) { /* Mute the headphone */ if (stream == SNDRV_PCM_STREAM_PLAYBACK) snd_soc_component_update_bits(component, CS42L42_HP_CTL, CS42L42_HP_ANA_AMUTE_MASK | CS42L42_HP_ANA_BMUTE_MASK, CS42L42_HP_ANA_AMUTE_MASK | CS42L42_HP_ANA_BMUTE_MASK); cs42l42->stream_use &= ~(1 << stream); if (!cs42l42->stream_use) { /* * Switch to the internal oscillator. * SCLK must remain running until after this clock switch. * Without a source of clock the I2C bus doesn't work. */ regmap_multi_reg_write(cs42l42->regmap, cs42l42_to_osc_seq, ARRAY_SIZE(cs42l42_to_osc_seq)); /* Must disconnect PLL before stopping it */ snd_soc_component_update_bits(component, CS42L42_MCLK_SRC_SEL, CS42L42_MCLK_SRC_SEL_MASK, 0); usleep_range(100, 200); snd_soc_component_update_bits(component, CS42L42_PLL_CTL1, CS42L42_PLL_START_MASK, 0); } } else { if (!cs42l42->stream_use) { /* SCLK must be running before codec unmute. * * PLL must not be started with ADC and HP both off * otherwise the FILT+ supply will not charge properly. * DAPM widgets power-up before stream unmute so at least * one of the "DAC" or "ADC" widgets will already have * powered-up. */ if (pll_ratio_table[cs42l42->pll_config].mclk_src_sel) { snd_soc_component_update_bits(component, CS42L42_PLL_CTL1, CS42L42_PLL_START_MASK, 1); if (pll_ratio_table[cs42l42->pll_config].n > 1) { usleep_range(CS42L42_PLL_DIVOUT_TIME_US, CS42L42_PLL_DIVOUT_TIME_US * 2); regval = pll_ratio_table[cs42l42->pll_config].pll_divout; snd_soc_component_update_bits(component, CS42L42_PLL_CTL3, CS42L42_PLL_DIVOUT_MASK, regval << CS42L42_PLL_DIVOUT_SHIFT); } ret = regmap_read_poll_timeout(cs42l42->regmap, CS42L42_PLL_LOCK_STATUS, regval, (regval & 1), CS42L42_PLL_LOCK_POLL_US, CS42L42_PLL_LOCK_TIMEOUT_US); if (ret < 0) dev_warn(component->dev, "PLL failed to lock: %d\n", ret); /* PLL must be running to drive glitchless switch logic */ snd_soc_component_update_bits(component, CS42L42_MCLK_SRC_SEL, CS42L42_MCLK_SRC_SEL_MASK, CS42L42_MCLK_SRC_SEL_MASK); } /* Mark SCLK as present, turn off internal oscillator */ regmap_multi_reg_write(cs42l42->regmap, cs42l42_to_sclk_seq, ARRAY_SIZE(cs42l42_to_sclk_seq)); } cs42l42->stream_use |= 1 << stream; if (stream == SNDRV_PCM_STREAM_PLAYBACK) { /* Un-mute the headphone */ snd_soc_component_update_bits(component, CS42L42_HP_CTL, CS42L42_HP_ANA_AMUTE_MASK | CS42L42_HP_ANA_BMUTE_MASK, 0); } } return 0; } EXPORT_SYMBOL_NS_GPL(cs42l42_mute_stream, SND_SOC_CS42L42_CORE); #define CS42L42_FORMATS (SNDRV_PCM_FMTBIT_S16_LE |\ SNDRV_PCM_FMTBIT_S24_LE |\ SNDRV_PCM_FMTBIT_S32_LE) static const struct snd_soc_dai_ops cs42l42_ops = { .startup = cs42l42_dai_startup, .hw_params = cs42l42_pcm_hw_params, .set_fmt = cs42l42_set_dai_fmt, .set_sysclk = cs42l42_set_sysclk, .set_bclk_ratio = cs42l42_set_bclk_ratio, .mute_stream = cs42l42_mute_stream, }; struct snd_soc_dai_driver cs42l42_dai = { .name = "cs42l42", .playback = { .stream_name = "Playback", .channels_min = 1, .channels_max = 2, .rates = SNDRV_PCM_RATE_8000_96000, .formats = CS42L42_FORMATS, }, .capture = { .stream_name = "Capture", .channels_min = 1, .channels_max = 2, .rates = SNDRV_PCM_RATE_8000_96000, .formats = CS42L42_FORMATS, }, .symmetric_rate = 1, .symmetric_sample_bits = 1, .ops = &cs42l42_ops, }; EXPORT_SYMBOL_NS_GPL(cs42l42_dai, SND_SOC_CS42L42_CORE); static void cs42l42_manual_hs_type_detect(struct cs42l42_private *cs42l42) { unsigned int hs_det_status; unsigned int hs_det_comp1; unsigned int hs_det_comp2; unsigned int hs_det_sw; /* Set hs detect to manual, active mode */ regmap_update_bits(cs42l42->regmap, CS42L42_HSDET_CTL2, CS42L42_HSDET_CTRL_MASK | CS42L42_HSDET_SET_MASK | CS42L42_HSBIAS_REF_MASK | CS42L42_HSDET_AUTO_TIME_MASK, (1 << CS42L42_HSDET_CTRL_SHIFT) | (0 << CS42L42_HSDET_SET_SHIFT) | (0 << CS42L42_HSBIAS_REF_SHIFT) | (0 << CS42L42_HSDET_AUTO_TIME_SHIFT)); /* Configure HS DET comparator reference levels. */ regmap_update_bits(cs42l42->regmap, CS42L42_HSDET_CTL1, CS42L42_HSDET_COMP1_LVL_MASK | CS42L42_HSDET_COMP2_LVL_MASK, (CS42L42_HSDET_COMP1_LVL_VAL << CS42L42_HSDET_COMP1_LVL_SHIFT) | (CS42L42_HSDET_COMP2_LVL_VAL << CS42L42_HSDET_COMP2_LVL_SHIFT)); /* Open the SW_HSB_HS3 switch and close SW_HSB_HS4 for a Type 1 headset. */ regmap_write(cs42l42->regmap, CS42L42_HS_SWITCH_CTL, CS42L42_HSDET_SW_COMP1); msleep(100); regmap_read(cs42l42->regmap, CS42L42_HS_DET_STATUS, &hs_det_status); hs_det_comp1 = (hs_det_status & CS42L42_HSDET_COMP1_OUT_MASK) >> CS42L42_HSDET_COMP1_OUT_SHIFT; hs_det_comp2 = (hs_det_status & CS42L42_HSDET_COMP2_OUT_MASK) >> CS42L42_HSDET_COMP2_OUT_SHIFT; /* Close the SW_HSB_HS3 switch for a Type 2 headset. */ regmap_write(cs42l42->regmap, CS42L42_HS_SWITCH_CTL, CS42L42_HSDET_SW_COMP2); msleep(100); regmap_read(cs42l42->regmap, CS42L42_HS_DET_STATUS, &hs_det_status); hs_det_comp1 |= ((hs_det_status & CS42L42_HSDET_COMP1_OUT_MASK) >> CS42L42_HSDET_COMP1_OUT_SHIFT) << 1; hs_det_comp2 |= ((hs_det_status & CS42L42_HSDET_COMP2_OUT_MASK) >> CS42L42_HSDET_COMP2_OUT_SHIFT) << 1; /* Use Comparator 1 with 1.25V Threshold. */ switch (hs_det_comp1) { case CS42L42_HSDET_COMP_TYPE1: cs42l42->hs_type = CS42L42_PLUG_CTIA; hs_det_sw = CS42L42_HSDET_SW_TYPE1; break; case CS42L42_HSDET_COMP_TYPE2: cs42l42->hs_type = CS42L42_PLUG_OMTP; hs_det_sw = CS42L42_HSDET_SW_TYPE2; break; default: /* Fallback to Comparator 2 with 1.75V Threshold. */ switch (hs_det_comp2) { case CS42L42_HSDET_COMP_TYPE1: cs42l42->hs_type = CS42L42_PLUG_CTIA; hs_det_sw = CS42L42_HSDET_SW_TYPE1; break; case CS42L42_HSDET_COMP_TYPE2: cs42l42->hs_type = CS42L42_PLUG_OMTP; hs_det_sw = CS42L42_HSDET_SW_TYPE2; break; /* Detect Type 3 and Type 4 Headsets as Headphones */ default: cs42l42->hs_type = CS42L42_PLUG_HEADPHONE; hs_det_sw = CS42L42_HSDET_SW_TYPE3; break; } } /* Set Switches */ regmap_write(cs42l42->regmap, CS42L42_HS_SWITCH_CTL, hs_det_sw); /* Set HSDET mode to Manual—Disabled */ regmap_update_bits(cs42l42->regmap, CS42L42_HSDET_CTL2, CS42L42_HSDET_CTRL_MASK | CS42L42_HSDET_SET_MASK | CS42L42_HSBIAS_REF_MASK | CS42L42_HSDET_AUTO_TIME_MASK, (0 << CS42L42_HSDET_CTRL_SHIFT) | (0 << CS42L42_HSDET_SET_SHIFT) | (0 << CS42L42_HSBIAS_REF_SHIFT) | (0 << CS42L42_HSDET_AUTO_TIME_SHIFT)); /* Configure HS DET comparator reference levels. */ regmap_update_bits(cs42l42->regmap, CS42L42_HSDET_CTL1, CS42L42_HSDET_COMP1_LVL_MASK | CS42L42_HSDET_COMP2_LVL_MASK, (CS42L42_HSDET_COMP1_LVL_DEFAULT << CS42L42_HSDET_COMP1_LVL_SHIFT) | (CS42L42_HSDET_COMP2_LVL_DEFAULT << CS42L42_HSDET_COMP2_LVL_SHIFT)); } static void cs42l42_process_hs_type_detect(struct cs42l42_private *cs42l42) { unsigned int hs_det_status; unsigned int int_status; /* Read and save the hs detection result */ regmap_read(cs42l42->regmap, CS42L42_HS_DET_STATUS, &hs_det_status); /* Mask the auto detect interrupt */ regmap_update_bits(cs42l42->regmap, CS42L42_CODEC_INT_MASK, CS42L42_PDN_DONE_MASK | CS42L42_HSDET_AUTO_DONE_MASK, (1 << CS42L42_PDN_DONE_SHIFT) | (1 << CS42L42_HSDET_AUTO_DONE_SHIFT)); cs42l42->hs_type = (hs_det_status & CS42L42_HSDET_TYPE_MASK) >> CS42L42_HSDET_TYPE_SHIFT; /* Set hs detect to automatic, disabled mode */ regmap_update_bits(cs42l42->regmap, CS42L42_HSDET_CTL2, CS42L42_HSDET_CTRL_MASK | CS42L42_HSDET_SET_MASK | CS42L42_HSBIAS_REF_MASK | CS42L42_HSDET_AUTO_TIME_MASK, (2 << CS42L42_HSDET_CTRL_SHIFT) | (2 << CS42L42_HSDET_SET_SHIFT) | (0 << CS42L42_HSBIAS_REF_SHIFT) | (3 << CS42L42_HSDET_AUTO_TIME_SHIFT)); /* Run Manual detection if auto detect has not found a headset. * We Re-Run with Manual Detection if the original detection was invalid or headphones, * to ensure that a headset mic is detected in all cases. */ if (cs42l42->hs_type == CS42L42_PLUG_INVALID || cs42l42->hs_type == CS42L42_PLUG_HEADPHONE) { dev_dbg(cs42l42->dev, "Running Manual Detection Fallback\n"); cs42l42_manual_hs_type_detect(cs42l42); } /* Set up button detection */ if ((cs42l42->hs_type == CS42L42_PLUG_CTIA) || (cs42l42->hs_type == CS42L42_PLUG_OMTP)) { /* Set auto HS bias settings to default */ regmap_update_bits(cs42l42->regmap, CS42L42_HSBIAS_SC_AUTOCTL, CS42L42_HSBIAS_SENSE_EN_MASK | CS42L42_AUTO_HSBIAS_HIZ_MASK | CS42L42_TIP_SENSE_EN_MASK | CS42L42_HSBIAS_SENSE_TRIP_MASK, (0 << CS42L42_HSBIAS_SENSE_EN_SHIFT) | (0 << CS42L42_AUTO_HSBIAS_HIZ_SHIFT) | (0 << CS42L42_TIP_SENSE_EN_SHIFT) | (3 << CS42L42_HSBIAS_SENSE_TRIP_SHIFT)); /* Set up hs detect level sensitivity */ regmap_update_bits(cs42l42->regmap, CS42L42_MIC_DET_CTL1, CS42L42_LATCH_TO_VP_MASK | CS42L42_EVENT_STAT_SEL_MASK | CS42L42_HS_DET_LEVEL_MASK, (1 << CS42L42_LATCH_TO_VP_SHIFT) | (0 << CS42L42_EVENT_STAT_SEL_SHIFT) | (cs42l42->bias_thresholds[0] << CS42L42_HS_DET_LEVEL_SHIFT)); /* Set auto HS bias settings to default */ regmap_update_bits(cs42l42->regmap, CS42L42_HSBIAS_SC_AUTOCTL, CS42L42_HSBIAS_SENSE_EN_MASK | CS42L42_AUTO_HSBIAS_HIZ_MASK | CS42L42_TIP_SENSE_EN_MASK | CS42L42_HSBIAS_SENSE_TRIP_MASK, (cs42l42->hs_bias_sense_en << CS42L42_HSBIAS_SENSE_EN_SHIFT) | (1 << CS42L42_AUTO_HSBIAS_HIZ_SHIFT) | (0 << CS42L42_TIP_SENSE_EN_SHIFT) | (3 << CS42L42_HSBIAS_SENSE_TRIP_SHIFT)); /* Turn on level detect circuitry */ regmap_update_bits(cs42l42->regmap, CS42L42_MISC_DET_CTL, CS42L42_HSBIAS_CTL_MASK | CS42L42_PDN_MIC_LVL_DET_MASK, (3 << CS42L42_HSBIAS_CTL_SHIFT) | (0 << CS42L42_PDN_MIC_LVL_DET_SHIFT)); msleep(cs42l42->btn_det_init_dbnce); /* Clear any button interrupts before unmasking them */ regmap_read(cs42l42->regmap, CS42L42_DET_INT_STATUS2, &int_status); /* Unmask button detect interrupts */ regmap_update_bits(cs42l42->regmap, CS42L42_DET_INT2_MASK, CS42L42_M_DETECT_TF_MASK | CS42L42_M_DETECT_FT_MASK | CS42L42_M_HSBIAS_HIZ_MASK | CS42L42_M_SHORT_RLS_MASK | CS42L42_M_SHORT_DET_MASK, (0 << CS42L42_M_DETECT_TF_SHIFT) | (0 << CS42L42_M_DETECT_FT_SHIFT) | (0 << CS42L42_M_HSBIAS_HIZ_SHIFT) | (1 << CS42L42_M_SHORT_RLS_SHIFT) | (1 << CS42L42_M_SHORT_DET_SHIFT)); } else { /* Make sure button detect and HS bias circuits are off */ regmap_update_bits(cs42l42->regmap, CS42L42_MISC_DET_CTL, CS42L42_HSBIAS_CTL_MASK | CS42L42_PDN_MIC_LVL_DET_MASK, (1 << CS42L42_HSBIAS_CTL_SHIFT) | (1 << CS42L42_PDN_MIC_LVL_DET_SHIFT)); } regmap_update_bits(cs42l42->regmap, CS42L42_DAC_CTL2, CS42L42_HPOUT_PULLDOWN_MASK | CS42L42_HPOUT_LOAD_MASK | CS42L42_HPOUT_CLAMP_MASK | CS42L42_DAC_HPF_EN_MASK | CS42L42_DAC_MON_EN_MASK, (0 << CS42L42_HPOUT_PULLDOWN_SHIFT) | (0 << CS42L42_HPOUT_LOAD_SHIFT) | (0 << CS42L42_HPOUT_CLAMP_SHIFT) | (1 << CS42L42_DAC_HPF_EN_SHIFT) | (0 << CS42L42_DAC_MON_EN_SHIFT)); /* Unmask tip sense interrupts */ regmap_update_bits(cs42l42->regmap, CS42L42_TSRS_PLUG_INT_MASK, CS42L42_TS_PLUG_MASK | CS42L42_TS_UNPLUG_MASK, (0 << CS42L42_TS_PLUG_SHIFT) | (0 << CS42L42_TS_UNPLUG_SHIFT)); } static void cs42l42_init_hs_type_detect(struct cs42l42_private *cs42l42) { /* Mask tip sense interrupts */ regmap_update_bits(cs42l42->regmap, CS42L42_TSRS_PLUG_INT_MASK, CS42L42_TS_PLUG_MASK | CS42L42_TS_UNPLUG_MASK, (1 << CS42L42_TS_PLUG_SHIFT) | (1 << CS42L42_TS_UNPLUG_SHIFT)); /* Make sure button detect and HS bias circuits are off */ regmap_update_bits(cs42l42->regmap, CS42L42_MISC_DET_CTL, CS42L42_HSBIAS_CTL_MASK | CS42L42_PDN_MIC_LVL_DET_MASK, (1 << CS42L42_HSBIAS_CTL_SHIFT) | (1 << CS42L42_PDN_MIC_LVL_DET_SHIFT)); /* Set auto HS bias settings to default */ regmap_update_bits(cs42l42->regmap, CS42L42_HSBIAS_SC_AUTOCTL, CS42L42_HSBIAS_SENSE_EN_MASK | CS42L42_AUTO_HSBIAS_HIZ_MASK | CS42L42_TIP_SENSE_EN_MASK | CS42L42_HSBIAS_SENSE_TRIP_MASK, (0 << CS42L42_HSBIAS_SENSE_EN_SHIFT) | (0 << CS42L42_AUTO_HSBIAS_HIZ_SHIFT) | (0 << CS42L42_TIP_SENSE_EN_SHIFT) | (3 << CS42L42_HSBIAS_SENSE_TRIP_SHIFT)); /* Set hs detect to manual, disabled mode */ regmap_update_bits(cs42l42->regmap, CS42L42_HSDET_CTL2, CS42L42_HSDET_CTRL_MASK | CS42L42_HSDET_SET_MASK | CS42L42_HSBIAS_REF_MASK | CS42L42_HSDET_AUTO_TIME_MASK, (0 << CS42L42_HSDET_CTRL_SHIFT) | (2 << CS42L42_HSDET_SET_SHIFT) | (0 << CS42L42_HSBIAS_REF_SHIFT) | (3 << CS42L42_HSDET_AUTO_TIME_SHIFT)); regmap_update_bits(cs42l42->regmap, CS42L42_DAC_CTL2, CS42L42_HPOUT_PULLDOWN_MASK | CS42L42_HPOUT_LOAD_MASK | CS42L42_HPOUT_CLAMP_MASK | CS42L42_DAC_HPF_EN_MASK | CS42L42_DAC_MON_EN_MASK, (8 << CS42L42_HPOUT_PULLDOWN_SHIFT) | (0 << CS42L42_HPOUT_LOAD_SHIFT) | (1 << CS42L42_HPOUT_CLAMP_SHIFT) | (1 << CS42L42_DAC_HPF_EN_SHIFT) | (1 << CS42L42_DAC_MON_EN_SHIFT)); /* Power up HS bias to 2.7V */ regmap_update_bits(cs42l42->regmap, CS42L42_MISC_DET_CTL, CS42L42_HSBIAS_CTL_MASK | CS42L42_PDN_MIC_LVL_DET_MASK, (3 << CS42L42_HSBIAS_CTL_SHIFT) | (1 << CS42L42_PDN_MIC_LVL_DET_SHIFT)); /* Wait for HS bias to ramp up */ msleep(cs42l42->hs_bias_ramp_time); /* Unmask auto detect interrupt */ regmap_update_bits(cs42l42->regmap, CS42L42_CODEC_INT_MASK, CS42L42_PDN_DONE_MASK | CS42L42_HSDET_AUTO_DONE_MASK, (1 << CS42L42_PDN_DONE_SHIFT) | (0 << CS42L42_HSDET_AUTO_DONE_SHIFT)); /* Set hs detect to automatic, enabled mode */ regmap_update_bits(cs42l42->regmap, CS42L42_HSDET_CTL2, CS42L42_HSDET_CTRL_MASK | CS42L42_HSDET_SET_MASK | CS42L42_HSBIAS_REF_MASK | CS42L42_HSDET_AUTO_TIME_MASK, (3 << CS42L42_HSDET_CTRL_SHIFT) | (2 << CS42L42_HSDET_SET_SHIFT) | (0 << CS42L42_HSBIAS_REF_SHIFT) | (3 << CS42L42_HSDET_AUTO_TIME_SHIFT)); } static void cs42l42_cancel_hs_type_detect(struct cs42l42_private *cs42l42) { /* Mask button detect interrupts */ regmap_update_bits(cs42l42->regmap, CS42L42_DET_INT2_MASK, CS42L42_M_DETECT_TF_MASK | CS42L42_M_DETECT_FT_MASK | CS42L42_M_HSBIAS_HIZ_MASK | CS42L42_M_SHORT_RLS_MASK | CS42L42_M_SHORT_DET_MASK, (1 << CS42L42_M_DETECT_TF_SHIFT) | (1 << CS42L42_M_DETECT_FT_SHIFT) | (1 << CS42L42_M_HSBIAS_HIZ_SHIFT) | (1 << CS42L42_M_SHORT_RLS_SHIFT) | (1 << CS42L42_M_SHORT_DET_SHIFT)); /* Ground HS bias */ regmap_update_bits(cs42l42->regmap, CS42L42_MISC_DET_CTL, CS42L42_HSBIAS_CTL_MASK | CS42L42_PDN_MIC_LVL_DET_MASK, (1 << CS42L42_HSBIAS_CTL_SHIFT) | (1 << CS42L42_PDN_MIC_LVL_DET_SHIFT)); /* Set auto HS bias settings to default */ regmap_update_bits(cs42l42->regmap, CS42L42_HSBIAS_SC_AUTOCTL, CS42L42_HSBIAS_SENSE_EN_MASK | CS42L42_AUTO_HSBIAS_HIZ_MASK | CS42L42_TIP_SENSE_EN_MASK | CS42L42_HSBIAS_SENSE_TRIP_MASK, (0 << CS42L42_HSBIAS_SENSE_EN_SHIFT) | (0 << CS42L42_AUTO_HSBIAS_HIZ_SHIFT) | (0 << CS42L42_TIP_SENSE_EN_SHIFT) | (3 << CS42L42_HSBIAS_SENSE_TRIP_SHIFT)); /* Set hs detect to manual, disabled mode */ regmap_update_bits(cs42l42->regmap, CS42L42_HSDET_CTL2, CS42L42_HSDET_CTRL_MASK | CS42L42_HSDET_SET_MASK | CS42L42_HSBIAS_REF_MASK | CS42L42_HSDET_AUTO_TIME_MASK, (0 << CS42L42_HSDET_CTRL_SHIFT) | (2 << CS42L42_HSDET_SET_SHIFT) | (0 << CS42L42_HSBIAS_REF_SHIFT) | (3 << CS42L42_HSDET_AUTO_TIME_SHIFT)); } static int cs42l42_handle_button_press(struct cs42l42_private *cs42l42) { int bias_level; unsigned int detect_status; /* Mask button detect interrupts */ regmap_update_bits(cs42l42->regmap, CS42L42_DET_INT2_MASK, CS42L42_M_DETECT_TF_MASK | CS42L42_M_DETECT_FT_MASK | CS42L42_M_HSBIAS_HIZ_MASK | CS42L42_M_SHORT_RLS_MASK | CS42L42_M_SHORT_DET_MASK, (1 << CS42L42_M_DETECT_TF_SHIFT) | (1 << CS42L42_M_DETECT_FT_SHIFT) | (1 << CS42L42_M_HSBIAS_HIZ_SHIFT) | (1 << CS42L42_M_SHORT_RLS_SHIFT) | (1 << CS42L42_M_SHORT_DET_SHIFT)); usleep_range(cs42l42->btn_det_event_dbnce * 1000, cs42l42->btn_det_event_dbnce * 2000); /* Test all 4 level detect biases */ bias_level = 1; do { /* Adjust button detect level sensitivity */ regmap_update_bits(cs42l42->regmap, CS42L42_MIC_DET_CTL1, CS42L42_LATCH_TO_VP_MASK | CS42L42_EVENT_STAT_SEL_MASK | CS42L42_HS_DET_LEVEL_MASK, (1 << CS42L42_LATCH_TO_VP_SHIFT) | (0 << CS42L42_EVENT_STAT_SEL_SHIFT) | (cs42l42->bias_thresholds[bias_level] << CS42L42_HS_DET_LEVEL_SHIFT)); regmap_read(cs42l42->regmap, CS42L42_DET_STATUS2, &detect_status); } while ((detect_status & CS42L42_HS_TRUE_MASK) && (++bias_level < CS42L42_NUM_BIASES)); switch (bias_level) { case 1: /* Function C button press */ bias_level = SND_JACK_BTN_2; dev_dbg(cs42l42->dev, "Function C button press\n"); break; case 2: /* Function B button press */ bias_level = SND_JACK_BTN_1; dev_dbg(cs42l42->dev, "Function B button press\n"); break; case 3: /* Function D button press */ bias_level = SND_JACK_BTN_3; dev_dbg(cs42l42->dev, "Function D button press\n"); break; case 4: /* Function A button press */ bias_level = SND_JACK_BTN_0; dev_dbg(cs42l42->dev, "Function A button press\n"); break; default: bias_level = 0; break; } /* Set button detect level sensitivity back to default */ regmap_update_bits(cs42l42->regmap, CS42L42_MIC_DET_CTL1, CS42L42_LATCH_TO_VP_MASK | CS42L42_EVENT_STAT_SEL_MASK | CS42L42_HS_DET_LEVEL_MASK, (1 << CS42L42_LATCH_TO_VP_SHIFT) | (0 << CS42L42_EVENT_STAT_SEL_SHIFT) | (cs42l42->bias_thresholds[0] << CS42L42_HS_DET_LEVEL_SHIFT)); /* Clear any button interrupts before unmasking them */ regmap_read(cs42l42->regmap, CS42L42_DET_INT_STATUS2, &detect_status); /* Unmask button detect interrupts */ regmap_update_bits(cs42l42->regmap, CS42L42_DET_INT2_MASK, CS42L42_M_DETECT_TF_MASK | CS42L42_M_DETECT_FT_MASK | CS42L42_M_HSBIAS_HIZ_MASK | CS42L42_M_SHORT_RLS_MASK | CS42L42_M_SHORT_DET_MASK, (0 << CS42L42_M_DETECT_TF_SHIFT) | (0 << CS42L42_M_DETECT_FT_SHIFT) | (0 << CS42L42_M_HSBIAS_HIZ_SHIFT) | (1 << CS42L42_M_SHORT_RLS_SHIFT) | (1 << CS42L42_M_SHORT_DET_SHIFT)); return bias_level; } struct cs42l42_irq_params { u16 status_addr; u16 mask_addr; u8 mask; }; static const struct cs42l42_irq_params irq_params_table[] = { {CS42L42_ADC_OVFL_STATUS, CS42L42_ADC_OVFL_INT_MASK, CS42L42_ADC_OVFL_VAL_MASK}, {CS42L42_MIXER_STATUS, CS42L42_MIXER_INT_MASK, CS42L42_MIXER_VAL_MASK}, {CS42L42_SRC_STATUS, CS42L42_SRC_INT_MASK, CS42L42_SRC_VAL_MASK}, {CS42L42_ASP_RX_STATUS, CS42L42_ASP_RX_INT_MASK, CS42L42_ASP_RX_VAL_MASK}, {CS42L42_ASP_TX_STATUS, CS42L42_ASP_TX_INT_MASK, CS42L42_ASP_TX_VAL_MASK}, {CS42L42_CODEC_STATUS, CS42L42_CODEC_INT_MASK, CS42L42_CODEC_VAL_MASK}, {CS42L42_DET_INT_STATUS1, CS42L42_DET_INT1_MASK, CS42L42_DET_INT_VAL1_MASK}, {CS42L42_DET_INT_STATUS2, CS42L42_DET_INT2_MASK, CS42L42_DET_INT_VAL2_MASK}, {CS42L42_SRCPL_INT_STATUS, CS42L42_SRCPL_INT_MASK, CS42L42_SRCPL_VAL_MASK}, {CS42L42_VPMON_STATUS, CS42L42_VPMON_INT_MASK, CS42L42_VPMON_VAL_MASK}, {CS42L42_PLL_LOCK_STATUS, CS42L42_PLL_LOCK_INT_MASK, CS42L42_PLL_LOCK_VAL_MASK}, {CS42L42_TSRS_PLUG_STATUS, CS42L42_TSRS_PLUG_INT_MASK, CS42L42_TSRS_PLUG_VAL_MASK} }; irqreturn_t cs42l42_irq_thread(int irq, void *data) { struct cs42l42_private *cs42l42 = (struct cs42l42_private *)data; unsigned int stickies[12]; unsigned int masks[12]; unsigned int current_plug_status; unsigned int current_button_status; unsigned int i; pm_runtime_get_sync(cs42l42->dev); mutex_lock(&cs42l42->irq_lock); if (cs42l42->suspended || !cs42l42->init_done) { mutex_unlock(&cs42l42->irq_lock); pm_runtime_put_autosuspend(cs42l42->dev); return IRQ_NONE; } /* Read sticky registers to clear interurpt */ for (i = 0; i < ARRAY_SIZE(stickies); i++) { regmap_read(cs42l42->regmap, irq_params_table[i].status_addr, &(stickies[i])); regmap_read(cs42l42->regmap, irq_params_table[i].mask_addr, &(masks[i])); stickies[i] = stickies[i] & (~masks[i]) & irq_params_table[i].mask; } /* Read tip sense status before handling type detect */ current_plug_status = (stickies[11] & (CS42L42_TS_PLUG_MASK | CS42L42_TS_UNPLUG_MASK)) >> CS42L42_TS_PLUG_SHIFT; /* Read button sense status */ current_button_status = stickies[7] & (CS42L42_M_DETECT_TF_MASK | CS42L42_M_DETECT_FT_MASK | CS42L42_M_HSBIAS_HIZ_MASK); /* * Check auto-detect status. Don't assume a previous unplug event has * cleared the flags. If the jack is unplugged and plugged during * system suspend there won't have been an unplug event. */ if ((~masks[5]) & irq_params_table[5].mask) { if (stickies[5] & CS42L42_HSDET_AUTO_DONE_MASK) { cs42l42_process_hs_type_detect(cs42l42); switch (cs42l42->hs_type) { case CS42L42_PLUG_CTIA: case CS42L42_PLUG_OMTP: snd_soc_jack_report(cs42l42->jack, SND_JACK_HEADSET, SND_JACK_HEADSET | SND_JACK_BTN_0 | SND_JACK_BTN_1 | SND_JACK_BTN_2 | SND_JACK_BTN_3); break; case CS42L42_PLUG_HEADPHONE: snd_soc_jack_report(cs42l42->jack, SND_JACK_HEADPHONE, SND_JACK_HEADSET | SND_JACK_BTN_0 | SND_JACK_BTN_1 | SND_JACK_BTN_2 | SND_JACK_BTN_3); break; default: break; } dev_dbg(cs42l42->dev, "Auto detect done (%d)\n", cs42l42->hs_type); } } /* Check tip sense status */ if ((~masks[11]) & irq_params_table[11].mask) { switch (current_plug_status) { case CS42L42_TS_PLUG: if (cs42l42->plug_state != CS42L42_TS_PLUG) { cs42l42->plug_state = CS42L42_TS_PLUG; cs42l42_init_hs_type_detect(cs42l42); } break; case CS42L42_TS_UNPLUG: if (cs42l42->plug_state != CS42L42_TS_UNPLUG) { cs42l42->plug_state = CS42L42_TS_UNPLUG; cs42l42_cancel_hs_type_detect(cs42l42); snd_soc_jack_report(cs42l42->jack, 0, SND_JACK_HEADSET | SND_JACK_BTN_0 | SND_JACK_BTN_1 | SND_JACK_BTN_2 | SND_JACK_BTN_3); dev_dbg(cs42l42->dev, "Unplug event\n"); } break; default: cs42l42->plug_state = CS42L42_TS_TRANS; } } /* Check button detect status */ if (cs42l42->plug_state == CS42L42_TS_PLUG && ((~masks[7]) & irq_params_table[7].mask)) { if (!(current_button_status & CS42L42_M_HSBIAS_HIZ_MASK)) { if (current_button_status & CS42L42_M_DETECT_TF_MASK) { dev_dbg(cs42l42->dev, "Button released\n"); snd_soc_jack_report(cs42l42->jack, 0, SND_JACK_BTN_0 | SND_JACK_BTN_1 | SND_JACK_BTN_2 | SND_JACK_BTN_3); } else if (current_button_status & CS42L42_M_DETECT_FT_MASK) { snd_soc_jack_report(cs42l42->jack, cs42l42_handle_button_press(cs42l42), SND_JACK_BTN_0 | SND_JACK_BTN_1 | SND_JACK_BTN_2 | SND_JACK_BTN_3); } } } mutex_unlock(&cs42l42->irq_lock); pm_runtime_mark_last_busy(cs42l42->dev); pm_runtime_put_autosuspend(cs42l42->dev); return IRQ_HANDLED; } EXPORT_SYMBOL_NS_GPL(cs42l42_irq_thread, SND_SOC_CS42L42_CORE); static void cs42l42_set_interrupt_masks(struct cs42l42_private *cs42l42) { regmap_update_bits(cs42l42->regmap, CS42L42_ADC_OVFL_INT_MASK, CS42L42_ADC_OVFL_MASK, (1 << CS42L42_ADC_OVFL_SHIFT)); regmap_update_bits(cs42l42->regmap, CS42L42_MIXER_INT_MASK, CS42L42_MIX_CHB_OVFL_MASK | CS42L42_MIX_CHA_OVFL_MASK | CS42L42_EQ_OVFL_MASK | CS42L42_EQ_BIQUAD_OVFL_MASK, (1 << CS42L42_MIX_CHB_OVFL_SHIFT) | (1 << CS42L42_MIX_CHA_OVFL_SHIFT) | (1 << CS42L42_EQ_OVFL_SHIFT) | (1 << CS42L42_EQ_BIQUAD_OVFL_SHIFT)); regmap_update_bits(cs42l42->regmap, CS42L42_SRC_INT_MASK, CS42L42_SRC_ILK_MASK | CS42L42_SRC_OLK_MASK | CS42L42_SRC_IUNLK_MASK | CS42L42_SRC_OUNLK_MASK, (1 << CS42L42_SRC_ILK_SHIFT) | (1 << CS42L42_SRC_OLK_SHIFT) | (1 << CS42L42_SRC_IUNLK_SHIFT) | (1 << CS42L42_SRC_OUNLK_SHIFT)); regmap_update_bits(cs42l42->regmap, CS42L42_ASP_RX_INT_MASK, CS42L42_ASPRX_NOLRCK_MASK | CS42L42_ASPRX_EARLY_MASK | CS42L42_ASPRX_LATE_MASK | CS42L42_ASPRX_ERROR_MASK | CS42L42_ASPRX_OVLD_MASK, (1 << CS42L42_ASPRX_NOLRCK_SHIFT) | (1 << CS42L42_ASPRX_EARLY_SHIFT) | (1 << CS42L42_ASPRX_LATE_SHIFT) | (1 << CS42L42_ASPRX_ERROR_SHIFT) | (1 << CS42L42_ASPRX_OVLD_SHIFT)); regmap_update_bits(cs42l42->regmap, CS42L42_ASP_TX_INT_MASK, CS42L42_ASPTX_NOLRCK_MASK | CS42L42_ASPTX_EARLY_MASK | CS42L42_ASPTX_LATE_MASK | CS42L42_ASPTX_SMERROR_MASK, (1 << CS42L42_ASPTX_NOLRCK_SHIFT) | (1 << CS42L42_ASPTX_EARLY_SHIFT) | (1 << CS42L42_ASPTX_LATE_SHIFT) | (1 << CS42L42_ASPTX_SMERROR_SHIFT)); regmap_update_bits(cs42l42->regmap, CS42L42_CODEC_INT_MASK, CS42L42_PDN_DONE_MASK | CS42L42_HSDET_AUTO_DONE_MASK, (1 << CS42L42_PDN_DONE_SHIFT) | (1 << CS42L42_HSDET_AUTO_DONE_SHIFT)); regmap_update_bits(cs42l42->regmap, CS42L42_SRCPL_INT_MASK, CS42L42_SRCPL_ADC_LK_MASK | CS42L42_SRCPL_DAC_LK_MASK | CS42L42_SRCPL_ADC_UNLK_MASK | CS42L42_SRCPL_DAC_UNLK_MASK, (1 << CS42L42_SRCPL_ADC_LK_SHIFT) | (1 << CS42L42_SRCPL_DAC_LK_SHIFT) | (1 << CS42L42_SRCPL_ADC_UNLK_SHIFT) | (1 << CS42L42_SRCPL_DAC_UNLK_SHIFT)); regmap_update_bits(cs42l42->regmap, CS42L42_DET_INT1_MASK, CS42L42_TIP_SENSE_UNPLUG_MASK | CS42L42_TIP_SENSE_PLUG_MASK | CS42L42_HSBIAS_SENSE_MASK, (1 << CS42L42_TIP_SENSE_UNPLUG_SHIFT) | (1 << CS42L42_TIP_SENSE_PLUG_SHIFT) | (1 << CS42L42_HSBIAS_SENSE_SHIFT)); regmap_update_bits(cs42l42->regmap, CS42L42_DET_INT2_MASK, CS42L42_M_DETECT_TF_MASK | CS42L42_M_DETECT_FT_MASK | CS42L42_M_HSBIAS_HIZ_MASK | CS42L42_M_SHORT_RLS_MASK | CS42L42_M_SHORT_DET_MASK, (1 << CS42L42_M_DETECT_TF_SHIFT) | (1 << CS42L42_M_DETECT_FT_SHIFT) | (1 << CS42L42_M_HSBIAS_HIZ_SHIFT) | (1 << CS42L42_M_SHORT_RLS_SHIFT) | (1 << CS42L42_M_SHORT_DET_SHIFT)); regmap_update_bits(cs42l42->regmap, CS42L42_VPMON_INT_MASK, CS42L42_VPMON_MASK, (1 << CS42L42_VPMON_SHIFT)); regmap_update_bits(cs42l42->regmap, CS42L42_PLL_LOCK_INT_MASK, CS42L42_PLL_LOCK_MASK, (1 << CS42L42_PLL_LOCK_SHIFT)); regmap_update_bits(cs42l42->regmap, CS42L42_TSRS_PLUG_INT_MASK, CS42L42_RS_PLUG_MASK | CS42L42_RS_UNPLUG_MASK | CS42L42_TS_PLUG_MASK | CS42L42_TS_UNPLUG_MASK, (1 << CS42L42_RS_PLUG_SHIFT) | (1 << CS42L42_RS_UNPLUG_SHIFT) | (0 << CS42L42_TS_PLUG_SHIFT) | (0 << CS42L42_TS_UNPLUG_SHIFT)); } static void cs42l42_setup_hs_type_detect(struct cs42l42_private *cs42l42) { unsigned int reg; cs42l42->hs_type = CS42L42_PLUG_INVALID; /* * DETECT_MODE must always be 0 with ADC and HP both off otherwise the * FILT+ supply will not charge properly. */ regmap_update_bits(cs42l42->regmap, CS42L42_MISC_DET_CTL, CS42L42_DETECT_MODE_MASK, 0); /* Latch analog controls to VP power domain */ regmap_update_bits(cs42l42->regmap, CS42L42_MIC_DET_CTL1, CS42L42_LATCH_TO_VP_MASK | CS42L42_EVENT_STAT_SEL_MASK | CS42L42_HS_DET_LEVEL_MASK, (1 << CS42L42_LATCH_TO_VP_SHIFT) | (0 << CS42L42_EVENT_STAT_SEL_SHIFT) | (cs42l42->bias_thresholds[0] << CS42L42_HS_DET_LEVEL_SHIFT)); /* Remove ground noise-suppression clamps */ regmap_update_bits(cs42l42->regmap, CS42L42_HS_CLAMP_DISABLE, CS42L42_HS_CLAMP_DISABLE_MASK, (1 << CS42L42_HS_CLAMP_DISABLE_SHIFT)); /* Enable the tip sense circuit */ regmap_update_bits(cs42l42->regmap, CS42L42_TSENSE_CTL, CS42L42_TS_INV_MASK, CS42L42_TS_INV_MASK); regmap_update_bits(cs42l42->regmap, CS42L42_TIPSENSE_CTL, CS42L42_TIP_SENSE_CTRL_MASK | CS42L42_TIP_SENSE_INV_MASK | CS42L42_TIP_SENSE_DEBOUNCE_MASK, (3 << CS42L42_TIP_SENSE_CTRL_SHIFT) | (!cs42l42->ts_inv << CS42L42_TIP_SENSE_INV_SHIFT) | (2 << CS42L42_TIP_SENSE_DEBOUNCE_SHIFT)); /* Save the initial status of the tip sense */ regmap_read(cs42l42->regmap, CS42L42_TSRS_PLUG_STATUS, ®); cs42l42->plug_state = (((char) reg) & (CS42L42_TS_PLUG_MASK | CS42L42_TS_UNPLUG_MASK)) >> CS42L42_TS_PLUG_SHIFT; } static const unsigned int threshold_defaults[] = { CS42L42_HS_DET_LEVEL_15, CS42L42_HS_DET_LEVEL_8, CS42L42_HS_DET_LEVEL_4, CS42L42_HS_DET_LEVEL_1 }; static int cs42l42_handle_device_data(struct device *dev, struct cs42l42_private *cs42l42) { unsigned int val; u32 thresholds[CS42L42_NUM_BIASES]; int ret; int i; ret = device_property_read_u32(dev, "cirrus,ts-inv", &val); if (!ret) { switch (val) { case CS42L42_TS_INV_EN: case CS42L42_TS_INV_DIS: cs42l42->ts_inv = val; break; default: dev_err(dev, "Wrong cirrus,ts-inv DT value %d\n", val); cs42l42->ts_inv = CS42L42_TS_INV_DIS; } } else { cs42l42->ts_inv = CS42L42_TS_INV_DIS; } ret = device_property_read_u32(dev, "cirrus,ts-dbnc-rise", &val); if (!ret) { switch (val) { case CS42L42_TS_DBNCE_0: case CS42L42_TS_DBNCE_125: case CS42L42_TS_DBNCE_250: case CS42L42_TS_DBNCE_500: case CS42L42_TS_DBNCE_750: case CS42L42_TS_DBNCE_1000: case CS42L42_TS_DBNCE_1250: case CS42L42_TS_DBNCE_1500: cs42l42->ts_dbnc_rise = val; break; default: dev_err(dev, "Wrong cirrus,ts-dbnc-rise DT value %d\n", val); cs42l42->ts_dbnc_rise = CS42L42_TS_DBNCE_1000; } } else { cs42l42->ts_dbnc_rise = CS42L42_TS_DBNCE_1000; } regmap_update_bits(cs42l42->regmap, CS42L42_TSENSE_CTL, CS42L42_TS_RISE_DBNCE_TIME_MASK, (cs42l42->ts_dbnc_rise << CS42L42_TS_RISE_DBNCE_TIME_SHIFT)); ret = device_property_read_u32(dev, "cirrus,ts-dbnc-fall", &val); if (!ret) { switch (val) { case CS42L42_TS_DBNCE_0: case CS42L42_TS_DBNCE_125: case CS42L42_TS_DBNCE_250: case CS42L42_TS_DBNCE_500: case CS42L42_TS_DBNCE_750: case CS42L42_TS_DBNCE_1000: case CS42L42_TS_DBNCE_1250: case CS42L42_TS_DBNCE_1500: cs42l42->ts_dbnc_fall = val; break; default: dev_err(dev, "Wrong cirrus,ts-dbnc-fall DT value %d\n", val); cs42l42->ts_dbnc_fall = CS42L42_TS_DBNCE_0; } } else { cs42l42->ts_dbnc_fall = CS42L42_TS_DBNCE_0; } regmap_update_bits(cs42l42->regmap, CS42L42_TSENSE_CTL, CS42L42_TS_FALL_DBNCE_TIME_MASK, (cs42l42->ts_dbnc_fall << CS42L42_TS_FALL_DBNCE_TIME_SHIFT)); ret = device_property_read_u32(dev, "cirrus,btn-det-init-dbnce", &val); if (!ret) { if (val <= CS42L42_BTN_DET_INIT_DBNCE_MAX) cs42l42->btn_det_init_dbnce = val; else { dev_err(dev, "Wrong cirrus,btn-det-init-dbnce DT value %d\n", val); cs42l42->btn_det_init_dbnce = CS42L42_BTN_DET_INIT_DBNCE_DEFAULT; } } else { cs42l42->btn_det_init_dbnce = CS42L42_BTN_DET_INIT_DBNCE_DEFAULT; } ret = device_property_read_u32(dev, "cirrus,btn-det-event-dbnce", &val); if (!ret) { if (val <= CS42L42_BTN_DET_EVENT_DBNCE_MAX) cs42l42->btn_det_event_dbnce = val; else { dev_err(dev, "Wrong cirrus,btn-det-event-dbnce DT value %d\n", val); cs42l42->btn_det_event_dbnce = CS42L42_BTN_DET_EVENT_DBNCE_DEFAULT; } } else { cs42l42->btn_det_event_dbnce = CS42L42_BTN_DET_EVENT_DBNCE_DEFAULT; } ret = device_property_read_u32_array(dev, "cirrus,bias-lvls", thresholds, ARRAY_SIZE(thresholds)); if (!ret) { for (i = 0; i < CS42L42_NUM_BIASES; i++) { if (thresholds[i] <= CS42L42_HS_DET_LEVEL_MAX) cs42l42->bias_thresholds[i] = thresholds[i]; else { dev_err(dev, "Wrong cirrus,bias-lvls[%d] DT value %d\n", i, thresholds[i]); cs42l42->bias_thresholds[i] = threshold_defaults[i]; } } } else { for (i = 0; i < CS42L42_NUM_BIASES; i++) cs42l42->bias_thresholds[i] = threshold_defaults[i]; } ret = device_property_read_u32(dev, "cirrus,hs-bias-ramp-rate", &val); if (!ret) { switch (val) { case CS42L42_HSBIAS_RAMP_FAST_RISE_SLOW_FALL: cs42l42->hs_bias_ramp_rate = val; cs42l42->hs_bias_ramp_time = CS42L42_HSBIAS_RAMP_TIME0; break; case CS42L42_HSBIAS_RAMP_FAST: cs42l42->hs_bias_ramp_rate = val; cs42l42->hs_bias_ramp_time = CS42L42_HSBIAS_RAMP_TIME1; break; case CS42L42_HSBIAS_RAMP_SLOW: cs42l42->hs_bias_ramp_rate = val; cs42l42->hs_bias_ramp_time = CS42L42_HSBIAS_RAMP_TIME2; break; case CS42L42_HSBIAS_RAMP_SLOWEST: cs42l42->hs_bias_ramp_rate = val; cs42l42->hs_bias_ramp_time = CS42L42_HSBIAS_RAMP_TIME3; break; default: dev_err(dev, "Wrong cirrus,hs-bias-ramp-rate DT value %d\n", val); cs42l42->hs_bias_ramp_rate = CS42L42_HSBIAS_RAMP_SLOW; cs42l42->hs_bias_ramp_time = CS42L42_HSBIAS_RAMP_TIME2; } } else { cs42l42->hs_bias_ramp_rate = CS42L42_HSBIAS_RAMP_SLOW; cs42l42->hs_bias_ramp_time = CS42L42_HSBIAS_RAMP_TIME2; } regmap_update_bits(cs42l42->regmap, CS42L42_HS_BIAS_CTL, CS42L42_HSBIAS_RAMP_MASK, (cs42l42->hs_bias_ramp_rate << CS42L42_HSBIAS_RAMP_SHIFT)); if (device_property_read_bool(dev, "cirrus,hs-bias-sense-disable")) cs42l42->hs_bias_sense_en = 0; else cs42l42->hs_bias_sense_en = 1; return 0; } /* Datasheet suspend sequence */ static const struct reg_sequence __maybe_unused cs42l42_shutdown_seq[] = { REG_SEQ0(CS42L42_MIC_DET_CTL1, 0x9F), REG_SEQ0(CS42L42_ADC_OVFL_INT_MASK, 0x01), REG_SEQ0(CS42L42_MIXER_INT_MASK, 0x0F), REG_SEQ0(CS42L42_SRC_INT_MASK, 0x0F), REG_SEQ0(CS42L42_ASP_RX_INT_MASK, 0x1F), REG_SEQ0(CS42L42_ASP_TX_INT_MASK, 0x0F), REG_SEQ0(CS42L42_CODEC_INT_MASK, 0x03), REG_SEQ0(CS42L42_SRCPL_INT_MASK, 0x7F), REG_SEQ0(CS42L42_VPMON_INT_MASK, 0x01), REG_SEQ0(CS42L42_PLL_LOCK_INT_MASK, 0x01), REG_SEQ0(CS42L42_TSRS_PLUG_INT_MASK, 0x0F), REG_SEQ0(CS42L42_WAKE_CTL, 0xE1), REG_SEQ0(CS42L42_DET_INT1_MASK, 0xE0), REG_SEQ0(CS42L42_DET_INT2_MASK, 0xFF), REG_SEQ0(CS42L42_MIXER_CHA_VOL, 0x3F), REG_SEQ0(CS42L42_MIXER_ADC_VOL, 0x3F), REG_SEQ0(CS42L42_MIXER_CHB_VOL, 0x3F), REG_SEQ0(CS42L42_HP_CTL, 0x0F), REG_SEQ0(CS42L42_ASP_RX_DAI0_EN, 0x00), REG_SEQ0(CS42L42_ASP_CLK_CFG, 0x00), REG_SEQ0(CS42L42_HSDET_CTL2, 0x00), REG_SEQ0(CS42L42_PWR_CTL1, 0xFE), REG_SEQ0(CS42L42_PWR_CTL2, 0x8C), REG_SEQ0(CS42L42_DAC_CTL2, 0x02), REG_SEQ0(CS42L42_HS_CLAMP_DISABLE, 0x00), REG_SEQ0(CS42L42_MISC_DET_CTL, 0x03), REG_SEQ0(CS42L42_TIPSENSE_CTL, 0x02), REG_SEQ0(CS42L42_HSBIAS_SC_AUTOCTL, 0x03), REG_SEQ0(CS42L42_PWR_CTL1, 0xFF) }; int cs42l42_suspend(struct device *dev) { struct cs42l42_private *cs42l42 = dev_get_drvdata(dev); unsigned int reg; u8 save_regs[ARRAY_SIZE(cs42l42_shutdown_seq)]; int i, ret; if (!cs42l42->init_done) return 0; /* * Wait for threaded irq handler to be idle and stop it processing * future interrupts. This ensures a safe disable if the interrupt * is shared. */ mutex_lock(&cs42l42->irq_lock); cs42l42->suspended = true; /* Save register values that will be overwritten by shutdown sequence */ for (i = 0; i < ARRAY_SIZE(cs42l42_shutdown_seq); ++i) { regmap_read(cs42l42->regmap, cs42l42_shutdown_seq[i].reg, ®); save_regs[i] = (u8)reg; } /* Shutdown codec */ regmap_multi_reg_write(cs42l42->regmap, cs42l42_shutdown_seq, ARRAY_SIZE(cs42l42_shutdown_seq)); /* All interrupt sources are now disabled */ mutex_unlock(&cs42l42->irq_lock); /* Wait for power-down complete */ msleep(CS42L42_PDN_DONE_TIME_MS); ret = regmap_read_poll_timeout(cs42l42->regmap, CS42L42_CODEC_STATUS, reg, (reg & CS42L42_PDN_DONE_MASK), CS42L42_PDN_DONE_POLL_US, CS42L42_PDN_DONE_TIMEOUT_US); if (ret) dev_warn(dev, "Failed to get PDN_DONE: %d\n", ret); /* Discharge FILT+ */ regmap_update_bits(cs42l42->regmap, CS42L42_PWR_CTL2, CS42L42_DISCHARGE_FILT_MASK, CS42L42_DISCHARGE_FILT_MASK); msleep(CS42L42_FILT_DISCHARGE_TIME_MS); regcache_cache_only(cs42l42->regmap, true); gpiod_set_value_cansleep(cs42l42->reset_gpio, 0); regulator_bulk_disable(ARRAY_SIZE(cs42l42->supplies), cs42l42->supplies); /* Restore register values to the regmap cache */ for (i = 0; i < ARRAY_SIZE(cs42l42_shutdown_seq); ++i) regmap_write(cs42l42->regmap, cs42l42_shutdown_seq[i].reg, save_regs[i]); /* The cached address page register value is now stale */ regcache_drop_region(cs42l42->regmap, CS42L42_PAGE_REGISTER, CS42L42_PAGE_REGISTER); dev_dbg(dev, "System suspended\n"); return 0; } EXPORT_SYMBOL_NS_GPL(cs42l42_suspend, SND_SOC_CS42L42_CORE); int cs42l42_resume(struct device *dev) { struct cs42l42_private *cs42l42 = dev_get_drvdata(dev); int ret; if (!cs42l42->init_done) return 0; /* * If jack was unplugged and re-plugged during suspend it could * have changed type but the tip-sense state hasn't changed. * Force a plugged state to be re-evaluated. */ if (cs42l42->plug_state != CS42L42_TS_UNPLUG) cs42l42->plug_state = CS42L42_TS_TRANS; ret = regulator_bulk_enable(ARRAY_SIZE(cs42l42->supplies), cs42l42->supplies); if (ret != 0) { dev_err(dev, "Failed to enable supplies: %d\n", ret); return ret; } gpiod_set_value_cansleep(cs42l42->reset_gpio, 1); usleep_range(CS42L42_BOOT_TIME_US, CS42L42_BOOT_TIME_US * 2); dev_dbg(dev, "System resume powered up\n"); return 0; } EXPORT_SYMBOL_NS_GPL(cs42l42_resume, SND_SOC_CS42L42_CORE); void cs42l42_resume_restore(struct device *dev) { struct cs42l42_private *cs42l42 = dev_get_drvdata(dev); regcache_cache_only(cs42l42->regmap, false); regcache_mark_dirty(cs42l42->regmap); mutex_lock(&cs42l42->irq_lock); /* Sync LATCH_TO_VP first so the VP domain registers sync correctly */ regcache_sync_region(cs42l42->regmap, CS42L42_MIC_DET_CTL1, CS42L42_MIC_DET_CTL1); regcache_sync(cs42l42->regmap); cs42l42->suspended = false; mutex_unlock(&cs42l42->irq_lock); dev_dbg(dev, "System resumed\n"); } EXPORT_SYMBOL_NS_GPL(cs42l42_resume_restore, SND_SOC_CS42L42_CORE); static int __maybe_unused cs42l42_i2c_resume(struct device *dev) { int ret; ret = cs42l42_resume(dev); if (ret) return ret; cs42l42_resume_restore(dev); return 0; } int cs42l42_common_probe(struct cs42l42_private *cs42l42, const struct snd_soc_component_driver *component_drv, struct snd_soc_dai_driver *dai) { int ret, i; dev_set_drvdata(cs42l42->dev, cs42l42); mutex_init(&cs42l42->irq_lock); BUILD_BUG_ON(ARRAY_SIZE(cs42l42_supply_names) != ARRAY_SIZE(cs42l42->supplies)); for (i = 0; i < ARRAY_SIZE(cs42l42->supplies); i++) cs42l42->supplies[i].supply = cs42l42_supply_names[i]; ret = devm_regulator_bulk_get(cs42l42->dev, ARRAY_SIZE(cs42l42->supplies), cs42l42->supplies); if (ret != 0) { dev_err(cs42l42->dev, "Failed to request supplies: %d\n", ret); return ret; } ret = regulator_bulk_enable(ARRAY_SIZE(cs42l42->supplies), cs42l42->supplies); if (ret != 0) { dev_err(cs42l42->dev, "Failed to enable supplies: %d\n", ret); return ret; } /* Reset the Device */ cs42l42->reset_gpio = devm_gpiod_get_optional(cs42l42->dev, "reset", GPIOD_OUT_LOW); if (IS_ERR(cs42l42->reset_gpio)) { ret = PTR_ERR(cs42l42->reset_gpio); goto err_disable_noreset; } if (cs42l42->reset_gpio) { dev_dbg(cs42l42->dev, "Found reset GPIO\n"); /* * ACPI can override the default GPIO state we requested * so ensure that we start with RESET low. */ gpiod_set_value_cansleep(cs42l42->reset_gpio, 0); /* Ensure minimum reset pulse width */ usleep_range(10, 500); /* * On SoundWire keep the chip in reset until we get an UNATTACH * notification from the SoundWire core. This acts as a * synchronization point to reject stale ATTACH notifications * if the chip was already enumerated before we reset it. */ if (cs42l42->sdw_peripheral) cs42l42->sdw_waiting_first_unattach = true; else gpiod_set_value_cansleep(cs42l42->reset_gpio, 1); } usleep_range(CS42L42_BOOT_TIME_US, CS42L42_BOOT_TIME_US * 2); /* Request IRQ if one was specified */ if (cs42l42->irq) { ret = request_threaded_irq(cs42l42->irq, NULL, cs42l42_irq_thread, IRQF_ONESHOT | IRQF_TRIGGER_LOW, "cs42l42", cs42l42); if (ret) { dev_err_probe(cs42l42->dev, ret, "Failed to request IRQ\n"); goto err_disable_noirq; } } /* Register codec now so it can EPROBE_DEFER */ ret = devm_snd_soc_register_component(cs42l42->dev, component_drv, dai, 1); if (ret < 0) goto err; return 0; err: if (cs42l42->irq) free_irq(cs42l42->irq, cs42l42); err_disable_noirq: gpiod_set_value_cansleep(cs42l42->reset_gpio, 0); err_disable_noreset: regulator_bulk_disable(ARRAY_SIZE(cs42l42->supplies), cs42l42->supplies); return ret; } EXPORT_SYMBOL_NS_GPL(cs42l42_common_probe, SND_SOC_CS42L42_CORE); int cs42l42_init(struct cs42l42_private *cs42l42) { unsigned int reg; int devid, ret; /* initialize codec */ devid = cirrus_read_device_id(cs42l42->regmap, CS42L42_DEVID_AB); if (devid < 0) { ret = devid; dev_err(cs42l42->dev, "Failed to read device ID: %d\n", ret); goto err_disable; } if (devid != cs42l42->devid) { ret = -ENODEV; dev_err(cs42l42->dev, "CS42L%x Device ID (%X). Expected %X\n", cs42l42->devid & 0xff, devid, cs42l42->devid); goto err_disable; } ret = regmap_read(cs42l42->regmap, CS42L42_REVID, ®); if (ret < 0) { dev_err(cs42l42->dev, "Get Revision ID failed\n"); goto err_shutdown; } dev_info(cs42l42->dev, "Cirrus Logic CS42L%x, Revision: %02X\n", cs42l42->devid & 0xff, reg & 0xFF); /* Power up the codec */ regmap_update_bits(cs42l42->regmap, CS42L42_PWR_CTL1, CS42L42_ASP_DAO_PDN_MASK | CS42L42_ASP_DAI_PDN_MASK | CS42L42_MIXER_PDN_MASK | CS42L42_EQ_PDN_MASK | CS42L42_HP_PDN_MASK | CS42L42_ADC_PDN_MASK | CS42L42_PDN_ALL_MASK, (1 << CS42L42_ASP_DAO_PDN_SHIFT) | (1 << CS42L42_ASP_DAI_PDN_SHIFT) | (1 << CS42L42_MIXER_PDN_SHIFT) | (1 << CS42L42_EQ_PDN_SHIFT) | (1 << CS42L42_HP_PDN_SHIFT) | (1 << CS42L42_ADC_PDN_SHIFT) | (0 << CS42L42_PDN_ALL_SHIFT)); ret = cs42l42_handle_device_data(cs42l42->dev, cs42l42); if (ret != 0) goto err_shutdown; /* * SRC power is linked to ASP power so doesn't work in Soundwire mode. * Override it and use DAPM to control SRC power for Soundwire. */ if (cs42l42->sdw_peripheral) { regmap_update_bits(cs42l42->regmap, CS42L42_PWR_CTL2, CS42L42_SRC_PDN_OVERRIDE_MASK | CS42L42_DAC_SRC_PDNB_MASK | CS42L42_ADC_SRC_PDNB_MASK, CS42L42_SRC_PDN_OVERRIDE_MASK); } /* Setup headset detection */ cs42l42_setup_hs_type_detect(cs42l42); /* * Set init_done before unmasking interrupts so any triggered * immediately will be handled. */ cs42l42->init_done = true; /* Mask/Unmask Interrupts */ cs42l42_set_interrupt_masks(cs42l42); return 0; err_shutdown: regmap_write(cs42l42->regmap, CS42L42_CODEC_INT_MASK, 0xff); regmap_write(cs42l42->regmap, CS42L42_TSRS_PLUG_INT_MASK, 0xff); regmap_write(cs42l42->regmap, CS42L42_PWR_CTL1, 0xff); err_disable: if (cs42l42->irq) free_irq(cs42l42->irq, cs42l42); gpiod_set_value_cansleep(cs42l42->reset_gpio, 0); regulator_bulk_disable(ARRAY_SIZE(cs42l42->supplies), cs42l42->supplies); return ret; } EXPORT_SYMBOL_NS_GPL(cs42l42_init, SND_SOC_CS42L42_CORE); void cs42l42_common_remove(struct cs42l42_private *cs42l42) { if (cs42l42->irq) free_irq(cs42l42->irq, cs42l42); /* * The driver might not have control of reset and power supplies, * so ensure that the chip internals are powered down. */ if (cs42l42->init_done) { regmap_write(cs42l42->regmap, CS42L42_CODEC_INT_MASK, 0xff); regmap_write(cs42l42->regmap, CS42L42_TSRS_PLUG_INT_MASK, 0xff); regmap_write(cs42l42->regmap, CS42L42_PWR_CTL1, 0xff); } gpiod_set_value_cansleep(cs42l42->reset_gpio, 0); regulator_bulk_disable(ARRAY_SIZE(cs42l42->supplies), cs42l42->supplies); } EXPORT_SYMBOL_NS_GPL(cs42l42_common_remove, SND_SOC_CS42L42_CORE); MODULE_DESCRIPTION("ASoC CS42L42 driver"); MODULE_AUTHOR("James Schulman, Cirrus Logic Inc, <james.schulman@cirrus.com>"); MODULE_AUTHOR("Brian Austin, Cirrus Logic Inc, <brian.austin@cirrus.com>"); MODULE_AUTHOR("Michael White, Cirrus Logic Inc, <michael.white@cirrus.com>"); MODULE_AUTHOR("Lucas Tanure <tanureal@opensource.cirrus.com>"); MODULE_AUTHOR("Richard Fitzgerald <rf@opensource.cirrus.com>"); MODULE_AUTHOR("Vitaly Rodionov <vitalyr@opensource.cirrus.com>"); MODULE_LICENSE("GPL");
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1