Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Pierre-Louis Bossart | 2739 | 36.65% | 67 | 45.58% |
Liam Girdwood | 2135 | 28.57% | 10 | 6.80% |
Peter Ujfalusi | 1121 | 15.00% | 15 | 10.20% |
Daniel Baluta | 326 | 4.36% | 1 | 0.68% |
Bard Liao | 274 | 3.67% | 6 | 4.08% |
Ranjani Sridharan | 272 | 3.64% | 15 | 10.20% |
Guennadi Liakhovetski | 151 | 2.02% | 3 | 2.04% |
Kai Vehmanen | 129 | 1.73% | 7 | 4.76% |
Rander Wang | 98 | 1.31% | 4 | 2.72% |
Maarten Lankhorst | 51 | 0.68% | 2 | 1.36% |
Noah Klayman | 42 | 0.56% | 1 | 0.68% |
Pan Xiuli | 34 | 0.45% | 1 | 0.68% |
Jaroslav Kysela | 32 | 0.43% | 3 | 2.04% |
Jaska Uimonen | 17 | 0.23% | 1 | 0.68% |
Zhu Yingjiang | 17 | 0.23% | 2 | 1.36% |
Fred Oh | 16 | 0.21% | 2 | 1.36% |
Sathyanarayana Nujella | 8 | 0.11% | 1 | 0.68% |
Takashi Iwai | 8 | 0.11% | 4 | 2.72% |
Libin Yang | 2 | 0.03% | 1 | 0.68% |
Colin Ian King | 1 | 0.01% | 1 | 0.68% |
Total | 7473 | 147 |
// SPDX-License-Identifier: (GPL-2.0-only OR BSD-3-Clause) // // This file is provided under a dual BSD/GPLv2 license. When using or // redistributing this file, you may do so under either license. // // Copyright(c) 2018 Intel Corporation. All rights reserved. // // Authors: Liam Girdwood <liam.r.girdwood@linux.intel.com> // Ranjani Sridharan <ranjani.sridharan@linux.intel.com> // Rander Wang <rander.wang@intel.com> // Keyon Jie <yang.jie@linux.intel.com> // /* * Hardware interface for generic Intel audio DSP HDA IP */ #include <sound/hdaudio_ext.h> #include <sound/hda_register.h> #include <linux/acpi.h> #include <linux/module.h> #include <linux/soundwire/sdw.h> #include <linux/soundwire/sdw_intel.h> #include <sound/intel-dsp-config.h> #include <sound/intel-nhlt.h> #include <sound/sof.h> #include <sound/sof/xtensa.h> #include <sound/hda-mlink.h> #include "../sof-audio.h" #include "../sof-pci-dev.h" #include "../ops.h" #include "hda.h" #include "telemetry.h" #define CREATE_TRACE_POINTS #include <trace/events/sof_intel.h> #if IS_ENABLED(CONFIG_SND_SOC_SOF_HDA) #include <sound/soc-acpi-intel-match.h> #endif /* platform specific devices */ #include "shim.h" #define EXCEPT_MAX_HDR_SIZE 0x400 #define HDA_EXT_ROM_STATUS_SIZE 8 static u32 hda_get_interface_mask(struct snd_sof_dev *sdev) { const struct sof_intel_dsp_desc *chip; u32 interface_mask[2] = { 0 }; chip = get_chip_info(sdev->pdata); switch (chip->hw_ip_version) { case SOF_INTEL_TANGIER: case SOF_INTEL_BAYTRAIL: case SOF_INTEL_BROADWELL: interface_mask[0] = BIT(SOF_DAI_INTEL_SSP); break; case SOF_INTEL_CAVS_1_5: case SOF_INTEL_CAVS_1_5_PLUS: interface_mask[0] = BIT(SOF_DAI_INTEL_SSP) | BIT(SOF_DAI_INTEL_DMIC) | BIT(SOF_DAI_INTEL_HDA); interface_mask[1] = BIT(SOF_DAI_INTEL_HDA); break; case SOF_INTEL_CAVS_1_8: case SOF_INTEL_CAVS_2_0: case SOF_INTEL_CAVS_2_5: case SOF_INTEL_ACE_1_0: interface_mask[0] = BIT(SOF_DAI_INTEL_SSP) | BIT(SOF_DAI_INTEL_DMIC) | BIT(SOF_DAI_INTEL_HDA) | BIT(SOF_DAI_INTEL_ALH); interface_mask[1] = BIT(SOF_DAI_INTEL_HDA); break; case SOF_INTEL_ACE_2_0: interface_mask[0] = BIT(SOF_DAI_INTEL_SSP) | BIT(SOF_DAI_INTEL_DMIC) | BIT(SOF_DAI_INTEL_HDA) | BIT(SOF_DAI_INTEL_ALH); interface_mask[1] = interface_mask[0]; /* all interfaces accessible without DSP */ break; default: break; } return interface_mask[sdev->dspless_mode_selected]; } #if IS_ENABLED(CONFIG_SND_SOC_SOF_INTEL_SOUNDWIRE) /* * The default for SoundWire clock stop quirks is to power gate the IP * and do a Bus Reset, this will need to be modified when the DSP * needs to remain in D0i3 so that the Master does not lose context * and enumeration is not required on clock restart */ static int sdw_clock_stop_quirks = SDW_INTEL_CLK_STOP_BUS_RESET; module_param(sdw_clock_stop_quirks, int, 0444); MODULE_PARM_DESC(sdw_clock_stop_quirks, "SOF SoundWire clock stop quirks"); static int sdw_params_stream(struct device *dev, struct sdw_intel_stream_params_data *params_data) { struct snd_soc_dai *d = params_data->dai; struct snd_soc_dapm_widget *w = snd_soc_dai_get_widget(d, params_data->substream->stream); struct snd_sof_dai_config_data data = { 0 }; data.dai_index = (params_data->link_id << 8) | d->id; data.dai_data = params_data->alh_stream_id; return hda_dai_config(w, SOF_DAI_CONFIG_FLAGS_HW_PARAMS, &data); } struct sdw_intel_ops sdw_callback = { .params_stream = sdw_params_stream, }; static int sdw_ace2x_params_stream(struct device *dev, struct sdw_intel_stream_params_data *params_data) { return sdw_hda_dai_hw_params(params_data->substream, params_data->hw_params, params_data->dai, params_data->link_id); } static int sdw_ace2x_free_stream(struct device *dev, struct sdw_intel_stream_free_data *free_data) { return sdw_hda_dai_hw_free(free_data->substream, free_data->dai, free_data->link_id); } static int sdw_ace2x_trigger(struct snd_pcm_substream *substream, int cmd, struct snd_soc_dai *dai) { return sdw_hda_dai_trigger(substream, cmd, dai); } static struct sdw_intel_ops sdw_ace2x_callback = { .params_stream = sdw_ace2x_params_stream, .free_stream = sdw_ace2x_free_stream, .trigger = sdw_ace2x_trigger, }; void hda_common_enable_sdw_irq(struct snd_sof_dev *sdev, bool enable) { struct sof_intel_hda_dev *hdev; hdev = sdev->pdata->hw_pdata; if (!hdev->sdw) return; snd_sof_dsp_update_bits(sdev, HDA_DSP_BAR, HDA_DSP_REG_ADSPIC2, HDA_DSP_REG_ADSPIC2_SNDW, enable ? HDA_DSP_REG_ADSPIC2_SNDW : 0); } void hda_sdw_int_enable(struct snd_sof_dev *sdev, bool enable) { u32 interface_mask = hda_get_interface_mask(sdev); const struct sof_intel_dsp_desc *chip; if (!(interface_mask & BIT(SOF_DAI_INTEL_ALH))) return; chip = get_chip_info(sdev->pdata); if (chip && chip->enable_sdw_irq) chip->enable_sdw_irq(sdev, enable); } static int hda_sdw_acpi_scan(struct snd_sof_dev *sdev) { u32 interface_mask = hda_get_interface_mask(sdev); struct sof_intel_hda_dev *hdev; acpi_handle handle; int ret; if (!(interface_mask & BIT(SOF_DAI_INTEL_ALH))) return -EINVAL; handle = ACPI_HANDLE(sdev->dev); /* save ACPI info for the probe step */ hdev = sdev->pdata->hw_pdata; ret = sdw_intel_acpi_scan(handle, &hdev->info); if (ret < 0) return -EINVAL; return 0; } static int hda_sdw_probe(struct snd_sof_dev *sdev) { const struct sof_intel_dsp_desc *chip; struct sof_intel_hda_dev *hdev; struct sdw_intel_res res; void *sdw; hdev = sdev->pdata->hw_pdata; memset(&res, 0, sizeof(res)); chip = get_chip_info(sdev->pdata); if (chip->hw_ip_version < SOF_INTEL_ACE_2_0) { res.mmio_base = sdev->bar[HDA_DSP_BAR]; res.hw_ops = &sdw_intel_cnl_hw_ops; res.shim_base = hdev->desc->sdw_shim_base; res.alh_base = hdev->desc->sdw_alh_base; res.ext = false; res.ops = &sdw_callback; } else { /* * retrieve eml_lock needed to protect shared registers * in the HDaudio multi-link areas */ res.eml_lock = hdac_bus_eml_get_mutex(sof_to_bus(sdev), true, AZX_REG_ML_LEPTR_ID_SDW); if (!res.eml_lock) return -ENODEV; res.mmio_base = sdev->bar[HDA_DSP_HDA_BAR]; /* * the SHIM and SoundWire register offsets are link-specific * and will be determined when adding auxiliary devices */ res.hw_ops = &sdw_intel_lnl_hw_ops; res.ext = true; res.ops = &sdw_ace2x_callback; } res.irq = sdev->ipc_irq; res.handle = hdev->info.handle; res.parent = sdev->dev; res.dev = sdev->dev; res.clock_stop_quirks = sdw_clock_stop_quirks; res.hbus = sof_to_bus(sdev); /* * ops and arg fields are not populated for now, * they will be needed when the DAI callbacks are * provided */ /* we could filter links here if needed, e.g for quirks */ res.count = hdev->info.count; res.link_mask = hdev->info.link_mask; sdw = sdw_intel_probe(&res); if (!sdw) { dev_err(sdev->dev, "error: SoundWire probe failed\n"); return -EINVAL; } /* save context */ hdev->sdw = sdw; return 0; } int hda_sdw_check_lcount_common(struct snd_sof_dev *sdev) { struct sof_intel_hda_dev *hdev; struct sdw_intel_ctx *ctx; u32 caps; hdev = sdev->pdata->hw_pdata; ctx = hdev->sdw; caps = snd_sof_dsp_read(sdev, HDA_DSP_BAR, ctx->shim_base + SDW_SHIM_LCAP); caps &= SDW_SHIM_LCAP_LCOUNT_MASK; /* Check HW supported vs property value */ if (caps < ctx->count) { dev_err(sdev->dev, "%s: BIOS master count %d is larger than hardware capabilities %d\n", __func__, ctx->count, caps); return -EINVAL; } return 0; } int hda_sdw_check_lcount_ext(struct snd_sof_dev *sdev) { struct sof_intel_hda_dev *hdev; struct sdw_intel_ctx *ctx; struct hdac_bus *bus; u32 slcount; bus = sof_to_bus(sdev); hdev = sdev->pdata->hw_pdata; ctx = hdev->sdw; slcount = hdac_bus_eml_get_count(bus, true, AZX_REG_ML_LEPTR_ID_SDW); /* Check HW supported vs property value */ if (slcount < ctx->count) { dev_err(sdev->dev, "%s: BIOS master count %d is larger than hardware capabilities %d\n", __func__, ctx->count, slcount); return -EINVAL; } return 0; } static int hda_sdw_check_lcount(struct snd_sof_dev *sdev) { const struct sof_intel_dsp_desc *chip; chip = get_chip_info(sdev->pdata); if (chip && chip->read_sdw_lcount) return chip->read_sdw_lcount(sdev); return 0; } int hda_sdw_startup(struct snd_sof_dev *sdev) { struct sof_intel_hda_dev *hdev; struct snd_sof_pdata *pdata = sdev->pdata; int ret; hdev = sdev->pdata->hw_pdata; if (!hdev->sdw) return 0; if (pdata->machine && !pdata->machine->mach_params.link_mask) return 0; ret = hda_sdw_check_lcount(sdev); if (ret < 0) return ret; return sdw_intel_startup(hdev->sdw); } static int hda_sdw_exit(struct snd_sof_dev *sdev) { struct sof_intel_hda_dev *hdev; hdev = sdev->pdata->hw_pdata; hda_sdw_int_enable(sdev, false); if (hdev->sdw) sdw_intel_exit(hdev->sdw); hdev->sdw = NULL; return 0; } bool hda_common_check_sdw_irq(struct snd_sof_dev *sdev) { struct sof_intel_hda_dev *hdev; bool ret = false; u32 irq_status; hdev = sdev->pdata->hw_pdata; if (!hdev->sdw) return ret; /* store status */ irq_status = snd_sof_dsp_read(sdev, HDA_DSP_BAR, HDA_DSP_REG_ADSPIS2); /* invalid message ? */ if (irq_status == 0xffffffff) goto out; /* SDW message ? */ if (irq_status & HDA_DSP_REG_ADSPIS2_SNDW) ret = true; out: return ret; } static bool hda_dsp_check_sdw_irq(struct snd_sof_dev *sdev) { u32 interface_mask = hda_get_interface_mask(sdev); const struct sof_intel_dsp_desc *chip; if (!(interface_mask & BIT(SOF_DAI_INTEL_ALH))) return false; chip = get_chip_info(sdev->pdata); if (chip && chip->check_sdw_irq) return chip->check_sdw_irq(sdev); return false; } static irqreturn_t hda_dsp_sdw_thread(int irq, void *context) { return sdw_intel_thread(irq, context); } bool hda_sdw_check_wakeen_irq_common(struct snd_sof_dev *sdev) { struct sof_intel_hda_dev *hdev; hdev = sdev->pdata->hw_pdata; if (hdev->sdw && snd_sof_dsp_read(sdev, HDA_DSP_BAR, hdev->desc->sdw_shim_base + SDW_SHIM_WAKESTS)) return true; return false; } static bool hda_sdw_check_wakeen_irq(struct snd_sof_dev *sdev) { u32 interface_mask = hda_get_interface_mask(sdev); const struct sof_intel_dsp_desc *chip; if (!(interface_mask & BIT(SOF_DAI_INTEL_ALH))) return false; chip = get_chip_info(sdev->pdata); if (chip && chip->check_sdw_wakeen_irq) return chip->check_sdw_wakeen_irq(sdev); return false; } void hda_sdw_process_wakeen(struct snd_sof_dev *sdev) { u32 interface_mask = hda_get_interface_mask(sdev); struct sof_intel_hda_dev *hdev; if (!(interface_mask & BIT(SOF_DAI_INTEL_ALH))) return; hdev = sdev->pdata->hw_pdata; if (!hdev->sdw) return; sdw_intel_process_wakeen_event(hdev->sdw); } #else /* IS_ENABLED(CONFIG_SND_SOC_SOF_INTEL_SOUNDWIRE) */ static inline int hda_sdw_acpi_scan(struct snd_sof_dev *sdev) { return 0; } static inline int hda_sdw_probe(struct snd_sof_dev *sdev) { return 0; } static inline int hda_sdw_exit(struct snd_sof_dev *sdev) { return 0; } static inline bool hda_dsp_check_sdw_irq(struct snd_sof_dev *sdev) { return false; } static inline irqreturn_t hda_dsp_sdw_thread(int irq, void *context) { return IRQ_HANDLED; } static inline bool hda_sdw_check_wakeen_irq(struct snd_sof_dev *sdev) { return false; } #endif /* IS_ENABLED(CONFIG_SND_SOC_SOF_INTEL_SOUNDWIRE) */ /* * Debug */ struct hda_dsp_msg_code { u32 code; const char *text; }; #if IS_ENABLED(CONFIG_SND_SOC_SOF_DEBUG) static bool hda_use_msi = true; module_param_named(use_msi, hda_use_msi, bool, 0444); MODULE_PARM_DESC(use_msi, "SOF HDA use PCI MSI mode"); #else #define hda_use_msi (1) #endif int sof_hda_position_quirk = SOF_HDA_POSITION_QUIRK_USE_DPIB_REGISTERS; module_param_named(position_quirk, sof_hda_position_quirk, int, 0444); MODULE_PARM_DESC(position_quirk, "SOF HDaudio position quirk"); static char *hda_model; module_param(hda_model, charp, 0444); MODULE_PARM_DESC(hda_model, "Use the given HDA board model."); static int dmic_num_override = -1; module_param_named(dmic_num, dmic_num_override, int, 0444); MODULE_PARM_DESC(dmic_num, "SOF HDA DMIC number"); static int mclk_id_override = -1; module_param_named(mclk_id, mclk_id_override, int, 0444); MODULE_PARM_DESC(mclk_id, "SOF SSP mclk_id"); static const struct hda_dsp_msg_code hda_dsp_rom_fw_error_texts[] = { {HDA_DSP_ROM_CSE_ERROR, "error: cse error"}, {HDA_DSP_ROM_CSE_WRONG_RESPONSE, "error: cse wrong response"}, {HDA_DSP_ROM_IMR_TO_SMALL, "error: IMR too small"}, {HDA_DSP_ROM_BASE_FW_NOT_FOUND, "error: base fw not found"}, {HDA_DSP_ROM_CSE_VALIDATION_FAILED, "error: signature verification failed"}, {HDA_DSP_ROM_IPC_FATAL_ERROR, "error: ipc fatal error"}, {HDA_DSP_ROM_L2_CACHE_ERROR, "error: L2 cache error"}, {HDA_DSP_ROM_LOAD_OFFSET_TO_SMALL, "error: load offset too small"}, {HDA_DSP_ROM_API_PTR_INVALID, "error: API ptr invalid"}, {HDA_DSP_ROM_BASEFW_INCOMPAT, "error: base fw incompatible"}, {HDA_DSP_ROM_UNHANDLED_INTERRUPT, "error: unhandled interrupt"}, {HDA_DSP_ROM_MEMORY_HOLE_ECC, "error: ECC memory hole"}, {HDA_DSP_ROM_KERNEL_EXCEPTION, "error: kernel exception"}, {HDA_DSP_ROM_USER_EXCEPTION, "error: user exception"}, {HDA_DSP_ROM_UNEXPECTED_RESET, "error: unexpected reset"}, {HDA_DSP_ROM_NULL_FW_ENTRY, "error: null FW entry point"}, }; #define FSR_ROM_STATE_ENTRY(state) {FSR_STATE_ROM_##state, #state} static const struct hda_dsp_msg_code fsr_rom_state_names[] = { FSR_ROM_STATE_ENTRY(INIT), FSR_ROM_STATE_ENTRY(INIT_DONE), FSR_ROM_STATE_ENTRY(CSE_MANIFEST_LOADED), FSR_ROM_STATE_ENTRY(FW_MANIFEST_LOADED), FSR_ROM_STATE_ENTRY(FW_FW_LOADED), FSR_ROM_STATE_ENTRY(FW_ENTERED), FSR_ROM_STATE_ENTRY(VERIFY_FEATURE_MASK), FSR_ROM_STATE_ENTRY(GET_LOAD_OFFSET), FSR_ROM_STATE_ENTRY(FETCH_ROM_EXT), FSR_ROM_STATE_ENTRY(FETCH_ROM_EXT_DONE), /* CSE states */ FSR_ROM_STATE_ENTRY(CSE_IMR_REQUEST), FSR_ROM_STATE_ENTRY(CSE_IMR_GRANTED), FSR_ROM_STATE_ENTRY(CSE_VALIDATE_IMAGE_REQUEST), FSR_ROM_STATE_ENTRY(CSE_IMAGE_VALIDATED), FSR_ROM_STATE_ENTRY(CSE_IPC_IFACE_INIT), FSR_ROM_STATE_ENTRY(CSE_IPC_RESET_PHASE_1), FSR_ROM_STATE_ENTRY(CSE_IPC_OPERATIONAL_ENTRY), FSR_ROM_STATE_ENTRY(CSE_IPC_OPERATIONAL), FSR_ROM_STATE_ENTRY(CSE_IPC_DOWN), }; #define FSR_BRINGUP_STATE_ENTRY(state) {FSR_STATE_BRINGUP_##state, #state} static const struct hda_dsp_msg_code fsr_bringup_state_names[] = { FSR_BRINGUP_STATE_ENTRY(INIT), FSR_BRINGUP_STATE_ENTRY(INIT_DONE), FSR_BRINGUP_STATE_ENTRY(HPSRAM_LOAD), FSR_BRINGUP_STATE_ENTRY(UNPACK_START), FSR_BRINGUP_STATE_ENTRY(IMR_RESTORE), FSR_BRINGUP_STATE_ENTRY(FW_ENTERED), }; #define FSR_WAIT_STATE_ENTRY(state) {FSR_WAIT_FOR_##state, #state} static const struct hda_dsp_msg_code fsr_wait_state_names[] = { FSR_WAIT_STATE_ENTRY(IPC_BUSY), FSR_WAIT_STATE_ENTRY(IPC_DONE), FSR_WAIT_STATE_ENTRY(CACHE_INVALIDATION), FSR_WAIT_STATE_ENTRY(LP_SRAM_OFF), FSR_WAIT_STATE_ENTRY(DMA_BUFFER_FULL), FSR_WAIT_STATE_ENTRY(CSE_CSR), }; #define FSR_MODULE_NAME_ENTRY(mod) [FSR_MOD_##mod] = #mod static const char * const fsr_module_names[] = { FSR_MODULE_NAME_ENTRY(ROM), FSR_MODULE_NAME_ENTRY(ROM_BYP), FSR_MODULE_NAME_ENTRY(BASE_FW), FSR_MODULE_NAME_ENTRY(LP_BOOT), FSR_MODULE_NAME_ENTRY(BRNGUP), FSR_MODULE_NAME_ENTRY(ROM_EXT), }; static const char * hda_dsp_get_state_text(u32 code, const struct hda_dsp_msg_code *msg_code, size_t array_size) { int i; for (i = 0; i < array_size; i++) { if (code == msg_code[i].code) return msg_code[i].text; } return NULL; } static void hda_dsp_get_state(struct snd_sof_dev *sdev, const char *level) { const struct sof_intel_dsp_desc *chip = get_chip_info(sdev->pdata); const char *state_text, *error_text, *module_text; u32 fsr, state, wait_state, module, error_code; fsr = snd_sof_dsp_read(sdev, HDA_DSP_BAR, chip->rom_status_reg); state = FSR_TO_STATE_CODE(fsr); wait_state = FSR_TO_WAIT_STATE_CODE(fsr); module = FSR_TO_MODULE_CODE(fsr); if (module > FSR_MOD_ROM_EXT) module_text = "unknown"; else module_text = fsr_module_names[module]; if (module == FSR_MOD_BRNGUP) state_text = hda_dsp_get_state_text(state, fsr_bringup_state_names, ARRAY_SIZE(fsr_bringup_state_names)); else state_text = hda_dsp_get_state_text(state, fsr_rom_state_names, ARRAY_SIZE(fsr_rom_state_names)); /* not for us, must be generic sof message */ if (!state_text) { dev_printk(level, sdev->dev, "%#010x: unknown ROM status value\n", fsr); return; } if (wait_state) { const char *wait_state_text; wait_state_text = hda_dsp_get_state_text(wait_state, fsr_wait_state_names, ARRAY_SIZE(fsr_wait_state_names)); if (!wait_state_text) wait_state_text = "unknown"; dev_printk(level, sdev->dev, "%#010x: module: %s, state: %s, waiting for: %s, %s\n", fsr, module_text, state_text, wait_state_text, fsr & FSR_HALTED ? "not running" : "running"); } else { dev_printk(level, sdev->dev, "%#010x: module: %s, state: %s, %s\n", fsr, module_text, state_text, fsr & FSR_HALTED ? "not running" : "running"); } error_code = snd_sof_dsp_read(sdev, HDA_DSP_BAR, chip->rom_status_reg + 4); if (!error_code) return; error_text = hda_dsp_get_state_text(error_code, hda_dsp_rom_fw_error_texts, ARRAY_SIZE(hda_dsp_rom_fw_error_texts)); if (!error_text) error_text = "unknown"; if (state == FSR_STATE_FW_ENTERED) dev_printk(level, sdev->dev, "status code: %#x (%s)\n", error_code, error_text); else dev_printk(level, sdev->dev, "error code: %#x (%s)\n", error_code, error_text); } static void hda_dsp_get_registers(struct snd_sof_dev *sdev, struct sof_ipc_dsp_oops_xtensa *xoops, struct sof_ipc_panic_info *panic_info, u32 *stack, size_t stack_words) { u32 offset = sdev->dsp_oops_offset; /* first read registers */ sof_mailbox_read(sdev, offset, xoops, sizeof(*xoops)); /* note: variable AR register array is not read */ /* then get panic info */ if (xoops->arch_hdr.totalsize > EXCEPT_MAX_HDR_SIZE) { dev_err(sdev->dev, "invalid header size 0x%x. FW oops is bogus\n", xoops->arch_hdr.totalsize); return; } offset += xoops->arch_hdr.totalsize; sof_block_read(sdev, sdev->mmio_bar, offset, panic_info, sizeof(*panic_info)); /* then get the stack */ offset += sizeof(*panic_info); sof_block_read(sdev, sdev->mmio_bar, offset, stack, stack_words * sizeof(u32)); } /* dump the first 8 dwords representing the extended ROM status */ static void hda_dsp_dump_ext_rom_status(struct snd_sof_dev *sdev, const char *level, u32 flags) { const struct sof_intel_dsp_desc *chip; char msg[128]; int len = 0; u32 value; int i; chip = get_chip_info(sdev->pdata); for (i = 0; i < HDA_EXT_ROM_STATUS_SIZE; i++) { value = snd_sof_dsp_read(sdev, HDA_DSP_BAR, chip->rom_status_reg + i * 0x4); len += scnprintf(msg + len, sizeof(msg) - len, " 0x%x", value); } dev_printk(level, sdev->dev, "extended rom status: %s", msg); } void hda_dsp_dump(struct snd_sof_dev *sdev, u32 flags) { char *level = (flags & SOF_DBG_DUMP_OPTIONAL) ? KERN_DEBUG : KERN_ERR; struct sof_ipc_dsp_oops_xtensa xoops; struct sof_ipc_panic_info panic_info; u32 stack[HDA_DSP_STACK_DUMP_SIZE]; /* print ROM/FW status */ hda_dsp_get_state(sdev, level); /* The firmware register dump only available with IPC3 */ if (flags & SOF_DBG_DUMP_REGS && sdev->pdata->ipc_type == SOF_IPC_TYPE_3) { u32 status = snd_sof_dsp_read(sdev, HDA_DSP_BAR, HDA_DSP_SRAM_REG_FW_STATUS); u32 panic = snd_sof_dsp_read(sdev, HDA_DSP_BAR, HDA_DSP_SRAM_REG_FW_TRACEP); hda_dsp_get_registers(sdev, &xoops, &panic_info, stack, HDA_DSP_STACK_DUMP_SIZE); sof_print_oops_and_stack(sdev, level, status, panic, &xoops, &panic_info, stack, HDA_DSP_STACK_DUMP_SIZE); } else { hda_dsp_dump_ext_rom_status(sdev, level, flags); } } void hda_ipc4_dsp_dump(struct snd_sof_dev *sdev, u32 flags) { char *level = (flags & SOF_DBG_DUMP_OPTIONAL) ? KERN_DEBUG : KERN_ERR; /* print ROM/FW status */ hda_dsp_get_state(sdev, level); if (flags & SOF_DBG_DUMP_REGS) sof_ipc4_intel_dump_telemetry_state(sdev, flags); else hda_dsp_dump_ext_rom_status(sdev, level, flags); } static bool hda_check_ipc_irq(struct snd_sof_dev *sdev) { const struct sof_intel_dsp_desc *chip; chip = get_chip_info(sdev->pdata); if (chip && chip->check_ipc_irq) return chip->check_ipc_irq(sdev); return false; } void hda_ipc_irq_dump(struct snd_sof_dev *sdev) { u32 adspis; u32 intsts; u32 intctl; u32 ppsts; u8 rirbsts; /* read key IRQ stats and config registers */ adspis = snd_sof_dsp_read(sdev, HDA_DSP_BAR, HDA_DSP_REG_ADSPIS); intsts = snd_sof_dsp_read(sdev, HDA_DSP_HDA_BAR, SOF_HDA_INTSTS); intctl = snd_sof_dsp_read(sdev, HDA_DSP_HDA_BAR, SOF_HDA_INTCTL); ppsts = snd_sof_dsp_read(sdev, HDA_DSP_PP_BAR, SOF_HDA_REG_PP_PPSTS); rirbsts = snd_sof_dsp_read8(sdev, HDA_DSP_HDA_BAR, AZX_REG_RIRBSTS); dev_err(sdev->dev, "hda irq intsts 0x%8.8x intlctl 0x%8.8x rirb %2.2x\n", intsts, intctl, rirbsts); dev_err(sdev->dev, "dsp irq ppsts 0x%8.8x adspis 0x%8.8x\n", ppsts, adspis); } void hda_ipc_dump(struct snd_sof_dev *sdev) { u32 hipcie; u32 hipct; u32 hipcctl; hda_ipc_irq_dump(sdev); /* read IPC status */ hipcie = snd_sof_dsp_read(sdev, HDA_DSP_BAR, HDA_DSP_REG_HIPCIE); hipct = snd_sof_dsp_read(sdev, HDA_DSP_BAR, HDA_DSP_REG_HIPCT); hipcctl = snd_sof_dsp_read(sdev, HDA_DSP_BAR, HDA_DSP_REG_HIPCCTL); /* dump the IPC regs */ /* TODO: parse the raw msg */ dev_err(sdev->dev, "host status 0x%8.8x dsp status 0x%8.8x mask 0x%8.8x\n", hipcie, hipct, hipcctl); } void hda_ipc4_dump(struct snd_sof_dev *sdev) { u32 hipci, hipcie, hipct, hipcte, hipcctl; hda_ipc_irq_dump(sdev); hipci = snd_sof_dsp_read(sdev, HDA_DSP_BAR, HDA_DSP_REG_HIPCI); hipcie = snd_sof_dsp_read(sdev, HDA_DSP_BAR, HDA_DSP_REG_HIPCIE); hipct = snd_sof_dsp_read(sdev, HDA_DSP_BAR, HDA_DSP_REG_HIPCT); hipcte = snd_sof_dsp_read(sdev, HDA_DSP_BAR, HDA_DSP_REG_HIPCTE); hipcctl = snd_sof_dsp_read(sdev, HDA_DSP_BAR, HDA_DSP_REG_HIPCCTL); /* dump the IPC regs */ /* TODO: parse the raw msg */ dev_err(sdev->dev, "Host IPC initiator: %#x|%#x, target: %#x|%#x, ctl: %#x\n", hipci, hipcie, hipct, hipcte, hipcctl); } bool hda_ipc4_tx_is_busy(struct snd_sof_dev *sdev) { struct sof_intel_hda_dev *hda = sdev->pdata->hw_pdata; const struct sof_intel_dsp_desc *chip = hda->desc; u32 val; val = snd_sof_dsp_read(sdev, HDA_DSP_BAR, chip->ipc_req); return !!(val & chip->ipc_req_mask); } static int hda_init(struct snd_sof_dev *sdev) { struct hda_bus *hbus; struct hdac_bus *bus; struct pci_dev *pci = to_pci_dev(sdev->dev); int ret; hbus = sof_to_hbus(sdev); bus = sof_to_bus(sdev); /* HDA bus init */ sof_hda_bus_init(sdev, &pci->dev); if (sof_hda_position_quirk == SOF_HDA_POSITION_QUIRK_USE_DPIB_REGISTERS) bus->use_posbuf = 0; else bus->use_posbuf = 1; bus->bdl_pos_adj = 0; bus->sync_write = 1; mutex_init(&hbus->prepare_mutex); hbus->pci = pci; hbus->mixer_assigned = -1; hbus->modelname = hda_model; /* initialise hdac bus */ bus->addr = pci_resource_start(pci, 0); bus->remap_addr = pci_ioremap_bar(pci, 0); if (!bus->remap_addr) { dev_err(bus->dev, "error: ioremap error\n"); return -ENXIO; } /* HDA base */ sdev->bar[HDA_DSP_HDA_BAR] = bus->remap_addr; /* init i915 and HDMI codecs */ ret = hda_codec_i915_init(sdev); if (ret < 0 && ret != -ENODEV) { dev_err_probe(sdev->dev, ret, "init of i915 and HDMI codec failed\n"); goto out; } /* get controller capabilities */ ret = hda_dsp_ctrl_get_caps(sdev); if (ret < 0) { dev_err(sdev->dev, "error: get caps error\n"); hda_codec_i915_exit(sdev); } out: if (ret < 0) iounmap(sof_to_bus(sdev)->remap_addr); return ret; } static int check_dmic_num(struct snd_sof_dev *sdev) { struct sof_intel_hda_dev *hdev = sdev->pdata->hw_pdata; struct nhlt_acpi_table *nhlt; int dmic_num = 0; nhlt = hdev->nhlt; if (nhlt) dmic_num = intel_nhlt_get_dmic_geo(sdev->dev, nhlt); /* allow for module parameter override */ if (dmic_num_override != -1) { dev_dbg(sdev->dev, "overriding DMICs detected in NHLT tables %d by kernel param %d\n", dmic_num, dmic_num_override); dmic_num = dmic_num_override; } if (dmic_num < 0 || dmic_num > 4) { dev_dbg(sdev->dev, "invalid dmic_number %d\n", dmic_num); dmic_num = 0; } return dmic_num; } static int check_nhlt_ssp_mask(struct snd_sof_dev *sdev) { struct sof_intel_hda_dev *hdev = sdev->pdata->hw_pdata; struct nhlt_acpi_table *nhlt; int ssp_mask = 0; nhlt = hdev->nhlt; if (!nhlt) return ssp_mask; if (intel_nhlt_has_endpoint_type(nhlt, NHLT_LINK_SSP)) { ssp_mask = intel_nhlt_ssp_endpoint_mask(nhlt, NHLT_DEVICE_I2S); if (ssp_mask) dev_info(sdev->dev, "NHLT_DEVICE_I2S detected, ssp_mask %#x\n", ssp_mask); } return ssp_mask; } static int check_nhlt_ssp_mclk_mask(struct snd_sof_dev *sdev, int ssp_num) { struct sof_intel_hda_dev *hdev = sdev->pdata->hw_pdata; struct nhlt_acpi_table *nhlt; nhlt = hdev->nhlt; if (!nhlt) return 0; return intel_nhlt_ssp_mclk_mask(nhlt, ssp_num); } #if IS_ENABLED(CONFIG_SND_SOC_SOF_HDA_AUDIO_CODEC) || IS_ENABLED(CONFIG_SND_SOC_SOF_INTEL_SOUNDWIRE) static const char *fixup_tplg_name(struct snd_sof_dev *sdev, const char *sof_tplg_filename, const char *idisp_str, const char *dmic_str) { const char *tplg_filename = NULL; char *filename, *tmp; const char *split_ext; filename = kstrdup(sof_tplg_filename, GFP_KERNEL); if (!filename) return NULL; /* this assumes a .tplg extension */ tmp = filename; split_ext = strsep(&tmp, "."); if (split_ext) tplg_filename = devm_kasprintf(sdev->dev, GFP_KERNEL, "%s%s%s.tplg", split_ext, idisp_str, dmic_str); kfree(filename); return tplg_filename; } static int dmic_detect_topology_fixup(struct snd_sof_dev *sdev, const char **tplg_filename, const char *idisp_str, int *dmic_found, bool tplg_fixup) { const char *dmic_str; int dmic_num; /* first check for DMICs (using NHLT or module parameter) */ dmic_num = check_dmic_num(sdev); switch (dmic_num) { case 1: dmic_str = "-1ch"; break; case 2: dmic_str = "-2ch"; break; case 3: dmic_str = "-3ch"; break; case 4: dmic_str = "-4ch"; break; default: dmic_num = 0; dmic_str = ""; break; } if (tplg_fixup) { const char *default_tplg_filename = *tplg_filename; const char *fixed_tplg_filename; fixed_tplg_filename = fixup_tplg_name(sdev, default_tplg_filename, idisp_str, dmic_str); if (!fixed_tplg_filename) return -ENOMEM; *tplg_filename = fixed_tplg_filename; } dev_info(sdev->dev, "DMICs detected in NHLT tables: %d\n", dmic_num); *dmic_found = dmic_num; return 0; } #endif static int hda_init_caps(struct snd_sof_dev *sdev) { u32 interface_mask = hda_get_interface_mask(sdev); struct hdac_bus *bus = sof_to_bus(sdev); struct snd_sof_pdata *pdata = sdev->pdata; struct sof_intel_hda_dev *hdev = pdata->hw_pdata; u32 link_mask; int ret = 0; /* check if dsp is there */ if (bus->ppcap) dev_dbg(sdev->dev, "PP capability, will probe DSP later.\n"); /* Init HDA controller after i915 init */ ret = hda_dsp_ctrl_init_chip(sdev); if (ret < 0) { dev_err(bus->dev, "error: init chip failed with ret: %d\n", ret); return ret; } hda_bus_ml_init(bus); /* Skip SoundWire if it is not supported */ if (!(interface_mask & BIT(SOF_DAI_INTEL_ALH))) goto skip_soundwire; /* scan SoundWire capabilities exposed by DSDT */ ret = hda_sdw_acpi_scan(sdev); if (ret < 0) { dev_dbg(sdev->dev, "skipping SoundWire, not detected with ACPI scan\n"); goto skip_soundwire; } link_mask = hdev->info.link_mask; if (!link_mask) { dev_dbg(sdev->dev, "skipping SoundWire, no links enabled\n"); goto skip_soundwire; } /* * probe/allocate SoundWire resources. * The hardware configuration takes place in hda_sdw_startup * after power rails are enabled. * It's entirely possible to have a mix of I2S/DMIC/SoundWire * devices, so we allocate the resources in all cases. */ ret = hda_sdw_probe(sdev); if (ret < 0) { dev_err(sdev->dev, "error: SoundWire probe error\n"); return ret; } skip_soundwire: /* create codec instances */ hda_codec_probe_bus(sdev); if (!HDA_IDISP_CODEC(bus->codec_mask)) hda_codec_i915_display_power(sdev, false); hda_bus_ml_put_all(bus); return 0; } static irqreturn_t hda_dsp_interrupt_handler(int irq, void *context) { struct snd_sof_dev *sdev = context; /* * Get global interrupt status. It includes all hardware interrupt * sources in the Intel HD Audio controller. */ if (snd_sof_dsp_read(sdev, HDA_DSP_HDA_BAR, SOF_HDA_INTSTS) & SOF_HDA_INTSTS_GIS) { /* disable GIE interrupt */ snd_sof_dsp_update_bits(sdev, HDA_DSP_HDA_BAR, SOF_HDA_INTCTL, SOF_HDA_INT_GLOBAL_EN, 0); return IRQ_WAKE_THREAD; } return IRQ_NONE; } static irqreturn_t hda_dsp_interrupt_thread(int irq, void *context) { struct snd_sof_dev *sdev = context; struct sof_intel_hda_dev *hdev = sdev->pdata->hw_pdata; /* deal with streams and controller first */ if (hda_dsp_check_stream_irq(sdev)) { trace_sof_intel_hda_irq(sdev, "stream"); hda_dsp_stream_threaded_handler(irq, sdev); } if (hda_check_ipc_irq(sdev)) { trace_sof_intel_hda_irq(sdev, "ipc"); sof_ops(sdev)->irq_thread(irq, sdev); } if (hda_dsp_check_sdw_irq(sdev)) { trace_sof_intel_hda_irq(sdev, "sdw"); hda_dsp_sdw_thread(irq, hdev->sdw); } if (hda_sdw_check_wakeen_irq(sdev)) { trace_sof_intel_hda_irq(sdev, "wakeen"); hda_sdw_process_wakeen(sdev); } hda_codec_check_for_state_change(sdev); /* enable GIE interrupt */ snd_sof_dsp_update_bits(sdev, HDA_DSP_HDA_BAR, SOF_HDA_INTCTL, SOF_HDA_INT_GLOBAL_EN, SOF_HDA_INT_GLOBAL_EN); return IRQ_HANDLED; } int hda_dsp_probe_early(struct snd_sof_dev *sdev) { struct pci_dev *pci = to_pci_dev(sdev->dev); struct sof_intel_hda_dev *hdev; const struct sof_intel_dsp_desc *chip; int ret = 0; if (!sdev->dspless_mode_selected) { /* * detect DSP by checking class/subclass/prog-id information * class=04 subclass 03 prog-if 00: no DSP, legacy driver is required * class=04 subclass 01 prog-if 00: DSP is present * (and may be required e.g. for DMIC or SSP support) * class=04 subclass 03 prog-if 80: either of DSP or legacy mode works */ if (pci->class == 0x040300) { dev_err(sdev->dev, "the DSP is not enabled on this platform, aborting probe\n"); return -ENODEV; } else if (pci->class != 0x040100 && pci->class != 0x040380) { dev_err(sdev->dev, "unknown PCI class/subclass/prog-if 0x%06x found, aborting probe\n", pci->class); return -ENODEV; } dev_info(sdev->dev, "DSP detected with PCI class/subclass/prog-if 0x%06x\n", pci->class); } chip = get_chip_info(sdev->pdata); if (!chip) { dev_err(sdev->dev, "error: no such device supported, chip id:%x\n", pci->device); ret = -EIO; goto err; } sdev->num_cores = chip->cores_num; hdev = devm_kzalloc(sdev->dev, sizeof(*hdev), GFP_KERNEL); if (!hdev) return -ENOMEM; sdev->pdata->hw_pdata = hdev; hdev->desc = chip; ret = hda_init(sdev); err: return ret; } int hda_dsp_probe(struct snd_sof_dev *sdev) { struct pci_dev *pci = to_pci_dev(sdev->dev); struct sof_intel_hda_dev *hdev = sdev->pdata->hw_pdata; int ret = 0; hdev->dmic_dev = platform_device_register_data(sdev->dev, "dmic-codec", PLATFORM_DEVID_NONE, NULL, 0); if (IS_ERR(hdev->dmic_dev)) { dev_err(sdev->dev, "error: failed to create DMIC device\n"); return PTR_ERR(hdev->dmic_dev); } /* * use position update IPC if either it is forced * or we don't have other choice */ #if IS_ENABLED(CONFIG_SND_SOC_SOF_DEBUG_FORCE_IPC_POSITION) hdev->no_ipc_position = 0; #else hdev->no_ipc_position = sof_ops(sdev)->pcm_pointer ? 1 : 0; #endif if (sdev->dspless_mode_selected) hdev->no_ipc_position = 1; if (sdev->dspless_mode_selected) goto skip_dsp_setup; /* DSP base */ sdev->bar[HDA_DSP_BAR] = pci_ioremap_bar(pci, HDA_DSP_BAR); if (!sdev->bar[HDA_DSP_BAR]) { dev_err(sdev->dev, "error: ioremap error\n"); ret = -ENXIO; goto hdac_bus_unmap; } sdev->mmio_bar = HDA_DSP_BAR; sdev->mailbox_bar = HDA_DSP_BAR; skip_dsp_setup: /* allow 64bit DMA address if supported by H/W */ if (dma_set_mask_and_coherent(&pci->dev, DMA_BIT_MASK(64))) { dev_dbg(sdev->dev, "DMA mask is 32 bit\n"); dma_set_mask_and_coherent(&pci->dev, DMA_BIT_MASK(32)); } dma_set_max_seg_size(&pci->dev, UINT_MAX); /* init streams */ ret = hda_dsp_stream_init(sdev); if (ret < 0) { dev_err(sdev->dev, "error: failed to init streams\n"); /* * not all errors are due to memory issues, but trying * to free everything does not harm */ goto free_streams; } /* * register our IRQ * let's try to enable msi firstly * if it fails, use legacy interrupt mode * TODO: support msi multiple vectors */ if (hda_use_msi && pci_alloc_irq_vectors(pci, 1, 1, PCI_IRQ_MSI) > 0) { dev_info(sdev->dev, "use msi interrupt mode\n"); sdev->ipc_irq = pci_irq_vector(pci, 0); /* initialised to "false" by kzalloc() */ sdev->msi_enabled = true; } if (!sdev->msi_enabled) { dev_info(sdev->dev, "use legacy interrupt mode\n"); /* * in IO-APIC mode, hda->irq and ipc_irq are using the same * irq number of pci->irq */ sdev->ipc_irq = pci->irq; } dev_dbg(sdev->dev, "using IPC IRQ %d\n", sdev->ipc_irq); ret = request_threaded_irq(sdev->ipc_irq, hda_dsp_interrupt_handler, hda_dsp_interrupt_thread, IRQF_SHARED, "AudioDSP", sdev); if (ret < 0) { dev_err(sdev->dev, "error: failed to register IPC IRQ %d\n", sdev->ipc_irq); goto free_irq_vector; } pci_set_master(pci); synchronize_irq(pci->irq); /* * clear TCSEL to clear playback on some HD Audio * codecs. PCI TCSEL is defined in the Intel manuals. */ snd_sof_pci_update_bits(sdev, PCI_TCSEL, 0x07, 0); /* init HDA capabilities */ ret = hda_init_caps(sdev); if (ret < 0) goto free_ipc_irq; if (!sdev->dspless_mode_selected) { /* enable ppcap interrupt */ hda_dsp_ctrl_ppcap_enable(sdev, true); hda_dsp_ctrl_ppcap_int_enable(sdev, true); /* set default mailbox offset for FW ready message */ sdev->dsp_box.offset = HDA_DSP_MBOX_UPLINK_OFFSET; INIT_DELAYED_WORK(&hdev->d0i3_work, hda_dsp_d0i3_work); } init_waitqueue_head(&hdev->waitq); hdev->nhlt = intel_nhlt_init(sdev->dev); return 0; free_ipc_irq: free_irq(sdev->ipc_irq, sdev); free_irq_vector: if (sdev->msi_enabled) pci_free_irq_vectors(pci); free_streams: hda_dsp_stream_free(sdev); /* dsp_unmap: not currently used */ if (!sdev->dspless_mode_selected) iounmap(sdev->bar[HDA_DSP_BAR]); hdac_bus_unmap: platform_device_unregister(hdev->dmic_dev); return ret; } void hda_dsp_remove(struct snd_sof_dev *sdev) { struct sof_intel_hda_dev *hda = sdev->pdata->hw_pdata; const struct sof_intel_dsp_desc *chip = hda->desc; struct pci_dev *pci = to_pci_dev(sdev->dev); struct nhlt_acpi_table *nhlt = hda->nhlt; if (nhlt) intel_nhlt_free(nhlt); if (!sdev->dspless_mode_selected) /* cancel any attempt for DSP D0I3 */ cancel_delayed_work_sync(&hda->d0i3_work); hda_codec_device_remove(sdev); hda_sdw_exit(sdev); if (!IS_ERR_OR_NULL(hda->dmic_dev)) platform_device_unregister(hda->dmic_dev); if (!sdev->dspless_mode_selected) { /* disable DSP IRQ */ hda_dsp_ctrl_ppcap_int_enable(sdev, false); } /* disable CIE and GIE interrupts */ snd_sof_dsp_update_bits(sdev, HDA_DSP_HDA_BAR, SOF_HDA_INTCTL, SOF_HDA_INT_CTRL_EN | SOF_HDA_INT_GLOBAL_EN, 0); if (sdev->dspless_mode_selected) goto skip_disable_dsp; /* no need to check for error as the DSP will be disabled anyway */ if (chip && chip->power_down_dsp) chip->power_down_dsp(sdev); /* disable DSP */ hda_dsp_ctrl_ppcap_enable(sdev, false); skip_disable_dsp: free_irq(sdev->ipc_irq, sdev); if (sdev->msi_enabled) pci_free_irq_vectors(pci); hda_dsp_stream_free(sdev); hda_bus_ml_free(sof_to_bus(sdev)); if (!sdev->dspless_mode_selected) iounmap(sdev->bar[HDA_DSP_BAR]); } void hda_dsp_remove_late(struct snd_sof_dev *sdev) { iounmap(sof_to_bus(sdev)->remap_addr); sof_hda_bus_exit(sdev); hda_codec_i915_exit(sdev); } int hda_power_down_dsp(struct snd_sof_dev *sdev) { struct sof_intel_hda_dev *hda = sdev->pdata->hw_pdata; const struct sof_intel_dsp_desc *chip = hda->desc; return hda_dsp_core_reset_power_down(sdev, chip->host_managed_cores_mask); } #if IS_ENABLED(CONFIG_SND_SOC_SOF_HDA_AUDIO_CODEC) static void hda_generic_machine_select(struct snd_sof_dev *sdev, struct snd_soc_acpi_mach **mach) { struct hdac_bus *bus = sof_to_bus(sdev); struct snd_soc_acpi_mach_params *mach_params; struct snd_soc_acpi_mach *hda_mach; struct snd_sof_pdata *pdata = sdev->pdata; const char *tplg_filename; const char *idisp_str; int dmic_num = 0; int codec_num = 0; int ret; int i; /* codec detection */ if (!bus->codec_mask) { dev_info(bus->dev, "no hda codecs found!\n"); } else { dev_info(bus->dev, "hda codecs found, mask %lx\n", bus->codec_mask); for (i = 0; i < HDA_MAX_CODECS; i++) { if (bus->codec_mask & (1 << i)) codec_num++; } /* * If no machine driver is found, then: * * generic hda machine driver can handle: * - one HDMI codec, and/or * - one external HDAudio codec */ if (!*mach && codec_num <= 2) { bool tplg_fixup; hda_mach = snd_soc_acpi_intel_hda_machines; dev_info(bus->dev, "using HDA machine driver %s now\n", hda_mach->drv_name); if (codec_num == 1 && HDA_IDISP_CODEC(bus->codec_mask)) idisp_str = "-idisp"; else idisp_str = ""; /* topology: use the info from hda_machines */ if (pdata->tplg_filename) { tplg_fixup = false; tplg_filename = pdata->tplg_filename; } else { tplg_fixup = true; tplg_filename = hda_mach->sof_tplg_filename; } ret = dmic_detect_topology_fixup(sdev, &tplg_filename, idisp_str, &dmic_num, tplg_fixup); if (ret < 0) return; hda_mach->mach_params.dmic_num = dmic_num; pdata->tplg_filename = tplg_filename; if (codec_num == 2 || (codec_num == 1 && !HDA_IDISP_CODEC(bus->codec_mask))) { /* * Prevent SoundWire links from starting when an external * HDaudio codec is used */ hda_mach->mach_params.link_mask = 0; } else { /* * Allow SoundWire links to start when no external HDaudio codec * was detected. This will not create a SoundWire card but * will help detect if any SoundWire codec reports as ATTACHED. */ struct sof_intel_hda_dev *hdev = sdev->pdata->hw_pdata; hda_mach->mach_params.link_mask = hdev->info.link_mask; } *mach = hda_mach; } } /* used by hda machine driver to create dai links */ if (*mach) { mach_params = &(*mach)->mach_params; mach_params->codec_mask = bus->codec_mask; mach_params->common_hdmi_codec_drv = true; } } #else static void hda_generic_machine_select(struct snd_sof_dev *sdev, struct snd_soc_acpi_mach **mach) { } #endif #if IS_ENABLED(CONFIG_SND_SOC_SOF_INTEL_SOUNDWIRE) static struct snd_soc_acpi_mach *hda_sdw_machine_select(struct snd_sof_dev *sdev) { struct snd_sof_pdata *pdata = sdev->pdata; const struct snd_soc_acpi_link_adr *link; struct snd_soc_acpi_mach *mach; struct sof_intel_hda_dev *hdev; u32 link_mask; int i; hdev = pdata->hw_pdata; link_mask = hdev->info.link_mask; /* * Select SoundWire machine driver if needed using the * alternate tables. This case deals with SoundWire-only * machines, for mixed cases with I2C/I2S the detection relies * on the HID list. */ if (link_mask) { for (mach = pdata->desc->alt_machines; mach && mach->link_mask; mach++) { /* * On some platforms such as Up Extreme all links * are enabled but only one link can be used by * external codec. Instead of exact match of two masks, * first check whether link_mask of mach is subset of * link_mask supported by hw and then go on searching * link_adr */ if (~link_mask & mach->link_mask) continue; /* No need to match adr if there is no links defined */ if (!mach->links) break; link = mach->links; for (i = 0; i < hdev->info.count && link->num_adr; i++, link++) { /* * Try next machine if any expected Slaves * are not found on this link. */ if (!snd_soc_acpi_sdw_link_slaves_found(sdev->dev, link, hdev->sdw->ids, hdev->sdw->num_slaves)) break; } /* Found if all Slaves are checked */ if (i == hdev->info.count || !link->num_adr) break; } if (mach && mach->link_mask) { int dmic_num = 0; bool tplg_fixup; const char *tplg_filename; mach->mach_params.links = mach->links; mach->mach_params.link_mask = mach->link_mask; mach->mach_params.platform = dev_name(sdev->dev); if (pdata->tplg_filename) { tplg_fixup = false; } else { tplg_fixup = true; tplg_filename = mach->sof_tplg_filename; } /* * DMICs use up to 4 pins and are typically pin-muxed with SoundWire * link 2 and 3, or link 1 and 2, thus we only try to enable dmics * if all conditions are true: * a) 2 or fewer links are used by SoundWire * b) the NHLT table reports the presence of microphones */ if (hweight_long(mach->link_mask) <= 2) { int ret; ret = dmic_detect_topology_fixup(sdev, &tplg_filename, "", &dmic_num, tplg_fixup); if (ret < 0) return NULL; } if (tplg_fixup) pdata->tplg_filename = tplg_filename; mach->mach_params.dmic_num = dmic_num; dev_dbg(sdev->dev, "SoundWire machine driver %s topology %s\n", mach->drv_name, pdata->tplg_filename); return mach; } dev_info(sdev->dev, "No SoundWire machine driver found\n"); } return NULL; } #else static struct snd_soc_acpi_mach *hda_sdw_machine_select(struct snd_sof_dev *sdev) { return NULL; } #endif void hda_set_mach_params(struct snd_soc_acpi_mach *mach, struct snd_sof_dev *sdev) { struct snd_sof_pdata *pdata = sdev->pdata; const struct sof_dev_desc *desc = pdata->desc; struct snd_soc_acpi_mach_params *mach_params; mach_params = &mach->mach_params; mach_params->platform = dev_name(sdev->dev); if (IS_ENABLED(CONFIG_SND_SOC_SOF_NOCODEC_DEBUG_SUPPORT) && sof_debug_check_flag(SOF_DBG_FORCE_NOCODEC)) mach_params->num_dai_drivers = SOF_SKL_NUM_DAIS_NOCODEC; else mach_params->num_dai_drivers = desc->ops->num_drv; mach_params->dai_drivers = desc->ops->drv; } struct snd_soc_acpi_mach *hda_machine_select(struct snd_sof_dev *sdev) { u32 interface_mask = hda_get_interface_mask(sdev); struct snd_sof_pdata *sof_pdata = sdev->pdata; const struct sof_dev_desc *desc = sof_pdata->desc; struct snd_soc_acpi_mach *mach = NULL; const char *tplg_filename; /* Try I2S or DMIC if it is supported */ if (interface_mask & (BIT(SOF_DAI_INTEL_SSP) | BIT(SOF_DAI_INTEL_DMIC))) mach = snd_soc_acpi_find_machine(desc->machines); if (mach) { bool add_extension = false; bool tplg_fixup = false; /* * If tplg file name is overridden, use it instead of * the one set in mach table */ if (!sof_pdata->tplg_filename) { sof_pdata->tplg_filename = mach->sof_tplg_filename; tplg_fixup = true; } /* report to machine driver if any DMICs are found */ mach->mach_params.dmic_num = check_dmic_num(sdev); if (tplg_fixup && mach->tplg_quirk_mask & SND_SOC_ACPI_TPLG_INTEL_DMIC_NUMBER && mach->mach_params.dmic_num) { tplg_filename = devm_kasprintf(sdev->dev, GFP_KERNEL, "%s%s%d%s", sof_pdata->tplg_filename, "-dmic", mach->mach_params.dmic_num, "ch"); if (!tplg_filename) return NULL; sof_pdata->tplg_filename = tplg_filename; add_extension = true; } if (mach->link_mask) { mach->mach_params.links = mach->links; mach->mach_params.link_mask = mach->link_mask; } /* report SSP link mask to machine driver */ mach->mach_params.i2s_link_mask = check_nhlt_ssp_mask(sdev); if (tplg_fixup && mach->tplg_quirk_mask & SND_SOC_ACPI_TPLG_INTEL_SSP_NUMBER && mach->mach_params.i2s_link_mask) { const struct sof_intel_dsp_desc *chip = get_chip_info(sdev->pdata); int ssp_num; int mclk_mask; if (hweight_long(mach->mach_params.i2s_link_mask) > 1 && !(mach->tplg_quirk_mask & SND_SOC_ACPI_TPLG_INTEL_SSP_MSB)) dev_warn(sdev->dev, "More than one SSP exposed by NHLT, choosing MSB\n"); /* fls returns 1-based results, SSPs indices are 0-based */ ssp_num = fls(mach->mach_params.i2s_link_mask) - 1; if (ssp_num >= chip->ssp_count) { dev_err(sdev->dev, "Invalid SSP %d, max on this platform is %d\n", ssp_num, chip->ssp_count); return NULL; } tplg_filename = devm_kasprintf(sdev->dev, GFP_KERNEL, "%s%s%d", sof_pdata->tplg_filename, "-ssp", ssp_num); if (!tplg_filename) return NULL; sof_pdata->tplg_filename = tplg_filename; add_extension = true; mclk_mask = check_nhlt_ssp_mclk_mask(sdev, ssp_num); if (mclk_mask < 0) { dev_err(sdev->dev, "Invalid MCLK configuration\n"); return NULL; } dev_dbg(sdev->dev, "MCLK mask %#x found in NHLT\n", mclk_mask); if (mclk_mask) { dev_info(sdev->dev, "Overriding topology with MCLK mask %#x from NHLT\n", mclk_mask); sdev->mclk_id_override = true; sdev->mclk_id_quirk = (mclk_mask & BIT(0)) ? 0 : 1; } } if (tplg_fixup && add_extension) { tplg_filename = devm_kasprintf(sdev->dev, GFP_KERNEL, "%s%s", sof_pdata->tplg_filename, ".tplg"); if (!tplg_filename) return NULL; sof_pdata->tplg_filename = tplg_filename; } /* check if mclk_id should be modified from topology defaults */ if (mclk_id_override >= 0) { dev_info(sdev->dev, "Overriding topology with MCLK %d from kernel_parameter\n", mclk_id_override); sdev->mclk_id_override = true; sdev->mclk_id_quirk = mclk_id_override; } } /* If I2S fails, try SoundWire if it is supported */ if (!mach && (interface_mask & BIT(SOF_DAI_INTEL_ALH))) mach = hda_sdw_machine_select(sdev); /* * Choose HDA generic machine driver if mach is NULL. * Otherwise, set certain mach params. */ hda_generic_machine_select(sdev, &mach); if (!mach) dev_warn(sdev->dev, "warning: No matching ASoC machine driver found\n"); return mach; } int hda_pci_intel_probe(struct pci_dev *pci, const struct pci_device_id *pci_id) { int ret; ret = snd_intel_dsp_driver_probe(pci); if (ret != SND_INTEL_DSP_DRIVER_ANY && ret != SND_INTEL_DSP_DRIVER_SOF) { dev_dbg(&pci->dev, "SOF PCI driver not selected, aborting probe\n"); return -ENODEV; } return sof_pci_probe(pci, pci_id); } EXPORT_SYMBOL_NS(hda_pci_intel_probe, SND_SOC_SOF_INTEL_HDA_COMMON); int hda_register_clients(struct snd_sof_dev *sdev) { return hda_probes_register(sdev); } void hda_unregister_clients(struct snd_sof_dev *sdev) { hda_probes_unregister(sdev); } MODULE_LICENSE("Dual BSD/GPL"); MODULE_IMPORT_NS(SND_SOC_SOF_PCI_DEV); MODULE_IMPORT_NS(SND_SOC_SOF_HDA_AUDIO_CODEC); MODULE_IMPORT_NS(SND_SOC_SOF_HDA_AUDIO_CODEC_I915); MODULE_IMPORT_NS(SND_SOC_SOF_XTENSA); MODULE_IMPORT_NS(SND_INTEL_SOUNDWIRE_ACPI); MODULE_IMPORT_NS(SOUNDWIRE_INTEL_INIT); MODULE_IMPORT_NS(SOUNDWIRE_INTEL); MODULE_IMPORT_NS(SND_SOC_SOF_HDA_MLINK);
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1