Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Andrii Nakryiko | 5918 | 80.45% | 19 | 40.43% |
Pu Lehui | 519 | 7.06% | 2 | 4.26% |
Jiri Olsa | 273 | 3.71% | 2 | 4.26% |
Puranjay Mohan | 273 | 3.71% | 2 | 4.26% |
Alan Maguire | 150 | 2.04% | 1 | 2.13% |
Ilya Leoshkevich | 104 | 1.41% | 2 | 4.26% |
Eduard Zingerman | 25 | 0.34% | 1 | 2.13% |
Joe Stringer | 22 | 0.30% | 2 | 4.26% |
Xu Kuohai | 19 | 0.26% | 2 | 4.26% |
Wang Nan | 17 | 0.23% | 5 | 10.64% |
Magnus Karlsson | 16 | 0.22% | 1 | 2.13% |
Jon Doron | 5 | 0.07% | 1 | 2.13% |
Haowen Bai | 4 | 0.05% | 1 | 2.13% |
Timo Hunziker | 4 | 0.05% | 1 | 2.13% |
Stanislav Fomichev | 3 | 0.04% | 1 | 2.13% |
Alexei Starovoitov | 1 | 0.01% | 1 | 2.13% |
Kumar Kartikeya Dwivedi | 1 | 0.01% | 1 | 2.13% |
Colin Ian King | 1 | 0.01% | 1 | 2.13% |
Alexey Dobriyan | 1 | 0.01% | 1 | 2.13% |
Total | 7356 | 47 |
// SPDX-License-Identifier: (LGPL-2.1 OR BSD-2-Clause) /* Copyright (c) 2022 Meta Platforms, Inc. and affiliates. */ #include <ctype.h> #include <stdio.h> #include <stdlib.h> #include <string.h> #include <libelf.h> #include <gelf.h> #include <unistd.h> #include <linux/ptrace.h> #include <linux/kernel.h> /* s8 will be marked as poison while it's a reg of riscv */ #if defined(__riscv) #define rv_s8 s8 #endif #include "bpf.h" #include "libbpf.h" #include "libbpf_common.h" #include "libbpf_internal.h" #include "hashmap.h" /* libbpf's USDT support consists of BPF-side state/code and user-space * state/code working together in concert. BPF-side parts are defined in * usdt.bpf.h header library. User-space state is encapsulated by struct * usdt_manager and all the supporting code centered around usdt_manager. * * usdt.bpf.h defines two BPF maps that usdt_manager expects: USDT spec map * and IP-to-spec-ID map, which is auxiliary map necessary for kernels that * don't support BPF cookie (see below). These two maps are implicitly * embedded into user's end BPF object file when user's code included * usdt.bpf.h. This means that libbpf doesn't do anything special to create * these USDT support maps. They are created by normal libbpf logic of * instantiating BPF maps when opening and loading BPF object. * * As such, libbpf is basically unaware of the need to do anything * USDT-related until the very first call to bpf_program__attach_usdt(), which * can be called by user explicitly or happen automatically during skeleton * attach (or, equivalently, through generic bpf_program__attach() call). At * this point, libbpf will instantiate and initialize struct usdt_manager and * store it in bpf_object. USDT manager is per-BPF object construct, as each * independent BPF object might or might not have USDT programs, and thus all * the expected USDT-related state. There is no coordination between two * bpf_object in parts of USDT attachment, they are oblivious of each other's * existence and libbpf is just oblivious, dealing with bpf_object-specific * USDT state. * * Quick crash course on USDTs. * * From user-space application's point of view, USDT is essentially just * a slightly special function call that normally has zero overhead, unless it * is being traced by some external entity (e.g, BPF-based tool). Here's how * a typical application can trigger USDT probe: * * #include <sys/sdt.h> // provided by systemtap-sdt-devel package * // folly also provide similar functionality in folly/tracing/StaticTracepoint.h * * STAP_PROBE3(my_usdt_provider, my_usdt_probe_name, 123, x, &y); * * USDT is identified by it's <provider-name>:<probe-name> pair of names. Each * individual USDT has a fixed number of arguments (3 in the above example) * and specifies values of each argument as if it was a function call. * * USDT call is actually not a function call, but is instead replaced by * a single NOP instruction (thus zero overhead, effectively). But in addition * to that, those USDT macros generate special SHT_NOTE ELF records in * .note.stapsdt ELF section. Here's an example USDT definition as emitted by * `readelf -n <binary>`: * * stapsdt 0x00000089 NT_STAPSDT (SystemTap probe descriptors) * Provider: test * Name: usdt12 * Location: 0x0000000000549df3, Base: 0x00000000008effa4, Semaphore: 0x0000000000a4606e * Arguments: -4@-1204(%rbp) -4@%edi -8@-1216(%rbp) -8@%r8 -4@$5 -8@%r9 8@%rdx 8@%r10 -4@$-9 -2@%cx -2@%ax -1@%sil * * In this case we have USDT test:usdt12 with 12 arguments. * * Location and base are offsets used to calculate absolute IP address of that * NOP instruction that kernel can replace with an interrupt instruction to * trigger instrumentation code (BPF program for all that we care about). * * Semaphore above is and optional feature. It records an address of a 2-byte * refcount variable (normally in '.probes' ELF section) used for signaling if * there is anything that is attached to USDT. This is useful for user * applications if, for example, they need to prepare some arguments that are * passed only to USDTs and preparation is expensive. By checking if USDT is * "activated", an application can avoid paying those costs unnecessarily. * Recent enough kernel has built-in support for automatically managing this * refcount, which libbpf expects and relies on. If USDT is defined without * associated semaphore, this value will be zero. See selftests for semaphore * examples. * * Arguments is the most interesting part. This USDT specification string is * providing information about all the USDT arguments and their locations. The * part before @ sign defined byte size of the argument (1, 2, 4, or 8) and * whether the argument is signed or unsigned (negative size means signed). * The part after @ sign is assembly-like definition of argument location * (see [0] for more details). Technically, assembler can provide some pretty * advanced definitions, but libbpf is currently supporting three most common * cases: * 1) immediate constant, see 5th and 9th args above (-4@$5 and -4@-9); * 2) register value, e.g., 8@%rdx, which means "unsigned 8-byte integer * whose value is in register %rdx"; * 3) memory dereference addressed by register, e.g., -4@-1204(%rbp), which * specifies signed 32-bit integer stored at offset -1204 bytes from * memory address stored in %rbp. * * [0] https://sourceware.org/systemtap/wiki/UserSpaceProbeImplementation * * During attachment, libbpf parses all the relevant USDT specifications and * prepares `struct usdt_spec` (USDT spec), which is then provided to BPF-side * code through spec map. This allows BPF applications to quickly fetch the * actual value at runtime using a simple BPF-side code. * * With basics out of the way, let's go over less immediately obvious aspects * of supporting USDTs. * * First, there is no special USDT BPF program type. It is actually just * a uprobe BPF program (which for kernel, at least currently, is just a kprobe * program, so BPF_PROG_TYPE_KPROBE program type). With the only difference * that uprobe is usually attached at the function entry, while USDT will * normally will be somewhere inside the function. But it should always be * pointing to NOP instruction, which makes such uprobes the fastest uprobe * kind. * * Second, it's important to realize that such STAP_PROBEn(provider, name, ...) * macro invocations can end up being inlined many-many times, depending on * specifics of each individual user application. So single conceptual USDT * (identified by provider:name pair of identifiers) is, generally speaking, * multiple uprobe locations (USDT call sites) in different places in user * application. Further, again due to inlining, each USDT call site might end * up having the same argument #N be located in a different place. In one call * site it could be a constant, in another will end up in a register, and in * yet another could be some other register or even somewhere on the stack. * * As such, "attaching to USDT" means (in general case) attaching the same * uprobe BPF program to multiple target locations in user application, each * potentially having a completely different USDT spec associated with it. * To wire all this up together libbpf allocates a unique integer spec ID for * each unique USDT spec. Spec IDs are allocated as sequential small integers * so that they can be used as keys in array BPF map (for performance reasons). * Spec ID allocation and accounting is big part of what usdt_manager is * about. This state has to be maintained per-BPF object and coordinate * between different USDT attachments within the same BPF object. * * Spec ID is the key in spec BPF map, value is the actual USDT spec layed out * as struct usdt_spec. Each invocation of BPF program at runtime needs to * know its associated spec ID. It gets it either through BPF cookie, which * libbpf sets to spec ID during attach time, or, if kernel is too old to * support BPF cookie, through IP-to-spec-ID map that libbpf maintains in such * case. The latter means that some modes of operation can't be supported * without BPF cookie. Such mode is attaching to shared library "generically", * without specifying target process. In such case, it's impossible to * calculate absolute IP addresses for IP-to-spec-ID map, and thus such mode * is not supported without BPF cookie support. * * Note that libbpf is using BPF cookie functionality for its own internal * needs, so user itself can't rely on BPF cookie feature. To that end, libbpf * provides conceptually equivalent USDT cookie support. It's still u64 * user-provided value that can be associated with USDT attachment. Note that * this will be the same value for all USDT call sites within the same single * *logical* USDT attachment. This makes sense because to user attaching to * USDT is a single BPF program triggered for singular USDT probe. The fact * that this is done at multiple actual locations is a mostly hidden * implementation details. This USDT cookie value can be fetched with * bpf_usdt_cookie(ctx) API provided by usdt.bpf.h * * Lastly, while single USDT can have tons of USDT call sites, it doesn't * necessarily have that many different USDT specs. It very well might be * that 1000 USDT call sites only need 5 different USDT specs, because all the * arguments are typically contained in a small set of registers or stack * locations. As such, it's wasteful to allocate as many USDT spec IDs as * there are USDT call sites. So libbpf tries to be frugal and performs * on-the-fly deduplication during a single USDT attachment to only allocate * the minimal required amount of unique USDT specs (and thus spec IDs). This * is trivially achieved by using USDT spec string (Arguments string from USDT * note) as a lookup key in a hashmap. USDT spec string uniquely defines * everything about how to fetch USDT arguments, so two USDT call sites * sharing USDT spec string can safely share the same USDT spec and spec ID. * Note, this spec string deduplication is happening only during the same USDT * attachment, so each USDT spec shares the same USDT cookie value. This is * not generally true for other USDT attachments within the same BPF object, * as even if USDT spec string is the same, USDT cookie value can be * different. It was deemed excessive to try to deduplicate across independent * USDT attachments by taking into account USDT spec string *and* USDT cookie * value, which would complicated spec ID accounting significantly for little * gain. */ #define USDT_BASE_SEC ".stapsdt.base" #define USDT_SEMA_SEC ".probes" #define USDT_NOTE_SEC ".note.stapsdt" #define USDT_NOTE_TYPE 3 #define USDT_NOTE_NAME "stapsdt" /* should match exactly enum __bpf_usdt_arg_type from usdt.bpf.h */ enum usdt_arg_type { USDT_ARG_CONST, USDT_ARG_REG, USDT_ARG_REG_DEREF, }; /* should match exactly struct __bpf_usdt_arg_spec from usdt.bpf.h */ struct usdt_arg_spec { __u64 val_off; enum usdt_arg_type arg_type; short reg_off; bool arg_signed; char arg_bitshift; }; /* should match BPF_USDT_MAX_ARG_CNT in usdt.bpf.h */ #define USDT_MAX_ARG_CNT 12 /* should match struct __bpf_usdt_spec from usdt.bpf.h */ struct usdt_spec { struct usdt_arg_spec args[USDT_MAX_ARG_CNT]; __u64 usdt_cookie; short arg_cnt; }; struct usdt_note { const char *provider; const char *name; /* USDT args specification string, e.g.: * "-4@%esi -4@-24(%rbp) -4@%ecx 2@%ax 8@%rdx" */ const char *args; long loc_addr; long base_addr; long sema_addr; }; struct usdt_target { long abs_ip; long rel_ip; long sema_off; struct usdt_spec spec; const char *spec_str; }; struct usdt_manager { struct bpf_map *specs_map; struct bpf_map *ip_to_spec_id_map; int *free_spec_ids; size_t free_spec_cnt; size_t next_free_spec_id; bool has_bpf_cookie; bool has_sema_refcnt; bool has_uprobe_multi; }; struct usdt_manager *usdt_manager_new(struct bpf_object *obj) { static const char *ref_ctr_sysfs_path = "/sys/bus/event_source/devices/uprobe/format/ref_ctr_offset"; struct usdt_manager *man; struct bpf_map *specs_map, *ip_to_spec_id_map; specs_map = bpf_object__find_map_by_name(obj, "__bpf_usdt_specs"); ip_to_spec_id_map = bpf_object__find_map_by_name(obj, "__bpf_usdt_ip_to_spec_id"); if (!specs_map || !ip_to_spec_id_map) { pr_warn("usdt: failed to find USDT support BPF maps, did you forget to include bpf/usdt.bpf.h?\n"); return ERR_PTR(-ESRCH); } man = calloc(1, sizeof(*man)); if (!man) return ERR_PTR(-ENOMEM); man->specs_map = specs_map; man->ip_to_spec_id_map = ip_to_spec_id_map; /* Detect if BPF cookie is supported for kprobes. * We don't need IP-to-ID mapping if we can use BPF cookies. * Added in: 7adfc6c9b315 ("bpf: Add bpf_get_attach_cookie() BPF helper to access bpf_cookie value") */ man->has_bpf_cookie = kernel_supports(obj, FEAT_BPF_COOKIE); /* Detect kernel support for automatic refcounting of USDT semaphore. * If this is not supported, USDTs with semaphores will not be supported. * Added in: a6ca88b241d5 ("trace_uprobe: support reference counter in fd-based uprobe") */ man->has_sema_refcnt = faccessat(AT_FDCWD, ref_ctr_sysfs_path, F_OK, AT_EACCESS) == 0; /* * Detect kernel support for uprobe multi link to be used for attaching * usdt probes. */ man->has_uprobe_multi = kernel_supports(obj, FEAT_UPROBE_MULTI_LINK); return man; } void usdt_manager_free(struct usdt_manager *man) { if (IS_ERR_OR_NULL(man)) return; free(man->free_spec_ids); free(man); } static int sanity_check_usdt_elf(Elf *elf, const char *path) { GElf_Ehdr ehdr; int endianness; if (elf_kind(elf) != ELF_K_ELF) { pr_warn("usdt: unrecognized ELF kind %d for '%s'\n", elf_kind(elf), path); return -EBADF; } switch (gelf_getclass(elf)) { case ELFCLASS64: if (sizeof(void *) != 8) { pr_warn("usdt: attaching to 64-bit ELF binary '%s' is not supported\n", path); return -EBADF; } break; case ELFCLASS32: if (sizeof(void *) != 4) { pr_warn("usdt: attaching to 32-bit ELF binary '%s' is not supported\n", path); return -EBADF; } break; default: pr_warn("usdt: unsupported ELF class for '%s'\n", path); return -EBADF; } if (!gelf_getehdr(elf, &ehdr)) return -EINVAL; if (ehdr.e_type != ET_EXEC && ehdr.e_type != ET_DYN) { pr_warn("usdt: unsupported type of ELF binary '%s' (%d), only ET_EXEC and ET_DYN are supported\n", path, ehdr.e_type); return -EBADF; } #if __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__ endianness = ELFDATA2LSB; #elif __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__ endianness = ELFDATA2MSB; #else # error "Unrecognized __BYTE_ORDER__" #endif if (endianness != ehdr.e_ident[EI_DATA]) { pr_warn("usdt: ELF endianness mismatch for '%s'\n", path); return -EBADF; } return 0; } static int find_elf_sec_by_name(Elf *elf, const char *sec_name, GElf_Shdr *shdr, Elf_Scn **scn) { Elf_Scn *sec = NULL; size_t shstrndx; if (elf_getshdrstrndx(elf, &shstrndx)) return -EINVAL; /* check if ELF is corrupted and avoid calling elf_strptr if yes */ if (!elf_rawdata(elf_getscn(elf, shstrndx), NULL)) return -EINVAL; while ((sec = elf_nextscn(elf, sec)) != NULL) { char *name; if (!gelf_getshdr(sec, shdr)) return -EINVAL; name = elf_strptr(elf, shstrndx, shdr->sh_name); if (name && strcmp(sec_name, name) == 0) { *scn = sec; return 0; } } return -ENOENT; } struct elf_seg { long start; long end; long offset; bool is_exec; }; static int cmp_elf_segs(const void *_a, const void *_b) { const struct elf_seg *a = _a; const struct elf_seg *b = _b; return a->start < b->start ? -1 : 1; } static int parse_elf_segs(Elf *elf, const char *path, struct elf_seg **segs, size_t *seg_cnt) { GElf_Phdr phdr; size_t n; int i, err; struct elf_seg *seg; void *tmp; *seg_cnt = 0; if (elf_getphdrnum(elf, &n)) { err = -errno; return err; } for (i = 0; i < n; i++) { if (!gelf_getphdr(elf, i, &phdr)) { err = -errno; return err; } pr_debug("usdt: discovered PHDR #%d in '%s': vaddr 0x%lx memsz 0x%lx offset 0x%lx type 0x%lx flags 0x%lx\n", i, path, (long)phdr.p_vaddr, (long)phdr.p_memsz, (long)phdr.p_offset, (long)phdr.p_type, (long)phdr.p_flags); if (phdr.p_type != PT_LOAD) continue; tmp = libbpf_reallocarray(*segs, *seg_cnt + 1, sizeof(**segs)); if (!tmp) return -ENOMEM; *segs = tmp; seg = *segs + *seg_cnt; (*seg_cnt)++; seg->start = phdr.p_vaddr; seg->end = phdr.p_vaddr + phdr.p_memsz; seg->offset = phdr.p_offset; seg->is_exec = phdr.p_flags & PF_X; } if (*seg_cnt == 0) { pr_warn("usdt: failed to find PT_LOAD program headers in '%s'\n", path); return -ESRCH; } qsort(*segs, *seg_cnt, sizeof(**segs), cmp_elf_segs); return 0; } static int parse_vma_segs(int pid, const char *lib_path, struct elf_seg **segs, size_t *seg_cnt) { char path[PATH_MAX], line[PATH_MAX], mode[16]; size_t seg_start, seg_end, seg_off; struct elf_seg *seg; int tmp_pid, i, err; FILE *f; *seg_cnt = 0; /* Handle containerized binaries only accessible from * /proc/<pid>/root/<path>. They will be reported as just /<path> in * /proc/<pid>/maps. */ if (sscanf(lib_path, "/proc/%d/root%s", &tmp_pid, path) == 2 && pid == tmp_pid) goto proceed; if (!realpath(lib_path, path)) { pr_warn("usdt: failed to get absolute path of '%s' (err %d), using path as is...\n", lib_path, -errno); libbpf_strlcpy(path, lib_path, sizeof(path)); } proceed: sprintf(line, "/proc/%d/maps", pid); f = fopen(line, "re"); if (!f) { err = -errno; pr_warn("usdt: failed to open '%s' to get base addr of '%s': %d\n", line, lib_path, err); return err; } /* We need to handle lines with no path at the end: * * 7f5c6f5d1000-7f5c6f5d3000 rw-p 001c7000 08:04 21238613 /usr/lib64/libc-2.17.so * 7f5c6f5d3000-7f5c6f5d8000 rw-p 00000000 00:00 0 * 7f5c6f5d8000-7f5c6f5d9000 r-xp 00000000 103:01 362990598 /data/users/andriin/linux/tools/bpf/usdt/libhello_usdt.so */ while (fscanf(f, "%zx-%zx %s %zx %*s %*d%[^\n]\n", &seg_start, &seg_end, mode, &seg_off, line) == 5) { void *tmp; /* to handle no path case (see above) we need to capture line * without skipping any whitespaces. So we need to strip * leading whitespaces manually here */ i = 0; while (isblank(line[i])) i++; if (strcmp(line + i, path) != 0) continue; pr_debug("usdt: discovered segment for lib '%s': addrs %zx-%zx mode %s offset %zx\n", path, seg_start, seg_end, mode, seg_off); /* ignore non-executable sections for shared libs */ if (mode[2] != 'x') continue; tmp = libbpf_reallocarray(*segs, *seg_cnt + 1, sizeof(**segs)); if (!tmp) { err = -ENOMEM; goto err_out; } *segs = tmp; seg = *segs + *seg_cnt; *seg_cnt += 1; seg->start = seg_start; seg->end = seg_end; seg->offset = seg_off; seg->is_exec = true; } if (*seg_cnt == 0) { pr_warn("usdt: failed to find '%s' (resolved to '%s') within PID %d memory mappings\n", lib_path, path, pid); err = -ESRCH; goto err_out; } qsort(*segs, *seg_cnt, sizeof(**segs), cmp_elf_segs); err = 0; err_out: fclose(f); return err; } static struct elf_seg *find_elf_seg(struct elf_seg *segs, size_t seg_cnt, long virtaddr) { struct elf_seg *seg; int i; /* for ELF binaries (both executables and shared libraries), we are * given virtual address (absolute for executables, relative for * libraries) which should match address range of [seg_start, seg_end) */ for (i = 0, seg = segs; i < seg_cnt; i++, seg++) { if (seg->start <= virtaddr && virtaddr < seg->end) return seg; } return NULL; } static struct elf_seg *find_vma_seg(struct elf_seg *segs, size_t seg_cnt, long offset) { struct elf_seg *seg; int i; /* for VMA segments from /proc/<pid>/maps file, provided "address" is * actually a file offset, so should be fall within logical * offset-based range of [offset_start, offset_end) */ for (i = 0, seg = segs; i < seg_cnt; i++, seg++) { if (seg->offset <= offset && offset < seg->offset + (seg->end - seg->start)) return seg; } return NULL; } static int parse_usdt_note(Elf *elf, const char *path, GElf_Nhdr *nhdr, const char *data, size_t name_off, size_t desc_off, struct usdt_note *usdt_note); static int parse_usdt_spec(struct usdt_spec *spec, const struct usdt_note *note, __u64 usdt_cookie); static int collect_usdt_targets(struct usdt_manager *man, Elf *elf, const char *path, pid_t pid, const char *usdt_provider, const char *usdt_name, __u64 usdt_cookie, struct usdt_target **out_targets, size_t *out_target_cnt) { size_t off, name_off, desc_off, seg_cnt = 0, vma_seg_cnt = 0, target_cnt = 0; struct elf_seg *segs = NULL, *vma_segs = NULL; struct usdt_target *targets = NULL, *target; long base_addr = 0; Elf_Scn *notes_scn, *base_scn; GElf_Shdr base_shdr, notes_shdr; GElf_Ehdr ehdr; GElf_Nhdr nhdr; Elf_Data *data; int err; *out_targets = NULL; *out_target_cnt = 0; err = find_elf_sec_by_name(elf, USDT_NOTE_SEC, ¬es_shdr, ¬es_scn); if (err) { pr_warn("usdt: no USDT notes section (%s) found in '%s'\n", USDT_NOTE_SEC, path); return err; } if (notes_shdr.sh_type != SHT_NOTE || !gelf_getehdr(elf, &ehdr)) { pr_warn("usdt: invalid USDT notes section (%s) in '%s'\n", USDT_NOTE_SEC, path); return -EINVAL; } err = parse_elf_segs(elf, path, &segs, &seg_cnt); if (err) { pr_warn("usdt: failed to process ELF program segments for '%s': %d\n", path, err); goto err_out; } /* .stapsdt.base ELF section is optional, but is used for prelink * offset compensation (see a big comment further below) */ if (find_elf_sec_by_name(elf, USDT_BASE_SEC, &base_shdr, &base_scn) == 0) base_addr = base_shdr.sh_addr; data = elf_getdata(notes_scn, 0); off = 0; while ((off = gelf_getnote(data, off, &nhdr, &name_off, &desc_off)) > 0) { long usdt_abs_ip, usdt_rel_ip, usdt_sema_off = 0; struct usdt_note note; struct elf_seg *seg = NULL; void *tmp; err = parse_usdt_note(elf, path, &nhdr, data->d_buf, name_off, desc_off, ¬e); if (err) goto err_out; if (strcmp(note.provider, usdt_provider) != 0 || strcmp(note.name, usdt_name) != 0) continue; /* We need to compensate "prelink effect". See [0] for details, * relevant parts quoted here: * * Each SDT probe also expands into a non-allocated ELF note. You can * find this by looking at SHT_NOTE sections and decoding the format; * see below for details. Because the note is non-allocated, it means * there is no runtime cost, and also preserved in both stripped files * and .debug files. * * However, this means that prelink won't adjust the note's contents * for address offsets. Instead, this is done via the .stapsdt.base * section. This is a special section that is added to the text. We * will only ever have one of these sections in a final link and it * will only ever be one byte long. Nothing about this section itself * matters, we just use it as a marker to detect prelink address * adjustments. * * Each probe note records the link-time address of the .stapsdt.base * section alongside the probe PC address. The decoder compares the * base address stored in the note with the .stapsdt.base section's * sh_addr. Initially these are the same, but the section header will * be adjusted by prelink. So the decoder applies the difference to * the probe PC address to get the correct prelinked PC address; the * same adjustment is applied to the semaphore address, if any. * * [0] https://sourceware.org/systemtap/wiki/UserSpaceProbeImplementation */ usdt_abs_ip = note.loc_addr; if (base_addr) usdt_abs_ip += base_addr - note.base_addr; /* When attaching uprobes (which is what USDTs basically are) * kernel expects file offset to be specified, not a relative * virtual address, so we need to translate virtual address to * file offset, for both ET_EXEC and ET_DYN binaries. */ seg = find_elf_seg(segs, seg_cnt, usdt_abs_ip); if (!seg) { err = -ESRCH; pr_warn("usdt: failed to find ELF program segment for '%s:%s' in '%s' at IP 0x%lx\n", usdt_provider, usdt_name, path, usdt_abs_ip); goto err_out; } if (!seg->is_exec) { err = -ESRCH; pr_warn("usdt: matched ELF binary '%s' segment [0x%lx, 0x%lx) for '%s:%s' at IP 0x%lx is not executable\n", path, seg->start, seg->end, usdt_provider, usdt_name, usdt_abs_ip); goto err_out; } /* translate from virtual address to file offset */ usdt_rel_ip = usdt_abs_ip - seg->start + seg->offset; if (ehdr.e_type == ET_DYN && !man->has_bpf_cookie) { /* If we don't have BPF cookie support but need to * attach to a shared library, we'll need to know and * record absolute addresses of attach points due to * the need to lookup USDT spec by absolute IP of * triggered uprobe. Doing this resolution is only * possible when we have a specific PID of the process * that's using specified shared library. BPF cookie * removes the absolute address limitation as we don't * need to do this lookup (we just use BPF cookie as * an index of USDT spec), so for newer kernels with * BPF cookie support libbpf supports USDT attachment * to shared libraries with no PID filter. */ if (pid < 0) { pr_warn("usdt: attaching to shared libraries without specific PID is not supported on current kernel\n"); err = -ENOTSUP; goto err_out; } /* vma_segs are lazily initialized only if necessary */ if (vma_seg_cnt == 0) { err = parse_vma_segs(pid, path, &vma_segs, &vma_seg_cnt); if (err) { pr_warn("usdt: failed to get memory segments in PID %d for shared library '%s': %d\n", pid, path, err); goto err_out; } } seg = find_vma_seg(vma_segs, vma_seg_cnt, usdt_rel_ip); if (!seg) { err = -ESRCH; pr_warn("usdt: failed to find shared lib memory segment for '%s:%s' in '%s' at relative IP 0x%lx\n", usdt_provider, usdt_name, path, usdt_rel_ip); goto err_out; } usdt_abs_ip = seg->start - seg->offset + usdt_rel_ip; } pr_debug("usdt: probe for '%s:%s' in %s '%s': addr 0x%lx base 0x%lx (resolved abs_ip 0x%lx rel_ip 0x%lx) args '%s' in segment [0x%lx, 0x%lx) at offset 0x%lx\n", usdt_provider, usdt_name, ehdr.e_type == ET_EXEC ? "exec" : "lib ", path, note.loc_addr, note.base_addr, usdt_abs_ip, usdt_rel_ip, note.args, seg ? seg->start : 0, seg ? seg->end : 0, seg ? seg->offset : 0); /* Adjust semaphore address to be a file offset */ if (note.sema_addr) { if (!man->has_sema_refcnt) { pr_warn("usdt: kernel doesn't support USDT semaphore refcounting for '%s:%s' in '%s'\n", usdt_provider, usdt_name, path); err = -ENOTSUP; goto err_out; } seg = find_elf_seg(segs, seg_cnt, note.sema_addr); if (!seg) { err = -ESRCH; pr_warn("usdt: failed to find ELF loadable segment with semaphore of '%s:%s' in '%s' at 0x%lx\n", usdt_provider, usdt_name, path, note.sema_addr); goto err_out; } if (seg->is_exec) { err = -ESRCH; pr_warn("usdt: matched ELF binary '%s' segment [0x%lx, 0x%lx] for semaphore of '%s:%s' at 0x%lx is executable\n", path, seg->start, seg->end, usdt_provider, usdt_name, note.sema_addr); goto err_out; } usdt_sema_off = note.sema_addr - seg->start + seg->offset; pr_debug("usdt: sema for '%s:%s' in %s '%s': addr 0x%lx base 0x%lx (resolved 0x%lx) in segment [0x%lx, 0x%lx] at offset 0x%lx\n", usdt_provider, usdt_name, ehdr.e_type == ET_EXEC ? "exec" : "lib ", path, note.sema_addr, note.base_addr, usdt_sema_off, seg->start, seg->end, seg->offset); } /* Record adjusted addresses and offsets and parse USDT spec */ tmp = libbpf_reallocarray(targets, target_cnt + 1, sizeof(*targets)); if (!tmp) { err = -ENOMEM; goto err_out; } targets = tmp; target = &targets[target_cnt]; memset(target, 0, sizeof(*target)); target->abs_ip = usdt_abs_ip; target->rel_ip = usdt_rel_ip; target->sema_off = usdt_sema_off; /* notes.args references strings from ELF itself, so they can * be referenced safely until elf_end() call */ target->spec_str = note.args; err = parse_usdt_spec(&target->spec, ¬e, usdt_cookie); if (err) goto err_out; target_cnt++; } *out_targets = targets; *out_target_cnt = target_cnt; err = target_cnt; err_out: free(segs); free(vma_segs); if (err < 0) free(targets); return err; } struct bpf_link_usdt { struct bpf_link link; struct usdt_manager *usdt_man; size_t spec_cnt; int *spec_ids; size_t uprobe_cnt; struct { long abs_ip; struct bpf_link *link; } *uprobes; struct bpf_link *multi_link; }; static int bpf_link_usdt_detach(struct bpf_link *link) { struct bpf_link_usdt *usdt_link = container_of(link, struct bpf_link_usdt, link); struct usdt_manager *man = usdt_link->usdt_man; int i; bpf_link__destroy(usdt_link->multi_link); /* When having multi_link, uprobe_cnt is 0 */ for (i = 0; i < usdt_link->uprobe_cnt; i++) { /* detach underlying uprobe link */ bpf_link__destroy(usdt_link->uprobes[i].link); /* there is no need to update specs map because it will be * unconditionally overwritten on subsequent USDT attaches, * but if BPF cookies are not used we need to remove entry * from ip_to_spec_id map, otherwise we'll run into false * conflicting IP errors */ if (!man->has_bpf_cookie) { /* not much we can do about errors here */ (void)bpf_map_delete_elem(bpf_map__fd(man->ip_to_spec_id_map), &usdt_link->uprobes[i].abs_ip); } } /* try to return the list of previously used spec IDs to usdt_manager * for future reuse for subsequent USDT attaches */ if (!man->free_spec_ids) { /* if there were no free spec IDs yet, just transfer our IDs */ man->free_spec_ids = usdt_link->spec_ids; man->free_spec_cnt = usdt_link->spec_cnt; usdt_link->spec_ids = NULL; } else { /* otherwise concat IDs */ size_t new_cnt = man->free_spec_cnt + usdt_link->spec_cnt; int *new_free_ids; new_free_ids = libbpf_reallocarray(man->free_spec_ids, new_cnt, sizeof(*new_free_ids)); /* If we couldn't resize free_spec_ids, we'll just leak * a bunch of free IDs; this is very unlikely to happen and if * system is so exhausted on memory, it's the least of user's * concerns, probably. * So just do our best here to return those IDs to usdt_manager. * Another edge case when we can legitimately get NULL is when * new_cnt is zero, which can happen in some edge cases, so we * need to be careful about that. */ if (new_free_ids || new_cnt == 0) { memcpy(new_free_ids + man->free_spec_cnt, usdt_link->spec_ids, usdt_link->spec_cnt * sizeof(*usdt_link->spec_ids)); man->free_spec_ids = new_free_ids; man->free_spec_cnt = new_cnt; } } return 0; } static void bpf_link_usdt_dealloc(struct bpf_link *link) { struct bpf_link_usdt *usdt_link = container_of(link, struct bpf_link_usdt, link); free(usdt_link->spec_ids); free(usdt_link->uprobes); free(usdt_link); } static size_t specs_hash_fn(long key, void *ctx) { return str_hash((char *)key); } static bool specs_equal_fn(long key1, long key2, void *ctx) { return strcmp((char *)key1, (char *)key2) == 0; } static int allocate_spec_id(struct usdt_manager *man, struct hashmap *specs_hash, struct bpf_link_usdt *link, struct usdt_target *target, int *spec_id, bool *is_new) { long tmp; void *new_ids; int err; /* check if we already allocated spec ID for this spec string */ if (hashmap__find(specs_hash, target->spec_str, &tmp)) { *spec_id = tmp; *is_new = false; return 0; } /* otherwise it's a new ID that needs to be set up in specs map and * returned back to usdt_manager when USDT link is detached */ new_ids = libbpf_reallocarray(link->spec_ids, link->spec_cnt + 1, sizeof(*link->spec_ids)); if (!new_ids) return -ENOMEM; link->spec_ids = new_ids; /* get next free spec ID, giving preference to free list, if not empty */ if (man->free_spec_cnt) { *spec_id = man->free_spec_ids[man->free_spec_cnt - 1]; /* cache spec ID for current spec string for future lookups */ err = hashmap__add(specs_hash, target->spec_str, *spec_id); if (err) return err; man->free_spec_cnt--; } else { /* don't allocate spec ID bigger than what fits in specs map */ if (man->next_free_spec_id >= bpf_map__max_entries(man->specs_map)) return -E2BIG; *spec_id = man->next_free_spec_id; /* cache spec ID for current spec string for future lookups */ err = hashmap__add(specs_hash, target->spec_str, *spec_id); if (err) return err; man->next_free_spec_id++; } /* remember new spec ID in the link for later return back to free list on detach */ link->spec_ids[link->spec_cnt] = *spec_id; link->spec_cnt++; *is_new = true; return 0; } struct bpf_link *usdt_manager_attach_usdt(struct usdt_manager *man, const struct bpf_program *prog, pid_t pid, const char *path, const char *usdt_provider, const char *usdt_name, __u64 usdt_cookie) { unsigned long *offsets = NULL, *ref_ctr_offsets = NULL; int i, err, spec_map_fd, ip_map_fd; LIBBPF_OPTS(bpf_uprobe_opts, opts); struct hashmap *specs_hash = NULL; struct bpf_link_usdt *link = NULL; struct usdt_target *targets = NULL; __u64 *cookies = NULL; struct elf_fd elf_fd; size_t target_cnt; spec_map_fd = bpf_map__fd(man->specs_map); ip_map_fd = bpf_map__fd(man->ip_to_spec_id_map); err = elf_open(path, &elf_fd); if (err) return libbpf_err_ptr(err); err = sanity_check_usdt_elf(elf_fd.elf, path); if (err) goto err_out; /* normalize PID filter */ if (pid < 0) pid = -1; else if (pid == 0) pid = getpid(); /* discover USDT in given binary, optionally limiting * activations to a given PID, if pid > 0 */ err = collect_usdt_targets(man, elf_fd.elf, path, pid, usdt_provider, usdt_name, usdt_cookie, &targets, &target_cnt); if (err <= 0) { err = (err == 0) ? -ENOENT : err; goto err_out; } specs_hash = hashmap__new(specs_hash_fn, specs_equal_fn, NULL); if (IS_ERR(specs_hash)) { err = PTR_ERR(specs_hash); goto err_out; } link = calloc(1, sizeof(*link)); if (!link) { err = -ENOMEM; goto err_out; } link->usdt_man = man; link->link.detach = &bpf_link_usdt_detach; link->link.dealloc = &bpf_link_usdt_dealloc; if (man->has_uprobe_multi) { offsets = calloc(target_cnt, sizeof(*offsets)); cookies = calloc(target_cnt, sizeof(*cookies)); ref_ctr_offsets = calloc(target_cnt, sizeof(*ref_ctr_offsets)); if (!offsets || !ref_ctr_offsets || !cookies) { err = -ENOMEM; goto err_out; } } else { link->uprobes = calloc(target_cnt, sizeof(*link->uprobes)); if (!link->uprobes) { err = -ENOMEM; goto err_out; } } for (i = 0; i < target_cnt; i++) { struct usdt_target *target = &targets[i]; struct bpf_link *uprobe_link; bool is_new; int spec_id; /* Spec ID can be either reused or newly allocated. If it is * newly allocated, we'll need to fill out spec map, otherwise * entire spec should be valid and can be just used by a new * uprobe. We reuse spec when USDT arg spec is identical. We * also never share specs between two different USDT * attachments ("links"), so all the reused specs already * share USDT cookie value implicitly. */ err = allocate_spec_id(man, specs_hash, link, target, &spec_id, &is_new); if (err) goto err_out; if (is_new && bpf_map_update_elem(spec_map_fd, &spec_id, &target->spec, BPF_ANY)) { err = -errno; pr_warn("usdt: failed to set USDT spec #%d for '%s:%s' in '%s': %d\n", spec_id, usdt_provider, usdt_name, path, err); goto err_out; } if (!man->has_bpf_cookie && bpf_map_update_elem(ip_map_fd, &target->abs_ip, &spec_id, BPF_NOEXIST)) { err = -errno; if (err == -EEXIST) { pr_warn("usdt: IP collision detected for spec #%d for '%s:%s' in '%s'\n", spec_id, usdt_provider, usdt_name, path); } else { pr_warn("usdt: failed to map IP 0x%lx to spec #%d for '%s:%s' in '%s': %d\n", target->abs_ip, spec_id, usdt_provider, usdt_name, path, err); } goto err_out; } if (man->has_uprobe_multi) { offsets[i] = target->rel_ip; ref_ctr_offsets[i] = target->sema_off; cookies[i] = spec_id; } else { opts.ref_ctr_offset = target->sema_off; opts.bpf_cookie = man->has_bpf_cookie ? spec_id : 0; uprobe_link = bpf_program__attach_uprobe_opts(prog, pid, path, target->rel_ip, &opts); err = libbpf_get_error(uprobe_link); if (err) { pr_warn("usdt: failed to attach uprobe #%d for '%s:%s' in '%s': %d\n", i, usdt_provider, usdt_name, path, err); goto err_out; } link->uprobes[i].link = uprobe_link; link->uprobes[i].abs_ip = target->abs_ip; link->uprobe_cnt++; } } if (man->has_uprobe_multi) { LIBBPF_OPTS(bpf_uprobe_multi_opts, opts_multi, .ref_ctr_offsets = ref_ctr_offsets, .offsets = offsets, .cookies = cookies, .cnt = target_cnt, ); link->multi_link = bpf_program__attach_uprobe_multi(prog, pid, path, NULL, &opts_multi); if (!link->multi_link) { err = -errno; pr_warn("usdt: failed to attach uprobe multi for '%s:%s' in '%s': %d\n", usdt_provider, usdt_name, path, err); goto err_out; } free(offsets); free(ref_ctr_offsets); free(cookies); } free(targets); hashmap__free(specs_hash); elf_close(&elf_fd); return &link->link; err_out: free(offsets); free(ref_ctr_offsets); free(cookies); if (link) bpf_link__destroy(&link->link); free(targets); hashmap__free(specs_hash); elf_close(&elf_fd); return libbpf_err_ptr(err); } /* Parse out USDT ELF note from '.note.stapsdt' section. * Logic inspired by perf's code. */ static int parse_usdt_note(Elf *elf, const char *path, GElf_Nhdr *nhdr, const char *data, size_t name_off, size_t desc_off, struct usdt_note *note) { const char *provider, *name, *args; long addrs[3]; size_t len; /* sanity check USDT note name and type first */ if (strncmp(data + name_off, USDT_NOTE_NAME, nhdr->n_namesz) != 0) return -EINVAL; if (nhdr->n_type != USDT_NOTE_TYPE) return -EINVAL; /* sanity check USDT note contents ("description" in ELF terminology) */ len = nhdr->n_descsz; data = data + desc_off; /* +3 is the very minimum required to store three empty strings */ if (len < sizeof(addrs) + 3) return -EINVAL; /* get location, base, and semaphore addrs */ memcpy(&addrs, data, sizeof(addrs)); /* parse string fields: provider, name, args */ provider = data + sizeof(addrs); name = (const char *)memchr(provider, '\0', data + len - provider); if (!name) /* non-zero-terminated provider */ return -EINVAL; name++; if (name >= data + len || *name == '\0') /* missing or empty name */ return -EINVAL; args = memchr(name, '\0', data + len - name); if (!args) /* non-zero-terminated name */ return -EINVAL; ++args; if (args >= data + len) /* missing arguments spec */ return -EINVAL; note->provider = provider; note->name = name; if (*args == '\0' || *args == ':') note->args = ""; else note->args = args; note->loc_addr = addrs[0]; note->base_addr = addrs[1]; note->sema_addr = addrs[2]; return 0; } static int parse_usdt_arg(const char *arg_str, int arg_num, struct usdt_arg_spec *arg, int *arg_sz); static int parse_usdt_spec(struct usdt_spec *spec, const struct usdt_note *note, __u64 usdt_cookie) { struct usdt_arg_spec *arg; const char *s; int arg_sz, len; spec->usdt_cookie = usdt_cookie; spec->arg_cnt = 0; s = note->args; while (s[0]) { if (spec->arg_cnt >= USDT_MAX_ARG_CNT) { pr_warn("usdt: too many USDT arguments (> %d) for '%s:%s' with args spec '%s'\n", USDT_MAX_ARG_CNT, note->provider, note->name, note->args); return -E2BIG; } arg = &spec->args[spec->arg_cnt]; len = parse_usdt_arg(s, spec->arg_cnt, arg, &arg_sz); if (len < 0) return len; arg->arg_signed = arg_sz < 0; if (arg_sz < 0) arg_sz = -arg_sz; switch (arg_sz) { case 1: case 2: case 4: case 8: arg->arg_bitshift = 64 - arg_sz * 8; break; default: pr_warn("usdt: unsupported arg #%d (spec '%s') size: %d\n", spec->arg_cnt, s, arg_sz); return -EINVAL; } s += len; spec->arg_cnt++; } return 0; } /* Architecture-specific logic for parsing USDT argument location specs */ #if defined(__x86_64__) || defined(__i386__) static int calc_pt_regs_off(const char *reg_name) { static struct { const char *names[4]; size_t pt_regs_off; } reg_map[] = { #ifdef __x86_64__ #define reg_off(reg64, reg32) offsetof(struct pt_regs, reg64) #else #define reg_off(reg64, reg32) offsetof(struct pt_regs, reg32) #endif { {"rip", "eip", "", ""}, reg_off(rip, eip) }, { {"rax", "eax", "ax", "al"}, reg_off(rax, eax) }, { {"rbx", "ebx", "bx", "bl"}, reg_off(rbx, ebx) }, { {"rcx", "ecx", "cx", "cl"}, reg_off(rcx, ecx) }, { {"rdx", "edx", "dx", "dl"}, reg_off(rdx, edx) }, { {"rsi", "esi", "si", "sil"}, reg_off(rsi, esi) }, { {"rdi", "edi", "di", "dil"}, reg_off(rdi, edi) }, { {"rbp", "ebp", "bp", "bpl"}, reg_off(rbp, ebp) }, { {"rsp", "esp", "sp", "spl"}, reg_off(rsp, esp) }, #undef reg_off #ifdef __x86_64__ { {"r8", "r8d", "r8w", "r8b"}, offsetof(struct pt_regs, r8) }, { {"r9", "r9d", "r9w", "r9b"}, offsetof(struct pt_regs, r9) }, { {"r10", "r10d", "r10w", "r10b"}, offsetof(struct pt_regs, r10) }, { {"r11", "r11d", "r11w", "r11b"}, offsetof(struct pt_regs, r11) }, { {"r12", "r12d", "r12w", "r12b"}, offsetof(struct pt_regs, r12) }, { {"r13", "r13d", "r13w", "r13b"}, offsetof(struct pt_regs, r13) }, { {"r14", "r14d", "r14w", "r14b"}, offsetof(struct pt_regs, r14) }, { {"r15", "r15d", "r15w", "r15b"}, offsetof(struct pt_regs, r15) }, #endif }; int i, j; for (i = 0; i < ARRAY_SIZE(reg_map); i++) { for (j = 0; j < ARRAY_SIZE(reg_map[i].names); j++) { if (strcmp(reg_name, reg_map[i].names[j]) == 0) return reg_map[i].pt_regs_off; } } pr_warn("usdt: unrecognized register '%s'\n", reg_name); return -ENOENT; } static int parse_usdt_arg(const char *arg_str, int arg_num, struct usdt_arg_spec *arg, int *arg_sz) { char reg_name[16]; int len, reg_off; long off; if (sscanf(arg_str, " %d @ %ld ( %%%15[^)] ) %n", arg_sz, &off, reg_name, &len) == 3) { /* Memory dereference case, e.g., -4@-20(%rbp) */ arg->arg_type = USDT_ARG_REG_DEREF; arg->val_off = off; reg_off = calc_pt_regs_off(reg_name); if (reg_off < 0) return reg_off; arg->reg_off = reg_off; } else if (sscanf(arg_str, " %d @ ( %%%15[^)] ) %n", arg_sz, reg_name, &len) == 2) { /* Memory dereference case without offset, e.g., 8@(%rsp) */ arg->arg_type = USDT_ARG_REG_DEREF; arg->val_off = 0; reg_off = calc_pt_regs_off(reg_name); if (reg_off < 0) return reg_off; arg->reg_off = reg_off; } else if (sscanf(arg_str, " %d @ %%%15s %n", arg_sz, reg_name, &len) == 2) { /* Register read case, e.g., -4@%eax */ arg->arg_type = USDT_ARG_REG; arg->val_off = 0; reg_off = calc_pt_regs_off(reg_name); if (reg_off < 0) return reg_off; arg->reg_off = reg_off; } else if (sscanf(arg_str, " %d @ $%ld %n", arg_sz, &off, &len) == 2) { /* Constant value case, e.g., 4@$71 */ arg->arg_type = USDT_ARG_CONST; arg->val_off = off; arg->reg_off = 0; } else { pr_warn("usdt: unrecognized arg #%d spec '%s'\n", arg_num, arg_str); return -EINVAL; } return len; } #elif defined(__s390x__) /* Do not support __s390__ for now, since user_pt_regs is broken with -m31. */ static int parse_usdt_arg(const char *arg_str, int arg_num, struct usdt_arg_spec *arg, int *arg_sz) { unsigned int reg; int len; long off; if (sscanf(arg_str, " %d @ %ld ( %%r%u ) %n", arg_sz, &off, ®, &len) == 3) { /* Memory dereference case, e.g., -2@-28(%r15) */ arg->arg_type = USDT_ARG_REG_DEREF; arg->val_off = off; if (reg > 15) { pr_warn("usdt: unrecognized register '%%r%u'\n", reg); return -EINVAL; } arg->reg_off = offsetof(user_pt_regs, gprs[reg]); } else if (sscanf(arg_str, " %d @ %%r%u %n", arg_sz, ®, &len) == 2) { /* Register read case, e.g., -8@%r0 */ arg->arg_type = USDT_ARG_REG; arg->val_off = 0; if (reg > 15) { pr_warn("usdt: unrecognized register '%%r%u'\n", reg); return -EINVAL; } arg->reg_off = offsetof(user_pt_regs, gprs[reg]); } else if (sscanf(arg_str, " %d @ %ld %n", arg_sz, &off, &len) == 2) { /* Constant value case, e.g., 4@71 */ arg->arg_type = USDT_ARG_CONST; arg->val_off = off; arg->reg_off = 0; } else { pr_warn("usdt: unrecognized arg #%d spec '%s'\n", arg_num, arg_str); return -EINVAL; } return len; } #elif defined(__aarch64__) static int calc_pt_regs_off(const char *reg_name) { int reg_num; if (sscanf(reg_name, "x%d", ®_num) == 1) { if (reg_num >= 0 && reg_num < 31) return offsetof(struct user_pt_regs, regs[reg_num]); } else if (strcmp(reg_name, "sp") == 0) { return offsetof(struct user_pt_regs, sp); } pr_warn("usdt: unrecognized register '%s'\n", reg_name); return -ENOENT; } static int parse_usdt_arg(const char *arg_str, int arg_num, struct usdt_arg_spec *arg, int *arg_sz) { char reg_name[16]; int len, reg_off; long off; if (sscanf(arg_str, " %d @ \[ %15[a-z0-9] , %ld ] %n", arg_sz, reg_name, &off, &len) == 3) { /* Memory dereference case, e.g., -4@[sp, 96] */ arg->arg_type = USDT_ARG_REG_DEREF; arg->val_off = off; reg_off = calc_pt_regs_off(reg_name); if (reg_off < 0) return reg_off; arg->reg_off = reg_off; } else if (sscanf(arg_str, " %d @ \[ %15[a-z0-9] ] %n", arg_sz, reg_name, &len) == 2) { /* Memory dereference case, e.g., -4@[sp] */ arg->arg_type = USDT_ARG_REG_DEREF; arg->val_off = 0; reg_off = calc_pt_regs_off(reg_name); if (reg_off < 0) return reg_off; arg->reg_off = reg_off; } else if (sscanf(arg_str, " %d @ %ld %n", arg_sz, &off, &len) == 2) { /* Constant value case, e.g., 4@5 */ arg->arg_type = USDT_ARG_CONST; arg->val_off = off; arg->reg_off = 0; } else if (sscanf(arg_str, " %d @ %15[a-z0-9] %n", arg_sz, reg_name, &len) == 2) { /* Register read case, e.g., -8@x4 */ arg->arg_type = USDT_ARG_REG; arg->val_off = 0; reg_off = calc_pt_regs_off(reg_name); if (reg_off < 0) return reg_off; arg->reg_off = reg_off; } else { pr_warn("usdt: unrecognized arg #%d spec '%s'\n", arg_num, arg_str); return -EINVAL; } return len; } #elif defined(__riscv) static int calc_pt_regs_off(const char *reg_name) { static struct { const char *name; size_t pt_regs_off; } reg_map[] = { { "ra", offsetof(struct user_regs_struct, ra) }, { "sp", offsetof(struct user_regs_struct, sp) }, { "gp", offsetof(struct user_regs_struct, gp) }, { "tp", offsetof(struct user_regs_struct, tp) }, { "a0", offsetof(struct user_regs_struct, a0) }, { "a1", offsetof(struct user_regs_struct, a1) }, { "a2", offsetof(struct user_regs_struct, a2) }, { "a3", offsetof(struct user_regs_struct, a3) }, { "a4", offsetof(struct user_regs_struct, a4) }, { "a5", offsetof(struct user_regs_struct, a5) }, { "a6", offsetof(struct user_regs_struct, a6) }, { "a7", offsetof(struct user_regs_struct, a7) }, { "s0", offsetof(struct user_regs_struct, s0) }, { "s1", offsetof(struct user_regs_struct, s1) }, { "s2", offsetof(struct user_regs_struct, s2) }, { "s3", offsetof(struct user_regs_struct, s3) }, { "s4", offsetof(struct user_regs_struct, s4) }, { "s5", offsetof(struct user_regs_struct, s5) }, { "s6", offsetof(struct user_regs_struct, s6) }, { "s7", offsetof(struct user_regs_struct, s7) }, { "s8", offsetof(struct user_regs_struct, rv_s8) }, { "s9", offsetof(struct user_regs_struct, s9) }, { "s10", offsetof(struct user_regs_struct, s10) }, { "s11", offsetof(struct user_regs_struct, s11) }, { "t0", offsetof(struct user_regs_struct, t0) }, { "t1", offsetof(struct user_regs_struct, t1) }, { "t2", offsetof(struct user_regs_struct, t2) }, { "t3", offsetof(struct user_regs_struct, t3) }, { "t4", offsetof(struct user_regs_struct, t4) }, { "t5", offsetof(struct user_regs_struct, t5) }, { "t6", offsetof(struct user_regs_struct, t6) }, }; int i; for (i = 0; i < ARRAY_SIZE(reg_map); i++) { if (strcmp(reg_name, reg_map[i].name) == 0) return reg_map[i].pt_regs_off; } pr_warn("usdt: unrecognized register '%s'\n", reg_name); return -ENOENT; } static int parse_usdt_arg(const char *arg_str, int arg_num, struct usdt_arg_spec *arg, int *arg_sz) { char reg_name[16]; int len, reg_off; long off; if (sscanf(arg_str, " %d @ %ld ( %15[a-z0-9] ) %n", arg_sz, &off, reg_name, &len) == 3) { /* Memory dereference case, e.g., -8@-88(s0) */ arg->arg_type = USDT_ARG_REG_DEREF; arg->val_off = off; reg_off = calc_pt_regs_off(reg_name); if (reg_off < 0) return reg_off; arg->reg_off = reg_off; } else if (sscanf(arg_str, " %d @ %ld %n", arg_sz, &off, &len) == 2) { /* Constant value case, e.g., 4@5 */ arg->arg_type = USDT_ARG_CONST; arg->val_off = off; arg->reg_off = 0; } else if (sscanf(arg_str, " %d @ %15[a-z0-9] %n", arg_sz, reg_name, &len) == 2) { /* Register read case, e.g., -8@a1 */ arg->arg_type = USDT_ARG_REG; arg->val_off = 0; reg_off = calc_pt_regs_off(reg_name); if (reg_off < 0) return reg_off; arg->reg_off = reg_off; } else { pr_warn("usdt: unrecognized arg #%d spec '%s'\n", arg_num, arg_str); return -EINVAL; } return len; } #elif defined(__arm__) static int calc_pt_regs_off(const char *reg_name) { static struct { const char *name; size_t pt_regs_off; } reg_map[] = { { "r0", offsetof(struct pt_regs, uregs[0]) }, { "r1", offsetof(struct pt_regs, uregs[1]) }, { "r2", offsetof(struct pt_regs, uregs[2]) }, { "r3", offsetof(struct pt_regs, uregs[3]) }, { "r4", offsetof(struct pt_regs, uregs[4]) }, { "r5", offsetof(struct pt_regs, uregs[5]) }, { "r6", offsetof(struct pt_regs, uregs[6]) }, { "r7", offsetof(struct pt_regs, uregs[7]) }, { "r8", offsetof(struct pt_regs, uregs[8]) }, { "r9", offsetof(struct pt_regs, uregs[9]) }, { "r10", offsetof(struct pt_regs, uregs[10]) }, { "fp", offsetof(struct pt_regs, uregs[11]) }, { "ip", offsetof(struct pt_regs, uregs[12]) }, { "sp", offsetof(struct pt_regs, uregs[13]) }, { "lr", offsetof(struct pt_regs, uregs[14]) }, { "pc", offsetof(struct pt_regs, uregs[15]) }, }; int i; for (i = 0; i < ARRAY_SIZE(reg_map); i++) { if (strcmp(reg_name, reg_map[i].name) == 0) return reg_map[i].pt_regs_off; } pr_warn("usdt: unrecognized register '%s'\n", reg_name); return -ENOENT; } static int parse_usdt_arg(const char *arg_str, int arg_num, struct usdt_arg_spec *arg, int *arg_sz) { char reg_name[16]; int len, reg_off; long off; if (sscanf(arg_str, " %d @ \[ %15[a-z0-9] , #%ld ] %n", arg_sz, reg_name, &off, &len) == 3) { /* Memory dereference case, e.g., -4@[fp, #96] */ arg->arg_type = USDT_ARG_REG_DEREF; arg->val_off = off; reg_off = calc_pt_regs_off(reg_name); if (reg_off < 0) return reg_off; arg->reg_off = reg_off; } else if (sscanf(arg_str, " %d @ \[ %15[a-z0-9] ] %n", arg_sz, reg_name, &len) == 2) { /* Memory dereference case, e.g., -4@[sp] */ arg->arg_type = USDT_ARG_REG_DEREF; arg->val_off = 0; reg_off = calc_pt_regs_off(reg_name); if (reg_off < 0) return reg_off; arg->reg_off = reg_off; } else if (sscanf(arg_str, " %d @ #%ld %n", arg_sz, &off, &len) == 2) { /* Constant value case, e.g., 4@#5 */ arg->arg_type = USDT_ARG_CONST; arg->val_off = off; arg->reg_off = 0; } else if (sscanf(arg_str, " %d @ %15[a-z0-9] %n", arg_sz, reg_name, &len) == 2) { /* Register read case, e.g., -8@r4 */ arg->arg_type = USDT_ARG_REG; arg->val_off = 0; reg_off = calc_pt_regs_off(reg_name); if (reg_off < 0) return reg_off; arg->reg_off = reg_off; } else { pr_warn("usdt: unrecognized arg #%d spec '%s'\n", arg_num, arg_str); return -EINVAL; } return len; } #else static int parse_usdt_arg(const char *arg_str, int arg_num, struct usdt_arg_spec *arg, int *arg_sz) { pr_warn("usdt: libbpf doesn't support USDTs on current architecture\n"); return -ENOTSUP; } #endif
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1