Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Peter Zijlstra | 1364 | 97.36% | 1 | 14.29% |
Namhyung Kim | 24 | 1.71% | 2 | 28.57% |
Arnaldo Carvalho de Melo | 9 | 0.64% | 2 | 28.57% |
Ian Rogers | 3 | 0.21% | 1 | 14.29% |
Greg Kroah-Hartman | 1 | 0.07% | 1 | 14.29% |
Total | 1401 | 7 |
// SPDX-License-Identifier: GPL-2.0 #include "block-range.h" #include "annotate.h" #include <assert.h> #include <stdlib.h> struct { struct rb_root root; u64 blocks; } block_ranges; static void block_range__debug(void) { #ifndef NDEBUG struct rb_node *rb; u64 old = 0; /* NULL isn't executable */ for (rb = rb_first(&block_ranges.root); rb; rb = rb_next(rb)) { struct block_range *entry = rb_entry(rb, struct block_range, node); assert(old < entry->start); assert(entry->start <= entry->end); /* single instruction block; jump to a jump */ old = entry->end; } #endif } struct block_range *block_range__find(u64 addr) { struct rb_node **p = &block_ranges.root.rb_node; struct rb_node *parent = NULL; struct block_range *entry; while (*p != NULL) { parent = *p; entry = rb_entry(parent, struct block_range, node); if (addr < entry->start) p = &parent->rb_left; else if (addr > entry->end) p = &parent->rb_right; else return entry; } return NULL; } static inline void rb_link_left_of_node(struct rb_node *left, struct rb_node *node) { struct rb_node **p = &node->rb_left; while (*p) { node = *p; p = &node->rb_right; } rb_link_node(left, node, p); } static inline void rb_link_right_of_node(struct rb_node *right, struct rb_node *node) { struct rb_node **p = &node->rb_right; while (*p) { node = *p; p = &node->rb_left; } rb_link_node(right, node, p); } /** * block_range__create * @start: branch target starting this basic block * @end: branch ending this basic block * * Create all the required block ranges to precisely span the given range. */ struct block_range_iter block_range__create(u64 start, u64 end) { struct rb_node **p = &block_ranges.root.rb_node; struct rb_node *n, *parent = NULL; struct block_range *next, *entry = NULL; struct block_range_iter iter = { NULL, NULL }; while (*p != NULL) { parent = *p; entry = rb_entry(parent, struct block_range, node); if (start < entry->start) p = &parent->rb_left; else if (start > entry->end) p = &parent->rb_right; else break; } /* * Didn't find anything.. there's a hole at @start, however @end might * be inside/behind the next range. */ if (!*p) { if (!entry) /* tree empty */ goto do_whole; /* * If the last node is before, advance one to find the next. */ n = parent; if (entry->end < start) { n = rb_next(n); if (!n) goto do_whole; } next = rb_entry(n, struct block_range, node); if (next->start <= end) { /* add head: [start...][n->start...] */ struct block_range *head = malloc(sizeof(struct block_range)); if (!head) return iter; *head = (struct block_range){ .start = start, .end = next->start - 1, .is_target = 1, .is_branch = 0, }; rb_link_left_of_node(&head->node, &next->node); rb_insert_color(&head->node, &block_ranges.root); block_range__debug(); iter.start = head; goto do_tail; } do_whole: /* * The whole [start..end] range is non-overlapping. */ entry = malloc(sizeof(struct block_range)); if (!entry) return iter; *entry = (struct block_range){ .start = start, .end = end, .is_target = 1, .is_branch = 1, }; rb_link_node(&entry->node, parent, p); rb_insert_color(&entry->node, &block_ranges.root); block_range__debug(); iter.start = entry; iter.end = entry; goto done; } /* * We found a range that overlapped with ours, split if needed. */ if (entry->start < start) { /* split: [e->start...][start...] */ struct block_range *head = malloc(sizeof(struct block_range)); if (!head) return iter; *head = (struct block_range){ .start = entry->start, .end = start - 1, .is_target = entry->is_target, .is_branch = 0, .coverage = entry->coverage, .entry = entry->entry, }; entry->start = start; entry->is_target = 1; entry->entry = 0; rb_link_left_of_node(&head->node, &entry->node); rb_insert_color(&head->node, &block_ranges.root); block_range__debug(); } else if (entry->start == start) entry->is_target = 1; iter.start = entry; do_tail: /* * At this point we've got: @iter.start = [@start...] but @end can still be * inside or beyond it. */ entry = iter.start; for (;;) { /* * If @end is inside @entry, split. */ if (end < entry->end) { /* split: [...end][...e->end] */ struct block_range *tail = malloc(sizeof(struct block_range)); if (!tail) return iter; *tail = (struct block_range){ .start = end + 1, .end = entry->end, .is_target = 0, .is_branch = entry->is_branch, .coverage = entry->coverage, .taken = entry->taken, .pred = entry->pred, }; entry->end = end; entry->is_branch = 1; entry->taken = 0; entry->pred = 0; rb_link_right_of_node(&tail->node, &entry->node); rb_insert_color(&tail->node, &block_ranges.root); block_range__debug(); iter.end = entry; goto done; } /* * If @end matches @entry, done */ if (end == entry->end) { entry->is_branch = 1; iter.end = entry; goto done; } next = block_range__next(entry); if (!next) goto add_tail; /* * If @end is in beyond @entry but not inside @next, add tail. */ if (end < next->start) { /* add tail: [...e->end][...end] */ struct block_range *tail; add_tail: tail = malloc(sizeof(struct block_range)); if (!tail) return iter; *tail = (struct block_range){ .start = entry->end + 1, .end = end, .is_target = 0, .is_branch = 1, }; rb_link_right_of_node(&tail->node, &entry->node); rb_insert_color(&tail->node, &block_ranges.root); block_range__debug(); iter.end = tail; goto done; } /* * If there is a hole between @entry and @next, fill it. */ if (entry->end + 1 != next->start) { struct block_range *hole = malloc(sizeof(struct block_range)); if (!hole) return iter; *hole = (struct block_range){ .start = entry->end + 1, .end = next->start - 1, .is_target = 0, .is_branch = 0, }; rb_link_left_of_node(&hole->node, &next->node); rb_insert_color(&hole->node, &block_ranges.root); block_range__debug(); } entry = next; } done: assert(iter.start->start == start && iter.start->is_target); assert(iter.end->end == end && iter.end->is_branch); block_ranges.blocks++; return iter; } /* * Compute coverage as: * * br->coverage / br->sym->max_coverage * * This ensures each symbol has a 100% spot, to reflect that each symbol has a * most covered section. * * Returns [0-1] for coverage and -1 if we had no data what so ever or the * symbol does not exist. */ double block_range__coverage(struct block_range *br) { struct symbol *sym; struct annotated_branch *branch; if (!br) { if (block_ranges.blocks) return 0; return -1; } sym = br->sym; if (!sym) return -1; branch = symbol__annotation(sym)->branch; if (!branch) return -1; return (double)br->coverage / branch->max_coverage; }
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1