Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Mathieu J. Poirier | 2061 | 68.13% | 14 | 29.17% |
James Clark | 312 | 10.31% | 14 | 29.17% |
Robert Walker | 274 | 9.06% | 3 | 6.25% |
Leo Yan | 187 | 6.18% | 9 | 18.75% |
German Gomez | 69 | 2.28% | 1 | 2.08% |
Mike Leach | 62 | 2.05% | 3 | 6.25% |
Suzuki K. Poulose | 47 | 1.55% | 1 | 2.08% |
Adrian Hunter | 10 | 0.33% | 2 | 4.17% |
Arnaldo Carvalho de Melo | 3 | 0.10% | 1 | 2.08% |
Total | 3025 | 48 |
// SPDX-License-Identifier: GPL-2.0 /* * Copyright(C) 2015-2018 Linaro Limited. * * Author: Tor Jeremiassen <tor@ti.com> * Author: Mathieu Poirier <mathieu.poirier@linaro.org> */ #include <asm/bug.h> #include <linux/coresight-pmu.h> #include <linux/err.h> #include <linux/list.h> #include <linux/zalloc.h> #include <stdlib.h> #include <opencsd/c_api/opencsd_c_api.h> #include "cs-etm.h" #include "cs-etm-decoder.h" #include "debug.h" #include "intlist.h" /* use raw logging */ #ifdef CS_DEBUG_RAW #define CS_LOG_RAW_FRAMES #ifdef CS_RAW_PACKED #define CS_RAW_DEBUG_FLAGS (OCSD_DFRMTR_UNPACKED_RAW_OUT | \ OCSD_DFRMTR_PACKED_RAW_OUT) #else #define CS_RAW_DEBUG_FLAGS (OCSD_DFRMTR_UNPACKED_RAW_OUT) #endif #endif /* * Assume a maximum of 0.1ns elapsed per instruction. This would be the * case with a theoretical 10GHz core executing 1 instruction per cycle. * Used to estimate the sample time for synthesized instructions because * Coresight only emits a timestamp for a range of instructions rather * than per instruction. */ const u32 INSTR_PER_NS = 10; struct cs_etm_decoder { void *data; void (*packet_printer)(const char *msg); bool suppress_printing; dcd_tree_handle_t dcd_tree; cs_etm_mem_cb_type mem_access; ocsd_datapath_resp_t prev_return; const char *decoder_name; }; static u32 cs_etm_decoder__mem_access(const void *context, const ocsd_vaddr_t address, const ocsd_mem_space_acc_t mem_space, const u8 trace_chan_id, const u32 req_size, u8 *buffer) { struct cs_etm_decoder *decoder = (struct cs_etm_decoder *) context; return decoder->mem_access(decoder->data, trace_chan_id, address, req_size, buffer, mem_space); } int cs_etm_decoder__add_mem_access_cb(struct cs_etm_decoder *decoder, u64 start, u64 end, cs_etm_mem_cb_type cb_func) { decoder->mem_access = cb_func; if (ocsd_dt_add_callback_trcid_mem_acc(decoder->dcd_tree, start, end, OCSD_MEM_SPACE_ANY, cs_etm_decoder__mem_access, decoder)) return -1; return 0; } int cs_etm_decoder__reset(struct cs_etm_decoder *decoder) { ocsd_datapath_resp_t dp_ret; decoder->prev_return = OCSD_RESP_CONT; decoder->suppress_printing = true; dp_ret = ocsd_dt_process_data(decoder->dcd_tree, OCSD_OP_RESET, 0, 0, NULL, NULL); decoder->suppress_printing = false; if (OCSD_DATA_RESP_IS_FATAL(dp_ret)) return -1; return 0; } int cs_etm_decoder__get_packet(struct cs_etm_packet_queue *packet_queue, struct cs_etm_packet *packet) { if (!packet_queue || !packet) return -EINVAL; /* Nothing to do, might as well just return */ if (packet_queue->packet_count == 0) return 0; /* * The queueing process in function cs_etm_decoder__buffer_packet() * increments the tail *before* using it. This is somewhat counter * intuitive but it has the advantage of centralizing tail management * at a single location. Because of that we need to follow the same * heuristic with the head, i.e we increment it before using its * value. Otherwise the first element of the packet queue is not * used. */ packet_queue->head = (packet_queue->head + 1) & (CS_ETM_PACKET_MAX_BUFFER - 1); *packet = packet_queue->packet_buffer[packet_queue->head]; packet_queue->packet_count--; return 1; } /* * Calculate the number of nanoseconds elapsed. * * instr_count is updated in place with the remainder of the instructions * which didn't make up a whole nanosecond. */ static u32 cs_etm_decoder__dec_instr_count_to_ns(u32 *instr_count) { const u32 instr_copy = *instr_count; *instr_count %= INSTR_PER_NS; return instr_copy / INSTR_PER_NS; } static int cs_etm_decoder__gen_etmv3_config(struct cs_etm_trace_params *params, ocsd_etmv3_cfg *config) { config->reg_idr = params->etmv3.reg_idr; config->reg_ctrl = params->etmv3.reg_ctrl; config->reg_ccer = params->etmv3.reg_ccer; config->reg_trc_id = params->etmv3.reg_trc_id; config->arch_ver = ARCH_V7; config->core_prof = profile_CortexA; return 0; } #define TRCIDR1_TRCARCHMIN_SHIFT 4 #define TRCIDR1_TRCARCHMIN_MASK GENMASK(7, 4) #define TRCIDR1_TRCARCHMIN(x) (((x) & TRCIDR1_TRCARCHMIN_MASK) >> TRCIDR1_TRCARCHMIN_SHIFT) static enum _ocsd_arch_version cs_etm_decoder__get_etmv4_arch_ver(u32 reg_idr1) { /* * For ETMv4 if the trace minor version is 4 or more then we can assume * the architecture is ARCH_AA64 rather than just V8. * ARCH_V8 = V8 architecture * ARCH_AA64 = Min v8r3 plus additional AA64 PE features */ return TRCIDR1_TRCARCHMIN(reg_idr1) >= 4 ? ARCH_AA64 : ARCH_V8; } static void cs_etm_decoder__gen_etmv4_config(struct cs_etm_trace_params *params, ocsd_etmv4_cfg *config) { config->reg_configr = params->etmv4.reg_configr; config->reg_traceidr = params->etmv4.reg_traceidr; config->reg_idr0 = params->etmv4.reg_idr0; config->reg_idr1 = params->etmv4.reg_idr1; config->reg_idr2 = params->etmv4.reg_idr2; config->reg_idr8 = params->etmv4.reg_idr8; config->reg_idr9 = 0; config->reg_idr10 = 0; config->reg_idr11 = 0; config->reg_idr12 = 0; config->reg_idr13 = 0; config->arch_ver = cs_etm_decoder__get_etmv4_arch_ver(params->etmv4.reg_idr1); config->core_prof = profile_CortexA; } static void cs_etm_decoder__gen_ete_config(struct cs_etm_trace_params *params, ocsd_ete_cfg *config) { config->reg_configr = params->ete.reg_configr; config->reg_traceidr = params->ete.reg_traceidr; config->reg_idr0 = params->ete.reg_idr0; config->reg_idr1 = params->ete.reg_idr1; config->reg_idr2 = params->ete.reg_idr2; config->reg_idr8 = params->ete.reg_idr8; config->reg_devarch = params->ete.reg_devarch; config->arch_ver = ARCH_AA64; config->core_prof = profile_CortexA; } static void cs_etm_decoder__print_str_cb(const void *p_context, const char *msg, const int str_len) { const struct cs_etm_decoder *decoder = p_context; if (p_context && str_len && !decoder->suppress_printing) decoder->packet_printer(msg); } static int cs_etm_decoder__init_def_logger_printing(struct cs_etm_decoder_params *d_params, struct cs_etm_decoder *decoder) { int ret = 0; if (d_params->packet_printer == NULL) return -1; decoder->packet_printer = d_params->packet_printer; /* * Set up a library default logger to process any printers * (packet/raw frame) we add later. */ ret = ocsd_def_errlog_init(OCSD_ERR_SEV_ERROR, 1); if (ret != 0) return -1; /* no stdout / err / file output */ ret = ocsd_def_errlog_config_output(C_API_MSGLOGOUT_FLG_NONE, NULL); if (ret != 0) return -1; /* * Set the string CB for the default logger, passes strings to * perf print logger. */ ret = ocsd_def_errlog_set_strprint_cb(decoder->dcd_tree, (void *)decoder, cs_etm_decoder__print_str_cb); if (ret != 0) ret = -1; return 0; } #ifdef CS_LOG_RAW_FRAMES static void cs_etm_decoder__init_raw_frame_logging(struct cs_etm_decoder_params *d_params, struct cs_etm_decoder *decoder) { /* Only log these during a --dump operation */ if (d_params->operation == CS_ETM_OPERATION_PRINT) { /* set up a library default logger to process the * raw frame printer we add later */ ocsd_def_errlog_init(OCSD_ERR_SEV_ERROR, 1); /* no stdout / err / file output */ ocsd_def_errlog_config_output(C_API_MSGLOGOUT_FLG_NONE, NULL); /* set the string CB for the default logger, * passes strings to perf print logger. */ ocsd_def_errlog_set_strprint_cb(decoder->dcd_tree, (void *)decoder, cs_etm_decoder__print_str_cb); /* use the built in library printer for the raw frames */ ocsd_dt_set_raw_frame_printer(decoder->dcd_tree, CS_RAW_DEBUG_FLAGS); } } #else static void cs_etm_decoder__init_raw_frame_logging( struct cs_etm_decoder_params *d_params __maybe_unused, struct cs_etm_decoder *decoder __maybe_unused) { } #endif static ocsd_datapath_resp_t cs_etm_decoder__do_soft_timestamp(struct cs_etm_queue *etmq, struct cs_etm_packet_queue *packet_queue, const uint8_t trace_chan_id) { u64 estimated_ts; /* No timestamp packet has been received, nothing to do */ if (!packet_queue->next_cs_timestamp) return OCSD_RESP_CONT; estimated_ts = packet_queue->cs_timestamp + cs_etm_decoder__dec_instr_count_to_ns(&packet_queue->instr_count); /* Estimated TS can never be higher than the next real one in the trace */ packet_queue->cs_timestamp = min(packet_queue->next_cs_timestamp, estimated_ts); /* Tell the front end which traceid_queue needs attention */ cs_etm__etmq_set_traceid_queue_timestamp(etmq, trace_chan_id); return OCSD_RESP_WAIT; } static ocsd_datapath_resp_t cs_etm_decoder__do_hard_timestamp(struct cs_etm_queue *etmq, const ocsd_generic_trace_elem *elem, const uint8_t trace_chan_id, const ocsd_trc_index_t indx) { struct cs_etm_packet_queue *packet_queue; u64 converted_timestamp; u64 estimated_first_ts; /* First get the packet queue for this traceID */ packet_queue = cs_etm__etmq_get_packet_queue(etmq, trace_chan_id); if (!packet_queue) return OCSD_RESP_FATAL_SYS_ERR; /* * Coresight timestamps are raw timer values which need to be scaled to ns. Assume * 0 is a bad value so don't try to convert it. */ converted_timestamp = elem->timestamp ? cs_etm__convert_sample_time(etmq, elem->timestamp) : 0; /* * We've seen a timestamp packet before - simply record the new value. * Function do_soft_timestamp() will report the value to the front end, * hence asking the decoder to keep decoding rather than stopping. */ if (packet_queue->next_cs_timestamp) { /* * What was next is now where new ranges start from, overwriting * any previous estimate in cs_timestamp */ packet_queue->cs_timestamp = packet_queue->next_cs_timestamp; packet_queue->next_cs_timestamp = converted_timestamp; return OCSD_RESP_CONT; } if (!converted_timestamp) { /* * Zero timestamps can be seen due to misconfiguration or hardware bugs. * Warn once, and don't try to subtract instr_count as it would result in an * underflow. */ packet_queue->cs_timestamp = 0; if (!cs_etm__etmq_is_timeless(etmq)) pr_warning_once("Zero Coresight timestamp found at Idx:%" OCSD_TRC_IDX_STR ". Decoding may be improved by prepending 'Z' to your current --itrace arguments.\n", indx); } else if (packet_queue->instr_count / INSTR_PER_NS > converted_timestamp) { /* * Sanity check that the elem->timestamp - packet_queue->instr_count would not * result in an underflow. Warn and clamp at 0 if it would. */ packet_queue->cs_timestamp = 0; pr_err("Timestamp calculation underflow at Idx:%" OCSD_TRC_IDX_STR "\n", indx); } else { /* * This is the first timestamp we've seen since the beginning of traces * or a discontinuity. Since timestamps packets are generated *after* * range packets have been generated, we need to estimate the time at * which instructions started by subtracting the number of instructions * executed to the timestamp. Don't estimate earlier than the last used * timestamp though. */ estimated_first_ts = converted_timestamp - (packet_queue->instr_count / INSTR_PER_NS); packet_queue->cs_timestamp = max(packet_queue->cs_timestamp, estimated_first_ts); } packet_queue->next_cs_timestamp = converted_timestamp; packet_queue->instr_count = 0; /* Tell the front end which traceid_queue needs attention */ cs_etm__etmq_set_traceid_queue_timestamp(etmq, trace_chan_id); /* Halt processing until we are being told to proceed */ return OCSD_RESP_WAIT; } static void cs_etm_decoder__reset_timestamp(struct cs_etm_packet_queue *packet_queue) { packet_queue->next_cs_timestamp = 0; packet_queue->instr_count = 0; } static ocsd_datapath_resp_t cs_etm_decoder__buffer_packet(struct cs_etm_packet_queue *packet_queue, const u8 trace_chan_id, enum cs_etm_sample_type sample_type) { u32 et = 0; int cpu; if (packet_queue->packet_count >= CS_ETM_PACKET_MAX_BUFFER - 1) return OCSD_RESP_FATAL_SYS_ERR; if (cs_etm__get_cpu(trace_chan_id, &cpu) < 0) return OCSD_RESP_FATAL_SYS_ERR; et = packet_queue->tail; et = (et + 1) & (CS_ETM_PACKET_MAX_BUFFER - 1); packet_queue->tail = et; packet_queue->packet_count++; packet_queue->packet_buffer[et].sample_type = sample_type; packet_queue->packet_buffer[et].isa = CS_ETM_ISA_UNKNOWN; packet_queue->packet_buffer[et].cpu = cpu; packet_queue->packet_buffer[et].start_addr = CS_ETM_INVAL_ADDR; packet_queue->packet_buffer[et].end_addr = CS_ETM_INVAL_ADDR; packet_queue->packet_buffer[et].instr_count = 0; packet_queue->packet_buffer[et].last_instr_taken_branch = false; packet_queue->packet_buffer[et].last_instr_size = 0; packet_queue->packet_buffer[et].last_instr_type = 0; packet_queue->packet_buffer[et].last_instr_subtype = 0; packet_queue->packet_buffer[et].last_instr_cond = 0; packet_queue->packet_buffer[et].flags = 0; packet_queue->packet_buffer[et].exception_number = UINT32_MAX; packet_queue->packet_buffer[et].trace_chan_id = trace_chan_id; if (packet_queue->packet_count == CS_ETM_PACKET_MAX_BUFFER - 1) return OCSD_RESP_WAIT; return OCSD_RESP_CONT; } static ocsd_datapath_resp_t cs_etm_decoder__buffer_range(struct cs_etm_queue *etmq, struct cs_etm_packet_queue *packet_queue, const ocsd_generic_trace_elem *elem, const uint8_t trace_chan_id) { int ret = 0; struct cs_etm_packet *packet; ret = cs_etm_decoder__buffer_packet(packet_queue, trace_chan_id, CS_ETM_RANGE); if (ret != OCSD_RESP_CONT && ret != OCSD_RESP_WAIT) return ret; packet = &packet_queue->packet_buffer[packet_queue->tail]; switch (elem->isa) { case ocsd_isa_aarch64: packet->isa = CS_ETM_ISA_A64; break; case ocsd_isa_arm: packet->isa = CS_ETM_ISA_A32; break; case ocsd_isa_thumb2: packet->isa = CS_ETM_ISA_T32; break; case ocsd_isa_tee: case ocsd_isa_jazelle: case ocsd_isa_custom: case ocsd_isa_unknown: default: packet->isa = CS_ETM_ISA_UNKNOWN; } packet->start_addr = elem->st_addr; packet->end_addr = elem->en_addr; packet->instr_count = elem->num_instr_range; packet->last_instr_type = elem->last_i_type; packet->last_instr_subtype = elem->last_i_subtype; packet->last_instr_cond = elem->last_instr_cond; if (elem->last_i_type == OCSD_INSTR_BR || elem->last_i_type == OCSD_INSTR_BR_INDIRECT) packet->last_instr_taken_branch = elem->last_instr_exec; else packet->last_instr_taken_branch = false; packet->last_instr_size = elem->last_instr_sz; /* per-thread scenario, no need to generate a timestamp */ if (cs_etm__etmq_is_timeless(etmq)) goto out; /* * The packet queue is full and we haven't seen a timestamp (had we * seen one the packet queue wouldn't be full). Let the front end * deal with it. */ if (ret == OCSD_RESP_WAIT) goto out; packet_queue->instr_count += elem->num_instr_range; /* Tell the front end we have a new timestamp to process */ ret = cs_etm_decoder__do_soft_timestamp(etmq, packet_queue, trace_chan_id); out: return ret; } static ocsd_datapath_resp_t cs_etm_decoder__buffer_discontinuity(struct cs_etm_packet_queue *queue, const uint8_t trace_chan_id) { /* * Something happened and who knows when we'll get new traces so * reset time statistics. */ cs_etm_decoder__reset_timestamp(queue); return cs_etm_decoder__buffer_packet(queue, trace_chan_id, CS_ETM_DISCONTINUITY); } static ocsd_datapath_resp_t cs_etm_decoder__buffer_exception(struct cs_etm_packet_queue *queue, const ocsd_generic_trace_elem *elem, const uint8_t trace_chan_id) { int ret = 0; struct cs_etm_packet *packet; ret = cs_etm_decoder__buffer_packet(queue, trace_chan_id, CS_ETM_EXCEPTION); if (ret != OCSD_RESP_CONT && ret != OCSD_RESP_WAIT) return ret; packet = &queue->packet_buffer[queue->tail]; packet->exception_number = elem->exception_number; return ret; } static ocsd_datapath_resp_t cs_etm_decoder__buffer_exception_ret(struct cs_etm_packet_queue *queue, const uint8_t trace_chan_id) { return cs_etm_decoder__buffer_packet(queue, trace_chan_id, CS_ETM_EXCEPTION_RET); } static ocsd_datapath_resp_t cs_etm_decoder__set_tid(struct cs_etm_queue *etmq, struct cs_etm_packet_queue *packet_queue, const ocsd_generic_trace_elem *elem, const uint8_t trace_chan_id) { pid_t tid = -1; /* * Process the PE_CONTEXT packets if we have a valid contextID or VMID. * If the kernel is running at EL2, the PID is traced in CONTEXTIDR_EL2 * as VMID, Bit ETM_OPT_CTXTID2 is set in this case. */ switch (cs_etm__get_pid_fmt(etmq)) { case CS_ETM_PIDFMT_CTXTID: if (elem->context.ctxt_id_valid) tid = elem->context.context_id; break; case CS_ETM_PIDFMT_CTXTID2: if (elem->context.vmid_valid) tid = elem->context.vmid; break; case CS_ETM_PIDFMT_NONE: default: break; } if (cs_etm__etmq_set_tid_el(etmq, tid, trace_chan_id, elem->context.exception_level)) return OCSD_RESP_FATAL_SYS_ERR; if (tid == -1) return OCSD_RESP_CONT; /* * A timestamp is generated after a PE_CONTEXT element so make sure * to rely on that coming one. */ cs_etm_decoder__reset_timestamp(packet_queue); return OCSD_RESP_CONT; } static ocsd_datapath_resp_t cs_etm_decoder__gen_trace_elem_printer( const void *context, const ocsd_trc_index_t indx, const u8 trace_chan_id __maybe_unused, const ocsd_generic_trace_elem *elem) { ocsd_datapath_resp_t resp = OCSD_RESP_CONT; struct cs_etm_decoder *decoder = (struct cs_etm_decoder *) context; struct cs_etm_queue *etmq = decoder->data; struct cs_etm_packet_queue *packet_queue; /* First get the packet queue for this traceID */ packet_queue = cs_etm__etmq_get_packet_queue(etmq, trace_chan_id); if (!packet_queue) return OCSD_RESP_FATAL_SYS_ERR; switch (elem->elem_type) { case OCSD_GEN_TRC_ELEM_UNKNOWN: break; case OCSD_GEN_TRC_ELEM_EO_TRACE: case OCSD_GEN_TRC_ELEM_NO_SYNC: case OCSD_GEN_TRC_ELEM_TRACE_ON: resp = cs_etm_decoder__buffer_discontinuity(packet_queue, trace_chan_id); break; case OCSD_GEN_TRC_ELEM_INSTR_RANGE: resp = cs_etm_decoder__buffer_range(etmq, packet_queue, elem, trace_chan_id); break; case OCSD_GEN_TRC_ELEM_EXCEPTION: resp = cs_etm_decoder__buffer_exception(packet_queue, elem, trace_chan_id); break; case OCSD_GEN_TRC_ELEM_EXCEPTION_RET: resp = cs_etm_decoder__buffer_exception_ret(packet_queue, trace_chan_id); break; case OCSD_GEN_TRC_ELEM_TIMESTAMP: resp = cs_etm_decoder__do_hard_timestamp(etmq, elem, trace_chan_id, indx); break; case OCSD_GEN_TRC_ELEM_PE_CONTEXT: resp = cs_etm_decoder__set_tid(etmq, packet_queue, elem, trace_chan_id); break; /* Unused packet types */ case OCSD_GEN_TRC_ELEM_I_RANGE_NOPATH: case OCSD_GEN_TRC_ELEM_ADDR_NACC: case OCSD_GEN_TRC_ELEM_CYCLE_COUNT: case OCSD_GEN_TRC_ELEM_ADDR_UNKNOWN: case OCSD_GEN_TRC_ELEM_EVENT: case OCSD_GEN_TRC_ELEM_SWTRACE: case OCSD_GEN_TRC_ELEM_CUSTOM: case OCSD_GEN_TRC_ELEM_SYNC_MARKER: case OCSD_GEN_TRC_ELEM_MEMTRANS: #if (OCSD_VER_NUM >= 0x010400) case OCSD_GEN_TRC_ELEM_INSTRUMENTATION: #endif default: break; } return resp; } static int cs_etm_decoder__create_etm_decoder(struct cs_etm_decoder_params *d_params, struct cs_etm_trace_params *t_params, struct cs_etm_decoder *decoder) { ocsd_etmv3_cfg config_etmv3; ocsd_etmv4_cfg trace_config_etmv4; ocsd_ete_cfg trace_config_ete; void *trace_config; u8 csid; switch (t_params->protocol) { case CS_ETM_PROTO_ETMV3: case CS_ETM_PROTO_PTM: csid = (t_params->etmv3.reg_idr & CORESIGHT_TRACE_ID_VAL_MASK); cs_etm_decoder__gen_etmv3_config(t_params, &config_etmv3); decoder->decoder_name = (t_params->protocol == CS_ETM_PROTO_ETMV3) ? OCSD_BUILTIN_DCD_ETMV3 : OCSD_BUILTIN_DCD_PTM; trace_config = &config_etmv3; break; case CS_ETM_PROTO_ETMV4i: csid = (t_params->etmv4.reg_traceidr & CORESIGHT_TRACE_ID_VAL_MASK); cs_etm_decoder__gen_etmv4_config(t_params, &trace_config_etmv4); decoder->decoder_name = OCSD_BUILTIN_DCD_ETMV4I; trace_config = &trace_config_etmv4; break; case CS_ETM_PROTO_ETE: csid = (t_params->ete.reg_traceidr & CORESIGHT_TRACE_ID_VAL_MASK); cs_etm_decoder__gen_ete_config(t_params, &trace_config_ete); decoder->decoder_name = OCSD_BUILTIN_DCD_ETE; trace_config = &trace_config_ete; break; default: return -1; } /* if the CPU has no trace ID associated, no decoder needed */ if (csid == CORESIGHT_TRACE_ID_UNUSED_VAL) return 0; if (d_params->operation == CS_ETM_OPERATION_DECODE) { if (ocsd_dt_create_decoder(decoder->dcd_tree, decoder->decoder_name, OCSD_CREATE_FLG_FULL_DECODER, trace_config, &csid)) return -1; if (ocsd_dt_set_gen_elem_outfn(decoder->dcd_tree, cs_etm_decoder__gen_trace_elem_printer, decoder)) return -1; return 0; } else if (d_params->operation == CS_ETM_OPERATION_PRINT) { if (ocsd_dt_create_decoder(decoder->dcd_tree, decoder->decoder_name, OCSD_CREATE_FLG_PACKET_PROC, trace_config, &csid)) return -1; if (ocsd_dt_set_pkt_protocol_printer(decoder->dcd_tree, csid, 0)) return -1; return 0; } return -1; } struct cs_etm_decoder * cs_etm_decoder__new(int decoders, struct cs_etm_decoder_params *d_params, struct cs_etm_trace_params t_params[]) { struct cs_etm_decoder *decoder; ocsd_dcd_tree_src_t format; u32 flags; int i, ret; if ((!t_params) || (!d_params)) return NULL; decoder = zalloc(sizeof(*decoder)); if (!decoder) return NULL; decoder->data = d_params->data; decoder->prev_return = OCSD_RESP_CONT; format = (d_params->formatted ? OCSD_TRC_SRC_FRAME_FORMATTED : OCSD_TRC_SRC_SINGLE); flags = 0; flags |= (d_params->fsyncs ? OCSD_DFRMTR_HAS_FSYNCS : 0); flags |= (d_params->hsyncs ? OCSD_DFRMTR_HAS_HSYNCS : 0); flags |= (d_params->frame_aligned ? OCSD_DFRMTR_FRAME_MEM_ALIGN : 0); /* * Drivers may add barrier frames when used with perf, set up to * handle this. Barriers const of FSYNC packet repeated 4 times. */ flags |= OCSD_DFRMTR_RESET_ON_4X_FSYNC; /* Create decode tree for the data source */ decoder->dcd_tree = ocsd_create_dcd_tree(format, flags); if (decoder->dcd_tree == 0) goto err_free_decoder; /* init library print logging support */ ret = cs_etm_decoder__init_def_logger_printing(d_params, decoder); if (ret != 0) goto err_free_decoder; /* init raw frame logging if required */ cs_etm_decoder__init_raw_frame_logging(d_params, decoder); for (i = 0; i < decoders; i++) { ret = cs_etm_decoder__create_etm_decoder(d_params, &t_params[i], decoder); if (ret != 0) goto err_free_decoder; } return decoder; err_free_decoder: cs_etm_decoder__free(decoder); return NULL; } int cs_etm_decoder__process_data_block(struct cs_etm_decoder *decoder, u64 indx, const u8 *buf, size_t len, size_t *consumed) { int ret = 0; ocsd_datapath_resp_t cur = OCSD_RESP_CONT; ocsd_datapath_resp_t prev_return = decoder->prev_return; size_t processed = 0; u32 count; while (processed < len) { if (OCSD_DATA_RESP_IS_WAIT(prev_return)) { cur = ocsd_dt_process_data(decoder->dcd_tree, OCSD_OP_FLUSH, 0, 0, NULL, NULL); } else if (OCSD_DATA_RESP_IS_CONT(prev_return)) { cur = ocsd_dt_process_data(decoder->dcd_tree, OCSD_OP_DATA, indx + processed, len - processed, &buf[processed], &count); processed += count; } else { ret = -EINVAL; break; } /* * Return to the input code if the packet buffer is full. * Flushing will get done once the packet buffer has been * processed. */ if (OCSD_DATA_RESP_IS_WAIT(cur)) break; prev_return = cur; } decoder->prev_return = cur; *consumed = processed; return ret; } void cs_etm_decoder__free(struct cs_etm_decoder *decoder) { if (!decoder) return; ocsd_destroy_dcd_tree(decoder->dcd_tree); decoder->dcd_tree = NULL; free(decoder); } const char *cs_etm_decoder__get_name(struct cs_etm_decoder *decoder) { return decoder->decoder_name; }
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1