Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Martin KaFai Lau | 2334 | 99.49% | 5 | 71.43% |
Song Liu | 9 | 0.38% | 1 | 14.29% |
Andrii Nakryiko | 3 | 0.13% | 1 | 14.29% |
Total | 2346 | 7 |
// SPDX-License-Identifier: GPL-2.0-only /* WARNING: This implemenation is not necessarily the same * as the tcp_cubic.c. The purpose is mainly for testing * the kernel BPF logic. * * Highlights: * 1. CONFIG_HZ .kconfig map is used. * 2. In bictcp_update(), calculation is changed to use usec * resolution (i.e. USEC_PER_JIFFY) instead of using jiffies. * Thus, usecs_to_jiffies() is not used in the bpf_cubic.c. * 3. In bitctcp_update() [under tcp_friendliness], the original * "while (ca->ack_cnt > delta)" loop is changed to the equivalent * "ca->ack_cnt / delta" operation. */ #include <linux/bpf.h> #include <linux/stddef.h> #include <linux/tcp.h> #include "bpf_tcp_helpers.h" char _license[] SEC("license") = "GPL"; #define clamp(val, lo, hi) min((typeof(val))max(val, lo), hi) #define BICTCP_BETA_SCALE 1024 /* Scale factor beta calculation * max_cwnd = snd_cwnd * beta */ #define BICTCP_HZ 10 /* BIC HZ 2^10 = 1024 */ /* Two methods of hybrid slow start */ #define HYSTART_ACK_TRAIN 0x1 #define HYSTART_DELAY 0x2 /* Number of delay samples for detecting the increase of delay */ #define HYSTART_MIN_SAMPLES 8 #define HYSTART_DELAY_MIN (4000U) /* 4ms */ #define HYSTART_DELAY_MAX (16000U) /* 16 ms */ #define HYSTART_DELAY_THRESH(x) clamp(x, HYSTART_DELAY_MIN, HYSTART_DELAY_MAX) static int fast_convergence = 1; static const int beta = 717; /* = 717/1024 (BICTCP_BETA_SCALE) */ static int initial_ssthresh; static const int bic_scale = 41; static int tcp_friendliness = 1; static int hystart = 1; static int hystart_detect = HYSTART_ACK_TRAIN | HYSTART_DELAY; static int hystart_low_window = 16; static int hystart_ack_delta_us = 2000; static const __u32 cube_rtt_scale = (bic_scale * 10); /* 1024*c/rtt */ static const __u32 beta_scale = 8*(BICTCP_BETA_SCALE+beta) / 3 / (BICTCP_BETA_SCALE - beta); /* calculate the "K" for (wmax-cwnd) = c/rtt * K^3 * so K = cubic_root( (wmax-cwnd)*rtt/c ) * the unit of K is bictcp_HZ=2^10, not HZ * * c = bic_scale >> 10 * rtt = 100ms * * the following code has been designed and tested for * cwnd < 1 million packets * RTT < 100 seconds * HZ < 1,000,00 (corresponding to 10 nano-second) */ /* 1/c * 2^2*bictcp_HZ * srtt, 2^40 */ static const __u64 cube_factor = (__u64)(1ull << (10+3*BICTCP_HZ)) / (bic_scale * 10); /* BIC TCP Parameters */ struct bictcp { __u32 cnt; /* increase cwnd by 1 after ACKs */ __u32 last_max_cwnd; /* last maximum snd_cwnd */ __u32 last_cwnd; /* the last snd_cwnd */ __u32 last_time; /* time when updated last_cwnd */ __u32 bic_origin_point;/* origin point of bic function */ __u32 bic_K; /* time to origin point from the beginning of the current epoch */ __u32 delay_min; /* min delay (usec) */ __u32 epoch_start; /* beginning of an epoch */ __u32 ack_cnt; /* number of acks */ __u32 tcp_cwnd; /* estimated tcp cwnd */ __u16 unused; __u8 sample_cnt; /* number of samples to decide curr_rtt */ __u8 found; /* the exit point is found? */ __u32 round_start; /* beginning of each round */ __u32 end_seq; /* end_seq of the round */ __u32 last_ack; /* last time when the ACK spacing is close */ __u32 curr_rtt; /* the minimum rtt of current round */ }; static inline void bictcp_reset(struct bictcp *ca) { ca->cnt = 0; ca->last_max_cwnd = 0; ca->last_cwnd = 0; ca->last_time = 0; ca->bic_origin_point = 0; ca->bic_K = 0; ca->delay_min = 0; ca->epoch_start = 0; ca->ack_cnt = 0; ca->tcp_cwnd = 0; ca->found = 0; } extern unsigned long CONFIG_HZ __kconfig; #define HZ CONFIG_HZ #define USEC_PER_MSEC 1000UL #define USEC_PER_SEC 1000000UL #define USEC_PER_JIFFY (USEC_PER_SEC / HZ) static __always_inline __u64 div64_u64(__u64 dividend, __u64 divisor) { return dividend / divisor; } #define div64_ul div64_u64 #define BITS_PER_U64 (sizeof(__u64) * 8) static __always_inline int fls64(__u64 x) { int num = BITS_PER_U64 - 1; if (x == 0) return 0; if (!(x & (~0ull << (BITS_PER_U64-32)))) { num -= 32; x <<= 32; } if (!(x & (~0ull << (BITS_PER_U64-16)))) { num -= 16; x <<= 16; } if (!(x & (~0ull << (BITS_PER_U64-8)))) { num -= 8; x <<= 8; } if (!(x & (~0ull << (BITS_PER_U64-4)))) { num -= 4; x <<= 4; } if (!(x & (~0ull << (BITS_PER_U64-2)))) { num -= 2; x <<= 2; } if (!(x & (~0ull << (BITS_PER_U64-1)))) num -= 1; return num + 1; } static __always_inline __u32 bictcp_clock_us(const struct sock *sk) { return tcp_sk(sk)->tcp_mstamp; } static __always_inline void bictcp_hystart_reset(struct sock *sk) { struct tcp_sock *tp = tcp_sk(sk); struct bictcp *ca = inet_csk_ca(sk); ca->round_start = ca->last_ack = bictcp_clock_us(sk); ca->end_seq = tp->snd_nxt; ca->curr_rtt = ~0U; ca->sample_cnt = 0; } /* "struct_ops/" prefix is a requirement */ SEC("struct_ops/bpf_cubic_init") void BPF_PROG(bpf_cubic_init, struct sock *sk) { struct bictcp *ca = inet_csk_ca(sk); bictcp_reset(ca); if (hystart) bictcp_hystart_reset(sk); if (!hystart && initial_ssthresh) tcp_sk(sk)->snd_ssthresh = initial_ssthresh; } /* "struct_ops" prefix is a requirement */ SEC("struct_ops/bpf_cubic_cwnd_event") void BPF_PROG(bpf_cubic_cwnd_event, struct sock *sk, enum tcp_ca_event event) { if (event == CA_EVENT_TX_START) { struct bictcp *ca = inet_csk_ca(sk); __u32 now = tcp_jiffies32; __s32 delta; delta = now - tcp_sk(sk)->lsndtime; /* We were application limited (idle) for a while. * Shift epoch_start to keep cwnd growth to cubic curve. */ if (ca->epoch_start && delta > 0) { ca->epoch_start += delta; if (after(ca->epoch_start, now)) ca->epoch_start = now; } return; } } /* * cbrt(x) MSB values for x MSB values in [0..63]. * Precomputed then refined by hand - Willy Tarreau * * For x in [0..63], * v = cbrt(x << 18) - 1 * cbrt(x) = (v[x] + 10) >> 6 */ static const __u8 v[] = { /* 0x00 */ 0, 54, 54, 54, 118, 118, 118, 118, /* 0x08 */ 123, 129, 134, 138, 143, 147, 151, 156, /* 0x10 */ 157, 161, 164, 168, 170, 173, 176, 179, /* 0x18 */ 181, 185, 187, 190, 192, 194, 197, 199, /* 0x20 */ 200, 202, 204, 206, 209, 211, 213, 215, /* 0x28 */ 217, 219, 221, 222, 224, 225, 227, 229, /* 0x30 */ 231, 232, 234, 236, 237, 239, 240, 242, /* 0x38 */ 244, 245, 246, 248, 250, 251, 252, 254, }; /* calculate the cubic root of x using a table lookup followed by one * Newton-Raphson iteration. * Avg err ~= 0.195% */ static __always_inline __u32 cubic_root(__u64 a) { __u32 x, b, shift; if (a < 64) { /* a in [0..63] */ return ((__u32)v[(__u32)a] + 35) >> 6; } b = fls64(a); b = ((b * 84) >> 8) - 1; shift = (a >> (b * 3)); /* it is needed for verifier's bound check on v */ if (shift >= 64) return 0; x = ((__u32)(((__u32)v[shift] + 10) << b)) >> 6; /* * Newton-Raphson iteration * 2 * x = ( 2 * x + a / x ) / 3 * k+1 k k */ x = (2 * x + (__u32)div64_u64(a, (__u64)x * (__u64)(x - 1))); x = ((x * 341) >> 10); return x; } /* * Compute congestion window to use. */ static __always_inline void bictcp_update(struct bictcp *ca, __u32 cwnd, __u32 acked) { __u32 delta, bic_target, max_cnt; __u64 offs, t; ca->ack_cnt += acked; /* count the number of ACKed packets */ if (ca->last_cwnd == cwnd && (__s32)(tcp_jiffies32 - ca->last_time) <= HZ / 32) return; /* The CUBIC function can update ca->cnt at most once per jiffy. * On all cwnd reduction events, ca->epoch_start is set to 0, * which will force a recalculation of ca->cnt. */ if (ca->epoch_start && tcp_jiffies32 == ca->last_time) goto tcp_friendliness; ca->last_cwnd = cwnd; ca->last_time = tcp_jiffies32; if (ca->epoch_start == 0) { ca->epoch_start = tcp_jiffies32; /* record beginning */ ca->ack_cnt = acked; /* start counting */ ca->tcp_cwnd = cwnd; /* syn with cubic */ if (ca->last_max_cwnd <= cwnd) { ca->bic_K = 0; ca->bic_origin_point = cwnd; } else { /* Compute new K based on * (wmax-cwnd) * (srtt>>3 / HZ) / c * 2^(3*bictcp_HZ) */ ca->bic_K = cubic_root(cube_factor * (ca->last_max_cwnd - cwnd)); ca->bic_origin_point = ca->last_max_cwnd; } } /* cubic function - calc*/ /* calculate c * time^3 / rtt, * while considering overflow in calculation of time^3 * (so time^3 is done by using 64 bit) * and without the support of division of 64bit numbers * (so all divisions are done by using 32 bit) * also NOTE the unit of those veriables * time = (t - K) / 2^bictcp_HZ * c = bic_scale >> 10 * rtt = (srtt >> 3) / HZ * !!! The following code does not have overflow problems, * if the cwnd < 1 million packets !!! */ t = (__s32)(tcp_jiffies32 - ca->epoch_start) * USEC_PER_JIFFY; t += ca->delay_min; /* change the unit from usec to bictcp_HZ */ t <<= BICTCP_HZ; t /= USEC_PER_SEC; if (t < ca->bic_K) /* t - K */ offs = ca->bic_K - t; else offs = t - ca->bic_K; /* c/rtt * (t-K)^3 */ delta = (cube_rtt_scale * offs * offs * offs) >> (10+3*BICTCP_HZ); if (t < ca->bic_K) /* below origin*/ bic_target = ca->bic_origin_point - delta; else /* above origin*/ bic_target = ca->bic_origin_point + delta; /* cubic function - calc bictcp_cnt*/ if (bic_target > cwnd) { ca->cnt = cwnd / (bic_target - cwnd); } else { ca->cnt = 100 * cwnd; /* very small increment*/ } /* * The initial growth of cubic function may be too conservative * when the available bandwidth is still unknown. */ if (ca->last_max_cwnd == 0 && ca->cnt > 20) ca->cnt = 20; /* increase cwnd 5% per RTT */ tcp_friendliness: /* TCP Friendly */ if (tcp_friendliness) { __u32 scale = beta_scale; __u32 n; /* update tcp cwnd */ delta = (cwnd * scale) >> 3; if (ca->ack_cnt > delta && delta) { n = ca->ack_cnt / delta; ca->ack_cnt -= n * delta; ca->tcp_cwnd += n; } if (ca->tcp_cwnd > cwnd) { /* if bic is slower than tcp */ delta = ca->tcp_cwnd - cwnd; max_cnt = cwnd / delta; if (ca->cnt > max_cnt) ca->cnt = max_cnt; } } /* The maximum rate of cwnd increase CUBIC allows is 1 packet per * 2 packets ACKed, meaning cwnd grows at 1.5x per RTT. */ ca->cnt = max(ca->cnt, 2U); } /* Or simply use the BPF_STRUCT_OPS to avoid the SEC boiler plate. */ void BPF_STRUCT_OPS(bpf_cubic_cong_avoid, struct sock *sk, __u32 ack, __u32 acked) { struct tcp_sock *tp = tcp_sk(sk); struct bictcp *ca = inet_csk_ca(sk); if (!tcp_is_cwnd_limited(sk)) return; if (tcp_in_slow_start(tp)) { if (hystart && after(ack, ca->end_seq)) bictcp_hystart_reset(sk); acked = tcp_slow_start(tp, acked); if (!acked) return; } bictcp_update(ca, tp->snd_cwnd, acked); tcp_cong_avoid_ai(tp, ca->cnt, acked); } __u32 BPF_STRUCT_OPS(bpf_cubic_recalc_ssthresh, struct sock *sk) { const struct tcp_sock *tp = tcp_sk(sk); struct bictcp *ca = inet_csk_ca(sk); ca->epoch_start = 0; /* end of epoch */ /* Wmax and fast convergence */ if (tp->snd_cwnd < ca->last_max_cwnd && fast_convergence) ca->last_max_cwnd = (tp->snd_cwnd * (BICTCP_BETA_SCALE + beta)) / (2 * BICTCP_BETA_SCALE); else ca->last_max_cwnd = tp->snd_cwnd; return max((tp->snd_cwnd * beta) / BICTCP_BETA_SCALE, 2U); } void BPF_STRUCT_OPS(bpf_cubic_state, struct sock *sk, __u8 new_state) { if (new_state == TCP_CA_Loss) { bictcp_reset(inet_csk_ca(sk)); bictcp_hystart_reset(sk); } } #define GSO_MAX_SIZE 65536 /* Account for TSO/GRO delays. * Otherwise short RTT flows could get too small ssthresh, since during * slow start we begin with small TSO packets and ca->delay_min would * not account for long aggregation delay when TSO packets get bigger. * Ideally even with a very small RTT we would like to have at least one * TSO packet being sent and received by GRO, and another one in qdisc layer. * We apply another 100% factor because @rate is doubled at this point. * We cap the cushion to 1ms. */ static __always_inline __u32 hystart_ack_delay(struct sock *sk) { unsigned long rate; rate = sk->sk_pacing_rate; if (!rate) return 0; return min((__u64)USEC_PER_MSEC, div64_ul((__u64)GSO_MAX_SIZE * 4 * USEC_PER_SEC, rate)); } static __always_inline void hystart_update(struct sock *sk, __u32 delay) { struct tcp_sock *tp = tcp_sk(sk); struct bictcp *ca = inet_csk_ca(sk); __u32 threshold; if (hystart_detect & HYSTART_ACK_TRAIN) { __u32 now = bictcp_clock_us(sk); /* first detection parameter - ack-train detection */ if ((__s32)(now - ca->last_ack) <= hystart_ack_delta_us) { ca->last_ack = now; threshold = ca->delay_min + hystart_ack_delay(sk); /* Hystart ack train triggers if we get ack past * ca->delay_min/2. * Pacing might have delayed packets up to RTT/2 * during slow start. */ if (sk->sk_pacing_status == SK_PACING_NONE) threshold >>= 1; if ((__s32)(now - ca->round_start) > threshold) { ca->found = 1; tp->snd_ssthresh = tp->snd_cwnd; } } } if (hystart_detect & HYSTART_DELAY) { /* obtain the minimum delay of more than sampling packets */ if (ca->curr_rtt > delay) ca->curr_rtt = delay; if (ca->sample_cnt < HYSTART_MIN_SAMPLES) { ca->sample_cnt++; } else { if (ca->curr_rtt > ca->delay_min + HYSTART_DELAY_THRESH(ca->delay_min >> 3)) { ca->found = 1; tp->snd_ssthresh = tp->snd_cwnd; } } } } int bpf_cubic_acked_called = 0; void BPF_STRUCT_OPS(bpf_cubic_acked, struct sock *sk, const struct ack_sample *sample) { const struct tcp_sock *tp = tcp_sk(sk); struct bictcp *ca = inet_csk_ca(sk); __u32 delay; bpf_cubic_acked_called = 1; /* Some calls are for duplicates without timetamps */ if (sample->rtt_us < 0) return; /* Discard delay samples right after fast recovery */ if (ca->epoch_start && (__s32)(tcp_jiffies32 - ca->epoch_start) < HZ) return; delay = sample->rtt_us; if (delay == 0) delay = 1; /* first time call or link delay decreases */ if (ca->delay_min == 0 || ca->delay_min > delay) ca->delay_min = delay; /* hystart triggers when cwnd is larger than some threshold */ if (!ca->found && tcp_in_slow_start(tp) && hystart && tp->snd_cwnd >= hystart_low_window) hystart_update(sk, delay); } extern __u32 tcp_reno_undo_cwnd(struct sock *sk) __ksym; __u32 BPF_STRUCT_OPS(bpf_cubic_undo_cwnd, struct sock *sk) { return tcp_reno_undo_cwnd(sk); } SEC(".struct_ops") struct tcp_congestion_ops cubic = { .init = (void *)bpf_cubic_init, .ssthresh = (void *)bpf_cubic_recalc_ssthresh, .cong_avoid = (void *)bpf_cubic_cong_avoid, .set_state = (void *)bpf_cubic_state, .undo_cwnd = (void *)bpf_cubic_undo_cwnd, .cwnd_event = (void *)bpf_cubic_cwnd_event, .pkts_acked = (void *)bpf_cubic_acked, .name = "bpf_cubic", };
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1