Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Petar Penkov | 1662 | 74.23% | 2 | 10.00% |
Stanislav Fomichev | 413 | 18.45% | 9 | 45.00% |
Andrii Nakryiko | 62 | 2.77% | 3 | 15.00% |
Shmulik Ladkani | 58 | 2.59% | 1 | 5.00% |
Jakub Sitnicki | 33 | 1.47% | 1 | 5.00% |
Daniel Borkmann | 6 | 0.27% | 1 | 5.00% |
Santucci Pierpaolo | 2 | 0.09% | 1 | 5.00% |
Toke Höiland-Jörgensen | 2 | 0.09% | 1 | 5.00% |
Alexei Starovoitov | 1 | 0.04% | 1 | 5.00% |
Total | 2239 | 20 |
// SPDX-License-Identifier: GPL-2.0 #include <limits.h> #include <stddef.h> #include <stdbool.h> #include <string.h> #include <linux/pkt_cls.h> #include <linux/bpf.h> #include <linux/in.h> #include <linux/if_ether.h> #include <linux/icmp.h> #include <linux/ip.h> #include <linux/ipv6.h> #include <linux/tcp.h> #include <linux/udp.h> #include <linux/if_packet.h> #include <sys/socket.h> #include <linux/if_tunnel.h> #include <linux/mpls.h> #include <bpf/bpf_helpers.h> #include <bpf/bpf_endian.h> #define PROG(F) PROG_(F, _##F) #define PROG_(NUM, NAME) SEC("flow_dissector") int flow_dissector_##NUM #define FLOW_CONTINUE_SADDR 0x7f00007f /* 127.0.0.127 */ /* These are the identifiers of the BPF programs that will be used in tail * calls. Name is limited to 16 characters, with the terminating character and * bpf_func_ above, we have only 6 to work with, anything after will be cropped. */ #define IP 0 #define IPV6 1 #define IPV6OP 2 /* Destination/Hop-by-Hop Options IPv6 Ext. Header */ #define IPV6FR 3 /* Fragmentation IPv6 Extension Header */ #define MPLS 4 #define VLAN 5 #define MAX_PROG 6 #define IP_MF 0x2000 #define IP_OFFSET 0x1FFF #define IP6_MF 0x0001 #define IP6_OFFSET 0xFFF8 struct vlan_hdr { __be16 h_vlan_TCI; __be16 h_vlan_encapsulated_proto; }; struct gre_hdr { __be16 flags; __be16 proto; }; struct frag_hdr { __u8 nexthdr; __u8 reserved; __be16 frag_off; __be32 identification; }; struct { __uint(type, BPF_MAP_TYPE_PROG_ARRAY); __uint(max_entries, MAX_PROG); __uint(key_size, sizeof(__u32)); __uint(value_size, sizeof(__u32)); } jmp_table SEC(".maps"); struct { __uint(type, BPF_MAP_TYPE_HASH); __uint(max_entries, 1024); __type(key, __u32); __type(value, struct bpf_flow_keys); } last_dissection SEC(".maps"); static __always_inline int export_flow_keys(struct bpf_flow_keys *keys, int ret) { __u32 key = (__u32)(keys->sport) << 16 | keys->dport; struct bpf_flow_keys val; memcpy(&val, keys, sizeof(val)); bpf_map_update_elem(&last_dissection, &key, &val, BPF_ANY); return ret; } #define IPV6_FLOWLABEL_MASK __bpf_constant_htonl(0x000FFFFF) static inline __be32 ip6_flowlabel(const struct ipv6hdr *hdr) { return *(__be32 *)hdr & IPV6_FLOWLABEL_MASK; } static __always_inline void *bpf_flow_dissect_get_header(struct __sk_buff *skb, __u16 hdr_size, void *buffer) { void *data_end = (void *)(long)skb->data_end; void *data = (void *)(long)skb->data; __u16 thoff = skb->flow_keys->thoff; __u8 *hdr; /* Verifies this variable offset does not overflow */ if (thoff > (USHRT_MAX - hdr_size)) return NULL; hdr = data + thoff; if (hdr + hdr_size <= data_end) return hdr; if (bpf_skb_load_bytes(skb, thoff, buffer, hdr_size)) return NULL; return buffer; } /* Dispatches on ETHERTYPE */ static __always_inline int parse_eth_proto(struct __sk_buff *skb, __be16 proto) { struct bpf_flow_keys *keys = skb->flow_keys; switch (proto) { case bpf_htons(ETH_P_IP): bpf_tail_call_static(skb, &jmp_table, IP); break; case bpf_htons(ETH_P_IPV6): bpf_tail_call_static(skb, &jmp_table, IPV6); break; case bpf_htons(ETH_P_MPLS_MC): case bpf_htons(ETH_P_MPLS_UC): bpf_tail_call_static(skb, &jmp_table, MPLS); break; case bpf_htons(ETH_P_8021Q): case bpf_htons(ETH_P_8021AD): bpf_tail_call_static(skb, &jmp_table, VLAN); break; default: /* Protocol not supported */ return export_flow_keys(keys, BPF_DROP); } return export_flow_keys(keys, BPF_DROP); } SEC("flow_dissector") int _dissect(struct __sk_buff *skb) { struct bpf_flow_keys *keys = skb->flow_keys; if (keys->n_proto == bpf_htons(ETH_P_IP)) { /* IP traffic from FLOW_CONTINUE_SADDR falls-back to * standard dissector */ struct iphdr *iph, _iph; iph = bpf_flow_dissect_get_header(skb, sizeof(*iph), &_iph); if (iph && iph->ihl == 5 && iph->saddr == bpf_htonl(FLOW_CONTINUE_SADDR)) { return BPF_FLOW_DISSECTOR_CONTINUE; } } return parse_eth_proto(skb, keys->n_proto); } /* Parses on IPPROTO_* */ static __always_inline int parse_ip_proto(struct __sk_buff *skb, __u8 proto) { struct bpf_flow_keys *keys = skb->flow_keys; void *data_end = (void *)(long)skb->data_end; struct icmphdr *icmp, _icmp; struct gre_hdr *gre, _gre; struct ethhdr *eth, _eth; struct tcphdr *tcp, _tcp; struct udphdr *udp, _udp; switch (proto) { case IPPROTO_ICMP: icmp = bpf_flow_dissect_get_header(skb, sizeof(*icmp), &_icmp); if (!icmp) return export_flow_keys(keys, BPF_DROP); return export_flow_keys(keys, BPF_OK); case IPPROTO_IPIP: keys->is_encap = true; if (keys->flags & BPF_FLOW_DISSECTOR_F_STOP_AT_ENCAP) return export_flow_keys(keys, BPF_OK); return parse_eth_proto(skb, bpf_htons(ETH_P_IP)); case IPPROTO_IPV6: keys->is_encap = true; if (keys->flags & BPF_FLOW_DISSECTOR_F_STOP_AT_ENCAP) return export_flow_keys(keys, BPF_OK); return parse_eth_proto(skb, bpf_htons(ETH_P_IPV6)); case IPPROTO_GRE: gre = bpf_flow_dissect_get_header(skb, sizeof(*gre), &_gre); if (!gre) return export_flow_keys(keys, BPF_DROP); if (bpf_htons(gre->flags & GRE_VERSION)) /* Only inspect standard GRE packets with version 0 */ return export_flow_keys(keys, BPF_OK); keys->thoff += sizeof(*gre); /* Step over GRE Flags and Proto */ if (GRE_IS_CSUM(gre->flags)) keys->thoff += 4; /* Step over chksum and Padding */ if (GRE_IS_KEY(gre->flags)) keys->thoff += 4; /* Step over key */ if (GRE_IS_SEQ(gre->flags)) keys->thoff += 4; /* Step over sequence number */ keys->is_encap = true; if (keys->flags & BPF_FLOW_DISSECTOR_F_STOP_AT_ENCAP) return export_flow_keys(keys, BPF_OK); if (gre->proto == bpf_htons(ETH_P_TEB)) { eth = bpf_flow_dissect_get_header(skb, sizeof(*eth), &_eth); if (!eth) return export_flow_keys(keys, BPF_DROP); keys->thoff += sizeof(*eth); return parse_eth_proto(skb, eth->h_proto); } else { return parse_eth_proto(skb, gre->proto); } case IPPROTO_TCP: tcp = bpf_flow_dissect_get_header(skb, sizeof(*tcp), &_tcp); if (!tcp) return export_flow_keys(keys, BPF_DROP); if (tcp->doff < 5) return export_flow_keys(keys, BPF_DROP); if ((__u8 *)tcp + (tcp->doff << 2) > data_end) return export_flow_keys(keys, BPF_DROP); keys->sport = tcp->source; keys->dport = tcp->dest; return export_flow_keys(keys, BPF_OK); case IPPROTO_UDP: case IPPROTO_UDPLITE: udp = bpf_flow_dissect_get_header(skb, sizeof(*udp), &_udp); if (!udp) return export_flow_keys(keys, BPF_DROP); keys->sport = udp->source; keys->dport = udp->dest; return export_flow_keys(keys, BPF_OK); default: return export_flow_keys(keys, BPF_DROP); } return export_flow_keys(keys, BPF_DROP); } static __always_inline int parse_ipv6_proto(struct __sk_buff *skb, __u8 nexthdr) { struct bpf_flow_keys *keys = skb->flow_keys; switch (nexthdr) { case IPPROTO_HOPOPTS: case IPPROTO_DSTOPTS: bpf_tail_call_static(skb, &jmp_table, IPV6OP); break; case IPPROTO_FRAGMENT: bpf_tail_call_static(skb, &jmp_table, IPV6FR); break; default: return parse_ip_proto(skb, nexthdr); } return export_flow_keys(keys, BPF_DROP); } PROG(IP)(struct __sk_buff *skb) { void *data_end = (void *)(long)skb->data_end; struct bpf_flow_keys *keys = skb->flow_keys; void *data = (void *)(long)skb->data; struct iphdr *iph, _iph; bool done = false; iph = bpf_flow_dissect_get_header(skb, sizeof(*iph), &_iph); if (!iph) return export_flow_keys(keys, BPF_DROP); /* IP header cannot be smaller than 20 bytes */ if (iph->ihl < 5) return export_flow_keys(keys, BPF_DROP); keys->addr_proto = ETH_P_IP; keys->ipv4_src = iph->saddr; keys->ipv4_dst = iph->daddr; keys->ip_proto = iph->protocol; keys->thoff += iph->ihl << 2; if (data + keys->thoff > data_end) return export_flow_keys(keys, BPF_DROP); if (iph->frag_off & bpf_htons(IP_MF | IP_OFFSET)) { keys->is_frag = true; if (iph->frag_off & bpf_htons(IP_OFFSET)) { /* From second fragment on, packets do not have headers * we can parse. */ done = true; } else { keys->is_first_frag = true; /* No need to parse fragmented packet unless * explicitly asked for. */ if (!(keys->flags & BPF_FLOW_DISSECTOR_F_PARSE_1ST_FRAG)) done = true; } } if (done) return export_flow_keys(keys, BPF_OK); return parse_ip_proto(skb, iph->protocol); } PROG(IPV6)(struct __sk_buff *skb) { struct bpf_flow_keys *keys = skb->flow_keys; struct ipv6hdr *ip6h, _ip6h; ip6h = bpf_flow_dissect_get_header(skb, sizeof(*ip6h), &_ip6h); if (!ip6h) return export_flow_keys(keys, BPF_DROP); keys->addr_proto = ETH_P_IPV6; memcpy(&keys->ipv6_src, &ip6h->saddr, 2*sizeof(ip6h->saddr)); keys->thoff += sizeof(struct ipv6hdr); keys->ip_proto = ip6h->nexthdr; keys->flow_label = ip6_flowlabel(ip6h); if (keys->flow_label && keys->flags & BPF_FLOW_DISSECTOR_F_STOP_AT_FLOW_LABEL) return export_flow_keys(keys, BPF_OK); return parse_ipv6_proto(skb, ip6h->nexthdr); } PROG(IPV6OP)(struct __sk_buff *skb) { struct bpf_flow_keys *keys = skb->flow_keys; struct ipv6_opt_hdr *ip6h, _ip6h; ip6h = bpf_flow_dissect_get_header(skb, sizeof(*ip6h), &_ip6h); if (!ip6h) return export_flow_keys(keys, BPF_DROP); /* hlen is in 8-octets and does not include the first 8 bytes * of the header */ keys->thoff += (1 + ip6h->hdrlen) << 3; keys->ip_proto = ip6h->nexthdr; return parse_ipv6_proto(skb, ip6h->nexthdr); } PROG(IPV6FR)(struct __sk_buff *skb) { struct bpf_flow_keys *keys = skb->flow_keys; struct frag_hdr *fragh, _fragh; fragh = bpf_flow_dissect_get_header(skb, sizeof(*fragh), &_fragh); if (!fragh) return export_flow_keys(keys, BPF_DROP); keys->thoff += sizeof(*fragh); keys->is_frag = true; keys->ip_proto = fragh->nexthdr; if (!(fragh->frag_off & bpf_htons(IP6_OFFSET))) { keys->is_first_frag = true; /* No need to parse fragmented packet unless * explicitly asked for. */ if (!(keys->flags & BPF_FLOW_DISSECTOR_F_PARSE_1ST_FRAG)) return export_flow_keys(keys, BPF_OK); } else { return export_flow_keys(keys, BPF_OK); } return parse_ipv6_proto(skb, fragh->nexthdr); } PROG(MPLS)(struct __sk_buff *skb) { struct bpf_flow_keys *keys = skb->flow_keys; struct mpls_label *mpls, _mpls; mpls = bpf_flow_dissect_get_header(skb, sizeof(*mpls), &_mpls); if (!mpls) return export_flow_keys(keys, BPF_DROP); return export_flow_keys(keys, BPF_OK); } PROG(VLAN)(struct __sk_buff *skb) { struct bpf_flow_keys *keys = skb->flow_keys; struct vlan_hdr *vlan, _vlan; /* Account for double-tagging */ if (keys->n_proto == bpf_htons(ETH_P_8021AD)) { vlan = bpf_flow_dissect_get_header(skb, sizeof(*vlan), &_vlan); if (!vlan) return export_flow_keys(keys, BPF_DROP); if (vlan->h_vlan_encapsulated_proto != bpf_htons(ETH_P_8021Q)) return export_flow_keys(keys, BPF_DROP); keys->nhoff += sizeof(*vlan); keys->thoff += sizeof(*vlan); } vlan = bpf_flow_dissect_get_header(skb, sizeof(*vlan), &_vlan); if (!vlan) return export_flow_keys(keys, BPF_DROP); keys->nhoff += sizeof(*vlan); keys->thoff += sizeof(*vlan); /* Only allow 8021AD + 8021Q double tagging and no triple tagging.*/ if (vlan->h_vlan_encapsulated_proto == bpf_htons(ETH_P_8021AD) || vlan->h_vlan_encapsulated_proto == bpf_htons(ETH_P_8021Q)) return export_flow_keys(keys, BPF_DROP); keys->n_proto = vlan->h_vlan_encapsulated_proto; return parse_eth_proto(skb, vlan->h_vlan_encapsulated_proto); } char __license[] SEC("license") = "GPL";
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1