Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Daniel Borkmann | 2102 | 22.88% | 21 | 18.10% |
Eduard Zingerman | 1664 | 18.11% | 6 | 5.17% |
Alexei Starovoitov | 1550 | 16.87% | 20 | 17.24% |
Jiri Olsa | 615 | 6.69% | 3 | 2.59% |
Martin KaFai Lau | 466 | 5.07% | 5 | 4.31% |
Gary Lin | 418 | 4.55% | 1 | 0.86% |
Prashant Bhole | 299 | 3.25% | 2 | 1.72% |
Kumar Kartikeya Dwivedi | 261 | 2.84% | 2 | 1.72% |
Andrii Nakryiko | 242 | 2.63% | 11 | 9.48% |
Jakub Kiciński | 231 | 2.51% | 4 | 3.45% |
Stanislav Fomichev | 168 | 1.83% | 5 | 4.31% |
Roman Gushchin | 163 | 1.77% | 2 | 1.72% |
Dmitrii Banshchikov | 162 | 1.76% | 1 | 0.86% |
Josef Bacik | 105 | 1.14% | 1 | 0.86% |
Joe Stringer | 96 | 1.04% | 5 | 4.31% |
Mickaël Salaün | 90 | 0.98% | 2 | 1.72% |
Jakub Sitnicki | 70 | 0.76% | 1 | 0.86% |
Allan Zhang | 70 | 0.76% | 1 | 0.86% |
Paul Chaignon | 66 | 0.72% | 1 | 0.86% |
Gilad Reti | 61 | 0.66% | 1 | 0.86% |
Jiong Wang | 59 | 0.64% | 2 | 1.72% |
Florian Lehner | 54 | 0.59% | 2 | 1.72% |
Delyan Kratunov | 38 | 0.41% | 1 | 0.86% |
Ilya Leoshkevich | 37 | 0.40% | 2 | 1.72% |
David S. Miller | 35 | 0.38% | 1 | 0.86% |
Andrei Matei | 14 | 0.15% | 1 | 0.86% |
Lorenz Bauer | 12 | 0.13% | 2 | 1.72% |
Björn Töpel | 12 | 0.13% | 1 | 0.86% |
Yonghong Song | 7 | 0.08% | 1 | 0.86% |
Roberto Sassu | 6 | 0.07% | 1 | 0.86% |
Pu Lehui | 4 | 0.04% | 1 | 0.86% |
Thomas Gleixner | 2 | 0.02% | 1 | 0.86% |
Hengqi Chen | 2 | 0.02% | 1 | 0.86% |
Artem Savkov | 2 | 0.02% | 1 | 0.86% |
Tiezhu Yang | 2 | 0.02% | 1 | 0.86% |
Jesper Dangaard Brouer | 2 | 0.02% | 1 | 0.86% |
David Daney | 1 | 0.01% | 1 | 0.86% |
Total | 9188 | 116 |
// SPDX-License-Identifier: GPL-2.0-only /* * Testsuite for eBPF verifier * * Copyright (c) 2014 PLUMgrid, http://plumgrid.com * Copyright (c) 2017 Facebook * Copyright (c) 2018 Covalent IO, Inc. http://covalent.io */ #include <endian.h> #include <asm/types.h> #include <linux/types.h> #include <stdint.h> #include <stdio.h> #include <stdlib.h> #include <unistd.h> #include <errno.h> #include <string.h> #include <stddef.h> #include <stdbool.h> #include <sched.h> #include <limits.h> #include <assert.h> #include <linux/unistd.h> #include <linux/filter.h> #include <linux/bpf_perf_event.h> #include <linux/bpf.h> #include <linux/if_ether.h> #include <linux/btf.h> #include <bpf/btf.h> #include <bpf/bpf.h> #include <bpf/libbpf.h> #include "autoconf_helper.h" #include "unpriv_helpers.h" #include "cap_helpers.h" #include "bpf_rand.h" #include "bpf_util.h" #include "test_btf.h" #include "../../../include/linux/filter.h" #include "testing_helpers.h" #ifndef ENOTSUPP #define ENOTSUPP 524 #endif #define MAX_INSNS BPF_MAXINSNS #define MAX_EXPECTED_INSNS 32 #define MAX_UNEXPECTED_INSNS 32 #define MAX_TEST_INSNS 1000000 #define MAX_FIXUPS 8 #define MAX_NR_MAPS 23 #define MAX_TEST_RUNS 8 #define POINTER_VALUE 0xcafe4all #define TEST_DATA_LEN 64 #define MAX_FUNC_INFOS 8 #define MAX_BTF_STRINGS 256 #define MAX_BTF_TYPES 256 #define INSN_OFF_MASK ((__s16)0xFFFF) #define INSN_IMM_MASK ((__s32)0xFFFFFFFF) #define SKIP_INSNS() BPF_RAW_INSN(0xde, 0xa, 0xd, 0xbeef, 0xdeadbeef) #define DEFAULT_LIBBPF_LOG_LEVEL 4 #define F_NEEDS_EFFICIENT_UNALIGNED_ACCESS (1 << 0) #define F_LOAD_WITH_STRICT_ALIGNMENT (1 << 1) /* need CAP_BPF, CAP_NET_ADMIN, CAP_PERFMON to load progs */ #define ADMIN_CAPS (1ULL << CAP_NET_ADMIN | \ 1ULL << CAP_PERFMON | \ 1ULL << CAP_BPF) #define UNPRIV_SYSCTL "kernel/unprivileged_bpf_disabled" static bool unpriv_disabled = false; static int skips; static bool verbose = false; static int verif_log_level = 0; struct kfunc_btf_id_pair { const char *kfunc; int insn_idx; }; struct bpf_test { const char *descr; struct bpf_insn insns[MAX_INSNS]; struct bpf_insn *fill_insns; /* If specified, test engine looks for this sequence of * instructions in the BPF program after loading. Allows to * test rewrites applied by verifier. Use values * INSN_OFF_MASK and INSN_IMM_MASK to mask `off` and `imm` * fields if content does not matter. The test case fails if * specified instructions are not found. * * The sequence could be split into sub-sequences by adding * SKIP_INSNS instruction at the end of each sub-sequence. In * such case sub-sequences are searched for one after another. */ struct bpf_insn expected_insns[MAX_EXPECTED_INSNS]; /* If specified, test engine applies same pattern matching * logic as for `expected_insns`. If the specified pattern is * matched test case is marked as failed. */ struct bpf_insn unexpected_insns[MAX_UNEXPECTED_INSNS]; int fixup_map_hash_8b[MAX_FIXUPS]; int fixup_map_hash_48b[MAX_FIXUPS]; int fixup_map_hash_16b[MAX_FIXUPS]; int fixup_map_array_48b[MAX_FIXUPS]; int fixup_map_sockmap[MAX_FIXUPS]; int fixup_map_sockhash[MAX_FIXUPS]; int fixup_map_xskmap[MAX_FIXUPS]; int fixup_map_stacktrace[MAX_FIXUPS]; int fixup_prog1[MAX_FIXUPS]; int fixup_prog2[MAX_FIXUPS]; int fixup_map_in_map[MAX_FIXUPS]; int fixup_cgroup_storage[MAX_FIXUPS]; int fixup_percpu_cgroup_storage[MAX_FIXUPS]; int fixup_map_spin_lock[MAX_FIXUPS]; int fixup_map_array_ro[MAX_FIXUPS]; int fixup_map_array_wo[MAX_FIXUPS]; int fixup_map_array_small[MAX_FIXUPS]; int fixup_sk_storage_map[MAX_FIXUPS]; int fixup_map_event_output[MAX_FIXUPS]; int fixup_map_reuseport_array[MAX_FIXUPS]; int fixup_map_ringbuf[MAX_FIXUPS]; int fixup_map_timer[MAX_FIXUPS]; int fixup_map_kptr[MAX_FIXUPS]; struct kfunc_btf_id_pair fixup_kfunc_btf_id[MAX_FIXUPS]; /* Expected verifier log output for result REJECT or VERBOSE_ACCEPT. * Can be a tab-separated sequence of expected strings. An empty string * means no log verification. */ const char *errstr; const char *errstr_unpriv; uint32_t insn_processed; int prog_len; enum { UNDEF, ACCEPT, REJECT, VERBOSE_ACCEPT, } result, result_unpriv; enum bpf_prog_type prog_type; uint8_t flags; void (*fill_helper)(struct bpf_test *self); int runs; #define bpf_testdata_struct_t \ struct { \ uint32_t retval, retval_unpriv; \ union { \ __u8 data[TEST_DATA_LEN]; \ __u64 data64[TEST_DATA_LEN / 8]; \ }; \ } union { bpf_testdata_struct_t; bpf_testdata_struct_t retvals[MAX_TEST_RUNS]; }; enum bpf_attach_type expected_attach_type; const char *kfunc; struct bpf_func_info func_info[MAX_FUNC_INFOS]; int func_info_cnt; char btf_strings[MAX_BTF_STRINGS]; /* A set of BTF types to load when specified, * use macro definitions from test_btf.h, * must end with BTF_END_RAW */ __u32 btf_types[MAX_BTF_TYPES]; }; /* Note we want this to be 64 bit aligned so that the end of our array is * actually the end of the structure. */ #define MAX_ENTRIES 11 struct test_val { unsigned int index; int foo[MAX_ENTRIES]; }; struct other_val { long long foo; long long bar; }; static void bpf_fill_ld_abs_vlan_push_pop(struct bpf_test *self) { /* test: {skb->data[0], vlan_push} x 51 + {skb->data[0], vlan_pop} x 51 */ #define PUSH_CNT 51 /* jump range is limited to 16 bit. PUSH_CNT of ld_abs needs room */ unsigned int len = (1 << 15) - PUSH_CNT * 2 * 5 * 6; struct bpf_insn *insn = self->fill_insns; int i = 0, j, k = 0; insn[i++] = BPF_MOV64_REG(BPF_REG_6, BPF_REG_1); loop: for (j = 0; j < PUSH_CNT; j++) { insn[i++] = BPF_LD_ABS(BPF_B, 0); /* jump to error label */ insn[i] = BPF_JMP32_IMM(BPF_JNE, BPF_REG_0, 0x34, len - i - 3); i++; insn[i++] = BPF_MOV64_REG(BPF_REG_1, BPF_REG_6); insn[i++] = BPF_MOV64_IMM(BPF_REG_2, 1); insn[i++] = BPF_MOV64_IMM(BPF_REG_3, 2); insn[i++] = BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, BPF_FUNC_skb_vlan_push); insn[i] = BPF_JMP_IMM(BPF_JNE, BPF_REG_0, 0, len - i - 3); i++; } for (j = 0; j < PUSH_CNT; j++) { insn[i++] = BPF_LD_ABS(BPF_B, 0); insn[i] = BPF_JMP32_IMM(BPF_JNE, BPF_REG_0, 0x34, len - i - 3); i++; insn[i++] = BPF_MOV64_REG(BPF_REG_1, BPF_REG_6); insn[i++] = BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, BPF_FUNC_skb_vlan_pop); insn[i] = BPF_JMP_IMM(BPF_JNE, BPF_REG_0, 0, len - i - 3); i++; } if (++k < 5) goto loop; for (; i < len - 3; i++) insn[i] = BPF_ALU64_IMM(BPF_MOV, BPF_REG_0, 0xbef); insn[len - 3] = BPF_JMP_A(1); /* error label */ insn[len - 2] = BPF_MOV32_IMM(BPF_REG_0, 0); insn[len - 1] = BPF_EXIT_INSN(); self->prog_len = len; } static void bpf_fill_jump_around_ld_abs(struct bpf_test *self) { struct bpf_insn *insn = self->fill_insns; /* jump range is limited to 16 bit. every ld_abs is replaced by 6 insns, * but on arches like arm, ppc etc, there will be one BPF_ZEXT inserted * to extend the error value of the inlined ld_abs sequence which then * contains 7 insns. so, set the dividend to 7 so the testcase could * work on all arches. */ unsigned int len = (1 << 15) / 7; int i = 0; insn[i++] = BPF_MOV64_REG(BPF_REG_6, BPF_REG_1); insn[i++] = BPF_LD_ABS(BPF_B, 0); insn[i] = BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 10, len - i - 2); i++; while (i < len - 1) insn[i++] = BPF_LD_ABS(BPF_B, 1); insn[i] = BPF_EXIT_INSN(); self->prog_len = i + 1; } static void bpf_fill_rand_ld_dw(struct bpf_test *self) { struct bpf_insn *insn = self->fill_insns; uint64_t res = 0; int i = 0; insn[i++] = BPF_MOV32_IMM(BPF_REG_0, 0); while (i < self->retval) { uint64_t val = bpf_semi_rand_get(); struct bpf_insn tmp[2] = { BPF_LD_IMM64(BPF_REG_1, val) }; res ^= val; insn[i++] = tmp[0]; insn[i++] = tmp[1]; insn[i++] = BPF_ALU64_REG(BPF_XOR, BPF_REG_0, BPF_REG_1); } insn[i++] = BPF_MOV64_REG(BPF_REG_1, BPF_REG_0); insn[i++] = BPF_ALU64_IMM(BPF_RSH, BPF_REG_1, 32); insn[i++] = BPF_ALU64_REG(BPF_XOR, BPF_REG_0, BPF_REG_1); insn[i] = BPF_EXIT_INSN(); self->prog_len = i + 1; res ^= (res >> 32); self->retval = (uint32_t)res; } #define MAX_JMP_SEQ 8192 /* test the sequence of 8k jumps */ static void bpf_fill_scale1(struct bpf_test *self) { struct bpf_insn *insn = self->fill_insns; int i = 0, k = 0; insn[i++] = BPF_MOV64_REG(BPF_REG_6, BPF_REG_1); /* test to check that the long sequence of jumps is acceptable */ while (k++ < MAX_JMP_SEQ) { insn[i++] = BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, BPF_FUNC_get_prandom_u32); insn[i++] = BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, bpf_semi_rand_get(), 2); insn[i++] = BPF_MOV64_REG(BPF_REG_1, BPF_REG_10); insn[i++] = BPF_STX_MEM(BPF_DW, BPF_REG_1, BPF_REG_6, -8 * (k % 64 + 1)); } /* is_state_visited() doesn't allocate state for pruning for every jump. * Hence multiply jmps by 4 to accommodate that heuristic */ while (i < MAX_TEST_INSNS - MAX_JMP_SEQ * 4) insn[i++] = BPF_ALU64_IMM(BPF_MOV, BPF_REG_0, 42); insn[i] = BPF_EXIT_INSN(); self->prog_len = i + 1; self->retval = 42; } /* test the sequence of 8k jumps in inner most function (function depth 8)*/ static void bpf_fill_scale2(struct bpf_test *self) { struct bpf_insn *insn = self->fill_insns; int i = 0, k = 0; #define FUNC_NEST 7 for (k = 0; k < FUNC_NEST; k++) { insn[i++] = BPF_CALL_REL(1); insn[i++] = BPF_EXIT_INSN(); } insn[i++] = BPF_MOV64_REG(BPF_REG_6, BPF_REG_1); /* test to check that the long sequence of jumps is acceptable */ k = 0; while (k++ < MAX_JMP_SEQ) { insn[i++] = BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, BPF_FUNC_get_prandom_u32); insn[i++] = BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, bpf_semi_rand_get(), 2); insn[i++] = BPF_MOV64_REG(BPF_REG_1, BPF_REG_10); insn[i++] = BPF_STX_MEM(BPF_DW, BPF_REG_1, BPF_REG_6, -8 * (k % (64 - 4 * FUNC_NEST) + 1)); } while (i < MAX_TEST_INSNS - MAX_JMP_SEQ * 4) insn[i++] = BPF_ALU64_IMM(BPF_MOV, BPF_REG_0, 42); insn[i] = BPF_EXIT_INSN(); self->prog_len = i + 1; self->retval = 42; } static void bpf_fill_scale(struct bpf_test *self) { switch (self->retval) { case 1: return bpf_fill_scale1(self); case 2: return bpf_fill_scale2(self); default: self->prog_len = 0; break; } } static int bpf_fill_torturous_jumps_insn_1(struct bpf_insn *insn) { unsigned int len = 259, hlen = 128; int i; insn[0] = BPF_EMIT_CALL(BPF_FUNC_get_prandom_u32); for (i = 1; i <= hlen; i++) { insn[i] = BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, i, hlen); insn[i + hlen] = BPF_JMP_A(hlen - i); } insn[len - 2] = BPF_MOV64_IMM(BPF_REG_0, 1); insn[len - 1] = BPF_EXIT_INSN(); return len; } static int bpf_fill_torturous_jumps_insn_2(struct bpf_insn *insn) { unsigned int len = 4100, jmp_off = 2048; int i, j; insn[0] = BPF_EMIT_CALL(BPF_FUNC_get_prandom_u32); for (i = 1; i <= jmp_off; i++) { insn[i] = BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, i, jmp_off); } insn[i++] = BPF_JMP_A(jmp_off); for (; i <= jmp_off * 2 + 1; i+=16) { for (j = 0; j < 16; j++) { insn[i + j] = BPF_JMP_A(16 - j - 1); } } insn[len - 2] = BPF_MOV64_IMM(BPF_REG_0, 2); insn[len - 1] = BPF_EXIT_INSN(); return len; } static void bpf_fill_torturous_jumps(struct bpf_test *self) { struct bpf_insn *insn = self->fill_insns; int i = 0; switch (self->retval) { case 1: self->prog_len = bpf_fill_torturous_jumps_insn_1(insn); return; case 2: self->prog_len = bpf_fill_torturous_jumps_insn_2(insn); return; case 3: /* main */ insn[i++] = BPF_RAW_INSN(BPF_JMP|BPF_CALL, 0, 1, 0, 4); insn[i++] = BPF_RAW_INSN(BPF_JMP|BPF_CALL, 0, 1, 0, 262); insn[i++] = BPF_ST_MEM(BPF_B, BPF_REG_10, -32, 0); insn[i++] = BPF_MOV64_IMM(BPF_REG_0, 3); insn[i++] = BPF_EXIT_INSN(); /* subprog 1 */ i += bpf_fill_torturous_jumps_insn_1(insn + i); /* subprog 2 */ i += bpf_fill_torturous_jumps_insn_2(insn + i); self->prog_len = i; return; default: self->prog_len = 0; break; } } static void bpf_fill_big_prog_with_loop_1(struct bpf_test *self) { struct bpf_insn *insn = self->fill_insns; /* This test was added to catch a specific use after free * error, which happened upon BPF program reallocation. * Reallocation is handled by core.c:bpf_prog_realloc, which * reuses old memory if page boundary is not crossed. The * value of `len` is chosen to cross this boundary on bpf_loop * patching. */ const int len = getpagesize() - 25; int callback_load_idx; int callback_idx; int i = 0; insn[i++] = BPF_ALU64_IMM(BPF_MOV, BPF_REG_1, 1); callback_load_idx = i; insn[i++] = BPF_RAW_INSN(BPF_LD | BPF_IMM | BPF_DW, BPF_REG_2, BPF_PSEUDO_FUNC, 0, 777 /* filled below */); insn[i++] = BPF_RAW_INSN(0, 0, 0, 0, 0); insn[i++] = BPF_ALU64_IMM(BPF_MOV, BPF_REG_3, 0); insn[i++] = BPF_ALU64_IMM(BPF_MOV, BPF_REG_4, 0); insn[i++] = BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, BPF_FUNC_loop); while (i < len - 3) insn[i++] = BPF_ALU64_IMM(BPF_MOV, BPF_REG_0, 0); insn[i++] = BPF_EXIT_INSN(); callback_idx = i; insn[i++] = BPF_ALU64_IMM(BPF_MOV, BPF_REG_0, 0); insn[i++] = BPF_EXIT_INSN(); insn[callback_load_idx].imm = callback_idx - callback_load_idx - 1; self->func_info[1].insn_off = callback_idx; self->prog_len = i; assert(i == len); } /* BPF_SK_LOOKUP contains 13 instructions, if you need to fix up maps */ #define BPF_SK_LOOKUP(func) \ /* struct bpf_sock_tuple tuple = {} */ \ BPF_MOV64_IMM(BPF_REG_2, 0), \ BPF_STX_MEM(BPF_W, BPF_REG_10, BPF_REG_2, -8), \ BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_2, -16), \ BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_2, -24), \ BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_2, -32), \ BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_2, -40), \ BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_2, -48), \ /* sk = func(ctx, &tuple, sizeof tuple, 0, 0) */ \ BPF_MOV64_REG(BPF_REG_2, BPF_REG_10), \ BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -48), \ BPF_MOV64_IMM(BPF_REG_3, sizeof(struct bpf_sock_tuple)), \ BPF_MOV64_IMM(BPF_REG_4, 0), \ BPF_MOV64_IMM(BPF_REG_5, 0), \ BPF_EMIT_CALL(BPF_FUNC_ ## func) /* BPF_DIRECT_PKT_R2 contains 7 instructions, it initializes default return * value into 0 and does necessary preparation for direct packet access * through r2. The allowed access range is 8 bytes. */ #define BPF_DIRECT_PKT_R2 \ BPF_MOV64_IMM(BPF_REG_0, 0), \ BPF_LDX_MEM(BPF_W, BPF_REG_2, BPF_REG_1, \ offsetof(struct __sk_buff, data)), \ BPF_LDX_MEM(BPF_W, BPF_REG_3, BPF_REG_1, \ offsetof(struct __sk_buff, data_end)), \ BPF_MOV64_REG(BPF_REG_4, BPF_REG_2), \ BPF_ALU64_IMM(BPF_ADD, BPF_REG_4, 8), \ BPF_JMP_REG(BPF_JLE, BPF_REG_4, BPF_REG_3, 1), \ BPF_EXIT_INSN() /* BPF_RAND_UEXT_R7 contains 4 instructions, it initializes R7 into a random * positive u32, and zero-extend it into 64-bit. */ #define BPF_RAND_UEXT_R7 \ BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, \ BPF_FUNC_get_prandom_u32), \ BPF_MOV64_REG(BPF_REG_7, BPF_REG_0), \ BPF_ALU64_IMM(BPF_LSH, BPF_REG_7, 33), \ BPF_ALU64_IMM(BPF_RSH, BPF_REG_7, 33) /* BPF_RAND_SEXT_R7 contains 5 instructions, it initializes R7 into a random * negative u32, and sign-extend it into 64-bit. */ #define BPF_RAND_SEXT_R7 \ BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, \ BPF_FUNC_get_prandom_u32), \ BPF_MOV64_REG(BPF_REG_7, BPF_REG_0), \ BPF_ALU64_IMM(BPF_OR, BPF_REG_7, 0x80000000), \ BPF_ALU64_IMM(BPF_LSH, BPF_REG_7, 32), \ BPF_ALU64_IMM(BPF_ARSH, BPF_REG_7, 32) static struct bpf_test tests[] = { #define FILL_ARRAY #include <verifier/tests.h> #undef FILL_ARRAY }; static int probe_filter_length(const struct bpf_insn *fp) { int len; for (len = MAX_INSNS - 1; len > 0; --len) if (fp[len].code != 0 || fp[len].imm != 0) break; return len + 1; } static bool skip_unsupported_map(enum bpf_map_type map_type) { if (!libbpf_probe_bpf_map_type(map_type, NULL)) { printf("SKIP (unsupported map type %d)\n", map_type); skips++; return true; } return false; } static int __create_map(uint32_t type, uint32_t size_key, uint32_t size_value, uint32_t max_elem, uint32_t extra_flags) { LIBBPF_OPTS(bpf_map_create_opts, opts); int fd; opts.map_flags = (type == BPF_MAP_TYPE_HASH ? BPF_F_NO_PREALLOC : 0) | extra_flags; fd = bpf_map_create(type, NULL, size_key, size_value, max_elem, &opts); if (fd < 0) { if (skip_unsupported_map(type)) return -1; printf("Failed to create hash map '%s'!\n", strerror(errno)); } return fd; } static int create_map(uint32_t type, uint32_t size_key, uint32_t size_value, uint32_t max_elem) { return __create_map(type, size_key, size_value, max_elem, 0); } static void update_map(int fd, int index) { struct test_val value = { .index = (6 + 1) * sizeof(int), .foo[6] = 0xabcdef12, }; assert(!bpf_map_update_elem(fd, &index, &value, 0)); } static int create_prog_dummy_simple(enum bpf_prog_type prog_type, int ret) { struct bpf_insn prog[] = { BPF_MOV64_IMM(BPF_REG_0, ret), BPF_EXIT_INSN(), }; return bpf_prog_load(prog_type, NULL, "GPL", prog, ARRAY_SIZE(prog), NULL); } static int create_prog_dummy_loop(enum bpf_prog_type prog_type, int mfd, int idx, int ret) { struct bpf_insn prog[] = { BPF_MOV64_IMM(BPF_REG_3, idx), BPF_LD_MAP_FD(BPF_REG_2, mfd), BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, BPF_FUNC_tail_call), BPF_MOV64_IMM(BPF_REG_0, ret), BPF_EXIT_INSN(), }; return bpf_prog_load(prog_type, NULL, "GPL", prog, ARRAY_SIZE(prog), NULL); } static int create_prog_array(enum bpf_prog_type prog_type, uint32_t max_elem, int p1key, int p2key, int p3key) { int mfd, p1fd, p2fd, p3fd; mfd = bpf_map_create(BPF_MAP_TYPE_PROG_ARRAY, NULL, sizeof(int), sizeof(int), max_elem, NULL); if (mfd < 0) { if (skip_unsupported_map(BPF_MAP_TYPE_PROG_ARRAY)) return -1; printf("Failed to create prog array '%s'!\n", strerror(errno)); return -1; } p1fd = create_prog_dummy_simple(prog_type, 42); p2fd = create_prog_dummy_loop(prog_type, mfd, p2key, 41); p3fd = create_prog_dummy_simple(prog_type, 24); if (p1fd < 0 || p2fd < 0 || p3fd < 0) goto err; if (bpf_map_update_elem(mfd, &p1key, &p1fd, BPF_ANY) < 0) goto err; if (bpf_map_update_elem(mfd, &p2key, &p2fd, BPF_ANY) < 0) goto err; if (bpf_map_update_elem(mfd, &p3key, &p3fd, BPF_ANY) < 0) { err: close(mfd); mfd = -1; } close(p3fd); close(p2fd); close(p1fd); return mfd; } static int create_map_in_map(void) { LIBBPF_OPTS(bpf_map_create_opts, opts); int inner_map_fd, outer_map_fd; inner_map_fd = bpf_map_create(BPF_MAP_TYPE_ARRAY, NULL, sizeof(int), sizeof(int), 1, NULL); if (inner_map_fd < 0) { if (skip_unsupported_map(BPF_MAP_TYPE_ARRAY)) return -1; printf("Failed to create array '%s'!\n", strerror(errno)); return inner_map_fd; } opts.inner_map_fd = inner_map_fd; outer_map_fd = bpf_map_create(BPF_MAP_TYPE_ARRAY_OF_MAPS, NULL, sizeof(int), sizeof(int), 1, &opts); if (outer_map_fd < 0) { if (skip_unsupported_map(BPF_MAP_TYPE_ARRAY_OF_MAPS)) return -1; printf("Failed to create array of maps '%s'!\n", strerror(errno)); } close(inner_map_fd); return outer_map_fd; } static int create_cgroup_storage(bool percpu) { enum bpf_map_type type = percpu ? BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE : BPF_MAP_TYPE_CGROUP_STORAGE; int fd; fd = bpf_map_create(type, NULL, sizeof(struct bpf_cgroup_storage_key), TEST_DATA_LEN, 0, NULL); if (fd < 0) { if (skip_unsupported_map(type)) return -1; printf("Failed to create cgroup storage '%s'!\n", strerror(errno)); } return fd; } /* struct bpf_spin_lock { * int val; * }; * struct val { * int cnt; * struct bpf_spin_lock l; * }; * struct bpf_timer { * __u64 :64; * __u64 :64; * } __attribute__((aligned(8))); * struct timer { * struct bpf_timer t; * }; * struct btf_ptr { * struct prog_test_ref_kfunc __kptr_untrusted *ptr; * struct prog_test_ref_kfunc __kptr *ptr; * struct prog_test_member __kptr *ptr; * } */ static const char btf_str_sec[] = "\0bpf_spin_lock\0val\0cnt\0l\0bpf_timer\0timer\0t" "\0btf_ptr\0prog_test_ref_kfunc\0ptr\0kptr\0kptr_untrusted" "\0prog_test_member"; static __u32 btf_raw_types[] = { /* int */ BTF_TYPE_INT_ENC(0, BTF_INT_SIGNED, 0, 32, 4), /* [1] */ /* struct bpf_spin_lock */ /* [2] */ BTF_TYPE_ENC(1, BTF_INFO_ENC(BTF_KIND_STRUCT, 0, 1), 4), BTF_MEMBER_ENC(15, 1, 0), /* int val; */ /* struct val */ /* [3] */ BTF_TYPE_ENC(15, BTF_INFO_ENC(BTF_KIND_STRUCT, 0, 2), 8), BTF_MEMBER_ENC(19, 1, 0), /* int cnt; */ BTF_MEMBER_ENC(23, 2, 32),/* struct bpf_spin_lock l; */ /* struct bpf_timer */ /* [4] */ BTF_TYPE_ENC(25, BTF_INFO_ENC(BTF_KIND_STRUCT, 0, 0), 16), /* struct timer */ /* [5] */ BTF_TYPE_ENC(35, BTF_INFO_ENC(BTF_KIND_STRUCT, 0, 1), 16), BTF_MEMBER_ENC(41, 4, 0), /* struct bpf_timer t; */ /* struct prog_test_ref_kfunc */ /* [6] */ BTF_STRUCT_ENC(51, 0, 0), BTF_STRUCT_ENC(95, 0, 0), /* [7] */ /* type tag "kptr_untrusted" */ BTF_TYPE_TAG_ENC(80, 6), /* [8] */ /* type tag "kptr" */ BTF_TYPE_TAG_ENC(75, 6), /* [9] */ BTF_TYPE_TAG_ENC(75, 7), /* [10] */ BTF_PTR_ENC(8), /* [11] */ BTF_PTR_ENC(9), /* [12] */ BTF_PTR_ENC(10), /* [13] */ /* struct btf_ptr */ /* [14] */ BTF_STRUCT_ENC(43, 3, 24), BTF_MEMBER_ENC(71, 11, 0), /* struct prog_test_ref_kfunc __kptr_untrusted *ptr; */ BTF_MEMBER_ENC(71, 12, 64), /* struct prog_test_ref_kfunc __kptr *ptr; */ BTF_MEMBER_ENC(71, 13, 128), /* struct prog_test_member __kptr *ptr; */ }; static char bpf_vlog[UINT_MAX >> 8]; static int load_btf_spec(__u32 *types, int types_len, const char *strings, int strings_len) { struct btf_header hdr = { .magic = BTF_MAGIC, .version = BTF_VERSION, .hdr_len = sizeof(struct btf_header), .type_len = types_len, .str_off = types_len, .str_len = strings_len, }; void *ptr, *raw_btf; int btf_fd; LIBBPF_OPTS(bpf_btf_load_opts, opts, .log_buf = bpf_vlog, .log_size = sizeof(bpf_vlog), .log_level = (verbose ? verif_log_level : DEFAULT_LIBBPF_LOG_LEVEL), ); raw_btf = malloc(sizeof(hdr) + types_len + strings_len); ptr = raw_btf; memcpy(ptr, &hdr, sizeof(hdr)); ptr += sizeof(hdr); memcpy(ptr, types, hdr.type_len); ptr += hdr.type_len; memcpy(ptr, strings, hdr.str_len); ptr += hdr.str_len; btf_fd = bpf_btf_load(raw_btf, ptr - raw_btf, &opts); if (btf_fd < 0) printf("Failed to load BTF spec: '%s'\n", strerror(errno)); free(raw_btf); return btf_fd < 0 ? -1 : btf_fd; } static int load_btf(void) { return load_btf_spec(btf_raw_types, sizeof(btf_raw_types), btf_str_sec, sizeof(btf_str_sec)); } static int load_btf_for_test(struct bpf_test *test) { int types_num = 0; while (types_num < MAX_BTF_TYPES && test->btf_types[types_num] != BTF_END_RAW) ++types_num; int types_len = types_num * sizeof(test->btf_types[0]); return load_btf_spec(test->btf_types, types_len, test->btf_strings, sizeof(test->btf_strings)); } static int create_map_spin_lock(void) { LIBBPF_OPTS(bpf_map_create_opts, opts, .btf_key_type_id = 1, .btf_value_type_id = 3, ); int fd, btf_fd; btf_fd = load_btf(); if (btf_fd < 0) return -1; opts.btf_fd = btf_fd; fd = bpf_map_create(BPF_MAP_TYPE_ARRAY, "test_map", 4, 8, 1, &opts); if (fd < 0) printf("Failed to create map with spin_lock\n"); return fd; } static int create_sk_storage_map(void) { LIBBPF_OPTS(bpf_map_create_opts, opts, .map_flags = BPF_F_NO_PREALLOC, .btf_key_type_id = 1, .btf_value_type_id = 3, ); int fd, btf_fd; btf_fd = load_btf(); if (btf_fd < 0) return -1; opts.btf_fd = btf_fd; fd = bpf_map_create(BPF_MAP_TYPE_SK_STORAGE, "test_map", 4, 8, 0, &opts); close(opts.btf_fd); if (fd < 0) printf("Failed to create sk_storage_map\n"); return fd; } static int create_map_timer(void) { LIBBPF_OPTS(bpf_map_create_opts, opts, .btf_key_type_id = 1, .btf_value_type_id = 5, ); int fd, btf_fd; btf_fd = load_btf(); if (btf_fd < 0) return -1; opts.btf_fd = btf_fd; fd = bpf_map_create(BPF_MAP_TYPE_ARRAY, "test_map", 4, 16, 1, &opts); if (fd < 0) printf("Failed to create map with timer\n"); return fd; } static int create_map_kptr(void) { LIBBPF_OPTS(bpf_map_create_opts, opts, .btf_key_type_id = 1, .btf_value_type_id = 14, ); int fd, btf_fd; btf_fd = load_btf(); if (btf_fd < 0) return -1; opts.btf_fd = btf_fd; fd = bpf_map_create(BPF_MAP_TYPE_ARRAY, "test_map", 4, 24, 1, &opts); if (fd < 0) printf("Failed to create map with btf_id pointer\n"); return fd; } static void set_root(bool set) { __u64 caps; if (set) { if (cap_enable_effective(1ULL << CAP_SYS_ADMIN, &caps)) perror("cap_disable_effective(CAP_SYS_ADMIN)"); } else { if (cap_disable_effective(1ULL << CAP_SYS_ADMIN, &caps)) perror("cap_disable_effective(CAP_SYS_ADMIN)"); } } static __u64 ptr_to_u64(const void *ptr) { return (uintptr_t) ptr; } static struct btf *btf__load_testmod_btf(struct btf *vmlinux) { struct bpf_btf_info info; __u32 len = sizeof(info); struct btf *btf = NULL; char name[64]; __u32 id = 0; int err, fd; /* Iterate all loaded BTF objects and find bpf_testmod, * we need SYS_ADMIN cap for that. */ set_root(true); while (true) { err = bpf_btf_get_next_id(id, &id); if (err) { if (errno == ENOENT) break; perror("bpf_btf_get_next_id failed"); break; } fd = bpf_btf_get_fd_by_id(id); if (fd < 0) { if (errno == ENOENT) continue; perror("bpf_btf_get_fd_by_id failed"); break; } memset(&info, 0, sizeof(info)); info.name_len = sizeof(name); info.name = ptr_to_u64(name); len = sizeof(info); err = bpf_obj_get_info_by_fd(fd, &info, &len); if (err) { close(fd); perror("bpf_obj_get_info_by_fd failed"); break; } if (strcmp("bpf_testmod", name)) { close(fd); continue; } btf = btf__load_from_kernel_by_id_split(id, vmlinux); if (!btf) { close(fd); break; } /* We need the fd to stay open so it can be used in fd_array. * The final cleanup call to btf__free will free btf object * and close the file descriptor. */ btf__set_fd(btf, fd); break; } set_root(false); return btf; } static struct btf *testmod_btf; static struct btf *vmlinux_btf; static void kfuncs_cleanup(void) { btf__free(testmod_btf); btf__free(vmlinux_btf); } static void fixup_prog_kfuncs(struct bpf_insn *prog, int *fd_array, struct kfunc_btf_id_pair *fixup_kfunc_btf_id) { /* Patch in kfunc BTF IDs */ while (fixup_kfunc_btf_id->kfunc) { int btf_id = 0; /* try to find kfunc in kernel BTF */ vmlinux_btf = vmlinux_btf ?: btf__load_vmlinux_btf(); if (vmlinux_btf) { btf_id = btf__find_by_name_kind(vmlinux_btf, fixup_kfunc_btf_id->kfunc, BTF_KIND_FUNC); btf_id = btf_id < 0 ? 0 : btf_id; } /* kfunc not found in kernel BTF, try bpf_testmod BTF */ if (!btf_id) { testmod_btf = testmod_btf ?: btf__load_testmod_btf(vmlinux_btf); if (testmod_btf) { btf_id = btf__find_by_name_kind(testmod_btf, fixup_kfunc_btf_id->kfunc, BTF_KIND_FUNC); btf_id = btf_id < 0 ? 0 : btf_id; if (btf_id) { /* We put bpf_testmod module fd into fd_array * and its index 1 into instruction 'off'. */ *fd_array = btf__fd(testmod_btf); prog[fixup_kfunc_btf_id->insn_idx].off = 1; } } } prog[fixup_kfunc_btf_id->insn_idx].imm = btf_id; fixup_kfunc_btf_id++; } } static void do_test_fixup(struct bpf_test *test, enum bpf_prog_type prog_type, struct bpf_insn *prog, int *map_fds, int *fd_array) { int *fixup_map_hash_8b = test->fixup_map_hash_8b; int *fixup_map_hash_48b = test->fixup_map_hash_48b; int *fixup_map_hash_16b = test->fixup_map_hash_16b; int *fixup_map_array_48b = test->fixup_map_array_48b; int *fixup_map_sockmap = test->fixup_map_sockmap; int *fixup_map_sockhash = test->fixup_map_sockhash; int *fixup_map_xskmap = test->fixup_map_xskmap; int *fixup_map_stacktrace = test->fixup_map_stacktrace; int *fixup_prog1 = test->fixup_prog1; int *fixup_prog2 = test->fixup_prog2; int *fixup_map_in_map = test->fixup_map_in_map; int *fixup_cgroup_storage = test->fixup_cgroup_storage; int *fixup_percpu_cgroup_storage = test->fixup_percpu_cgroup_storage; int *fixup_map_spin_lock = test->fixup_map_spin_lock; int *fixup_map_array_ro = test->fixup_map_array_ro; int *fixup_map_array_wo = test->fixup_map_array_wo; int *fixup_map_array_small = test->fixup_map_array_small; int *fixup_sk_storage_map = test->fixup_sk_storage_map; int *fixup_map_event_output = test->fixup_map_event_output; int *fixup_map_reuseport_array = test->fixup_map_reuseport_array; int *fixup_map_ringbuf = test->fixup_map_ringbuf; int *fixup_map_timer = test->fixup_map_timer; int *fixup_map_kptr = test->fixup_map_kptr; if (test->fill_helper) { test->fill_insns = calloc(MAX_TEST_INSNS, sizeof(struct bpf_insn)); test->fill_helper(test); } /* Allocating HTs with 1 elem is fine here, since we only test * for verifier and not do a runtime lookup, so the only thing * that really matters is value size in this case. */ if (*fixup_map_hash_8b) { map_fds[0] = create_map(BPF_MAP_TYPE_HASH, sizeof(long long), sizeof(long long), 1); do { prog[*fixup_map_hash_8b].imm = map_fds[0]; fixup_map_hash_8b++; } while (*fixup_map_hash_8b); } if (*fixup_map_hash_48b) { map_fds[1] = create_map(BPF_MAP_TYPE_HASH, sizeof(long long), sizeof(struct test_val), 1); do { prog[*fixup_map_hash_48b].imm = map_fds[1]; fixup_map_hash_48b++; } while (*fixup_map_hash_48b); } if (*fixup_map_hash_16b) { map_fds[2] = create_map(BPF_MAP_TYPE_HASH, sizeof(long long), sizeof(struct other_val), 1); do { prog[*fixup_map_hash_16b].imm = map_fds[2]; fixup_map_hash_16b++; } while (*fixup_map_hash_16b); } if (*fixup_map_array_48b) { map_fds[3] = create_map(BPF_MAP_TYPE_ARRAY, sizeof(int), sizeof(struct test_val), 1); update_map(map_fds[3], 0); do { prog[*fixup_map_array_48b].imm = map_fds[3]; fixup_map_array_48b++; } while (*fixup_map_array_48b); } if (*fixup_prog1) { map_fds[4] = create_prog_array(prog_type, 4, 0, 1, 2); do { prog[*fixup_prog1].imm = map_fds[4]; fixup_prog1++; } while (*fixup_prog1); } if (*fixup_prog2) { map_fds[5] = create_prog_array(prog_type, 8, 7, 1, 2); do { prog[*fixup_prog2].imm = map_fds[5]; fixup_prog2++; } while (*fixup_prog2); } if (*fixup_map_in_map) { map_fds[6] = create_map_in_map(); do { prog[*fixup_map_in_map].imm = map_fds[6]; fixup_map_in_map++; } while (*fixup_map_in_map); } if (*fixup_cgroup_storage) { map_fds[7] = create_cgroup_storage(false); do { prog[*fixup_cgroup_storage].imm = map_fds[7]; fixup_cgroup_storage++; } while (*fixup_cgroup_storage); } if (*fixup_percpu_cgroup_storage) { map_fds[8] = create_cgroup_storage(true); do { prog[*fixup_percpu_cgroup_storage].imm = map_fds[8]; fixup_percpu_cgroup_storage++; } while (*fixup_percpu_cgroup_storage); } if (*fixup_map_sockmap) { map_fds[9] = create_map(BPF_MAP_TYPE_SOCKMAP, sizeof(int), sizeof(int), 1); do { prog[*fixup_map_sockmap].imm = map_fds[9]; fixup_map_sockmap++; } while (*fixup_map_sockmap); } if (*fixup_map_sockhash) { map_fds[10] = create_map(BPF_MAP_TYPE_SOCKHASH, sizeof(int), sizeof(int), 1); do { prog[*fixup_map_sockhash].imm = map_fds[10]; fixup_map_sockhash++; } while (*fixup_map_sockhash); } if (*fixup_map_xskmap) { map_fds[11] = create_map(BPF_MAP_TYPE_XSKMAP, sizeof(int), sizeof(int), 1); do { prog[*fixup_map_xskmap].imm = map_fds[11]; fixup_map_xskmap++; } while (*fixup_map_xskmap); } if (*fixup_map_stacktrace) { map_fds[12] = create_map(BPF_MAP_TYPE_STACK_TRACE, sizeof(u32), sizeof(u64), 1); do { prog[*fixup_map_stacktrace].imm = map_fds[12]; fixup_map_stacktrace++; } while (*fixup_map_stacktrace); } if (*fixup_map_spin_lock) { map_fds[13] = create_map_spin_lock(); do { prog[*fixup_map_spin_lock].imm = map_fds[13]; fixup_map_spin_lock++; } while (*fixup_map_spin_lock); } if (*fixup_map_array_ro) { map_fds[14] = __create_map(BPF_MAP_TYPE_ARRAY, sizeof(int), sizeof(struct test_val), 1, BPF_F_RDONLY_PROG); update_map(map_fds[14], 0); do { prog[*fixup_map_array_ro].imm = map_fds[14]; fixup_map_array_ro++; } while (*fixup_map_array_ro); } if (*fixup_map_array_wo) { map_fds[15] = __create_map(BPF_MAP_TYPE_ARRAY, sizeof(int), sizeof(struct test_val), 1, BPF_F_WRONLY_PROG); update_map(map_fds[15], 0); do { prog[*fixup_map_array_wo].imm = map_fds[15]; fixup_map_array_wo++; } while (*fixup_map_array_wo); } if (*fixup_map_array_small) { map_fds[16] = __create_map(BPF_MAP_TYPE_ARRAY, sizeof(int), 1, 1, 0); update_map(map_fds[16], 0); do { prog[*fixup_map_array_small].imm = map_fds[16]; fixup_map_array_small++; } while (*fixup_map_array_small); } if (*fixup_sk_storage_map) { map_fds[17] = create_sk_storage_map(); do { prog[*fixup_sk_storage_map].imm = map_fds[17]; fixup_sk_storage_map++; } while (*fixup_sk_storage_map); } if (*fixup_map_event_output) { map_fds[18] = __create_map(BPF_MAP_TYPE_PERF_EVENT_ARRAY, sizeof(int), sizeof(int), 1, 0); do { prog[*fixup_map_event_output].imm = map_fds[18]; fixup_map_event_output++; } while (*fixup_map_event_output); } if (*fixup_map_reuseport_array) { map_fds[19] = __create_map(BPF_MAP_TYPE_REUSEPORT_SOCKARRAY, sizeof(u32), sizeof(u64), 1, 0); do { prog[*fixup_map_reuseport_array].imm = map_fds[19]; fixup_map_reuseport_array++; } while (*fixup_map_reuseport_array); } if (*fixup_map_ringbuf) { map_fds[20] = create_map(BPF_MAP_TYPE_RINGBUF, 0, 0, getpagesize()); do { prog[*fixup_map_ringbuf].imm = map_fds[20]; fixup_map_ringbuf++; } while (*fixup_map_ringbuf); } if (*fixup_map_timer) { map_fds[21] = create_map_timer(); do { prog[*fixup_map_timer].imm = map_fds[21]; fixup_map_timer++; } while (*fixup_map_timer); } if (*fixup_map_kptr) { map_fds[22] = create_map_kptr(); do { prog[*fixup_map_kptr].imm = map_fds[22]; fixup_map_kptr++; } while (*fixup_map_kptr); } fixup_prog_kfuncs(prog, fd_array, test->fixup_kfunc_btf_id); } struct libcap { struct __user_cap_header_struct hdr; struct __user_cap_data_struct data[2]; }; static int set_admin(bool admin) { int err; if (admin) { err = cap_enable_effective(ADMIN_CAPS, NULL); if (err) perror("cap_enable_effective(ADMIN_CAPS)"); } else { err = cap_disable_effective(ADMIN_CAPS, NULL); if (err) perror("cap_disable_effective(ADMIN_CAPS)"); } return err; } static int do_prog_test_run(int fd_prog, bool unpriv, uint32_t expected_val, void *data, size_t size_data) { __u8 tmp[TEST_DATA_LEN << 2]; __u32 size_tmp = sizeof(tmp); int err, saved_errno; LIBBPF_OPTS(bpf_test_run_opts, topts, .data_in = data, .data_size_in = size_data, .data_out = tmp, .data_size_out = size_tmp, .repeat = 1, ); if (unpriv) set_admin(true); err = bpf_prog_test_run_opts(fd_prog, &topts); saved_errno = errno; if (unpriv) set_admin(false); if (err) { switch (saved_errno) { case ENOTSUPP: printf("Did not run the program (not supported) "); return 0; case EPERM: if (unpriv) { printf("Did not run the program (no permission) "); return 0; } /* fallthrough; */ default: printf("FAIL: Unexpected bpf_prog_test_run error (%s) ", strerror(saved_errno)); return err; } } if (topts.retval != expected_val && expected_val != POINTER_VALUE) { printf("FAIL retval %d != %d ", topts.retval, expected_val); return 1; } return 0; } /* Returns true if every part of exp (tab-separated) appears in log, in order. * * If exp is an empty string, returns true. */ static bool cmp_str_seq(const char *log, const char *exp) { char needle[200]; const char *p, *q; int len; do { if (!strlen(exp)) break; p = strchr(exp, '\t'); if (!p) p = exp + strlen(exp); len = p - exp; if (len >= sizeof(needle) || !len) { printf("FAIL\nTestcase bug\n"); return false; } strncpy(needle, exp, len); needle[len] = 0; q = strstr(log, needle); if (!q) { printf("FAIL\nUnexpected verifier log!\n" "EXP: %s\nRES:\n", needle); return false; } log = q + len; exp = p + 1; } while (*p); return true; } static struct bpf_insn *get_xlated_program(int fd_prog, int *cnt) { __u32 buf_element_size = sizeof(struct bpf_insn); struct bpf_prog_info info = {}; __u32 info_len = sizeof(info); __u32 xlated_prog_len; struct bpf_insn *buf; if (bpf_prog_get_info_by_fd(fd_prog, &info, &info_len)) { perror("bpf_prog_get_info_by_fd failed"); return NULL; } xlated_prog_len = info.xlated_prog_len; if (xlated_prog_len % buf_element_size) { printf("Program length %d is not multiple of %d\n", xlated_prog_len, buf_element_size); return NULL; } *cnt = xlated_prog_len / buf_element_size; buf = calloc(*cnt, buf_element_size); if (!buf) { perror("can't allocate xlated program buffer"); return NULL; } bzero(&info, sizeof(info)); info.xlated_prog_len = xlated_prog_len; info.xlated_prog_insns = (__u64)(unsigned long)buf; if (bpf_prog_get_info_by_fd(fd_prog, &info, &info_len)) { perror("second bpf_prog_get_info_by_fd failed"); goto out_free_buf; } return buf; out_free_buf: free(buf); return NULL; } static bool is_null_insn(struct bpf_insn *insn) { struct bpf_insn null_insn = {}; return memcmp(insn, &null_insn, sizeof(null_insn)) == 0; } static bool is_skip_insn(struct bpf_insn *insn) { struct bpf_insn skip_insn = SKIP_INSNS(); return memcmp(insn, &skip_insn, sizeof(skip_insn)) == 0; } static int null_terminated_insn_len(struct bpf_insn *seq, int max_len) { int i; for (i = 0; i < max_len; ++i) { if (is_null_insn(&seq[i])) return i; } return max_len; } static bool compare_masked_insn(struct bpf_insn *orig, struct bpf_insn *masked) { struct bpf_insn orig_masked; memcpy(&orig_masked, orig, sizeof(orig_masked)); if (masked->imm == INSN_IMM_MASK) orig_masked.imm = INSN_IMM_MASK; if (masked->off == INSN_OFF_MASK) orig_masked.off = INSN_OFF_MASK; return memcmp(&orig_masked, masked, sizeof(orig_masked)) == 0; } static int find_insn_subseq(struct bpf_insn *seq, struct bpf_insn *subseq, int seq_len, int subseq_len) { int i, j; if (subseq_len > seq_len) return -1; for (i = 0; i < seq_len - subseq_len + 1; ++i) { bool found = true; for (j = 0; j < subseq_len; ++j) { if (!compare_masked_insn(&seq[i + j], &subseq[j])) { found = false; break; } } if (found) return i; } return -1; } static int find_skip_insn_marker(struct bpf_insn *seq, int len) { int i; for (i = 0; i < len; ++i) if (is_skip_insn(&seq[i])) return i; return -1; } /* Return true if all sub-sequences in `subseqs` could be found in * `seq` one after another. Sub-sequences are separated by a single * nil instruction. */ static bool find_all_insn_subseqs(struct bpf_insn *seq, struct bpf_insn *subseqs, int seq_len, int max_subseqs_len) { int subseqs_len = null_terminated_insn_len(subseqs, max_subseqs_len); while (subseqs_len > 0) { int skip_idx = find_skip_insn_marker(subseqs, subseqs_len); int cur_subseq_len = skip_idx < 0 ? subseqs_len : skip_idx; int subseq_idx = find_insn_subseq(seq, subseqs, seq_len, cur_subseq_len); if (subseq_idx < 0) return false; seq += subseq_idx + cur_subseq_len; seq_len -= subseq_idx + cur_subseq_len; subseqs += cur_subseq_len + 1; subseqs_len -= cur_subseq_len + 1; } return true; } static void print_insn(struct bpf_insn *buf, int cnt) { int i; printf(" addr op d s off imm\n"); for (i = 0; i < cnt; ++i) { struct bpf_insn *insn = &buf[i]; if (is_null_insn(insn)) break; if (is_skip_insn(insn)) printf(" ...\n"); else printf(" %04x: %02x %1x %x %04hx %08x\n", i, insn->code, insn->dst_reg, insn->src_reg, insn->off, insn->imm); } } static bool check_xlated_program(struct bpf_test *test, int fd_prog) { struct bpf_insn *buf; int cnt; bool result = true; bool check_expected = !is_null_insn(test->expected_insns); bool check_unexpected = !is_null_insn(test->unexpected_insns); if (!check_expected && !check_unexpected) goto out; buf = get_xlated_program(fd_prog, &cnt); if (!buf) { printf("FAIL: can't get xlated program\n"); result = false; goto out; } if (check_expected && !find_all_insn_subseqs(buf, test->expected_insns, cnt, MAX_EXPECTED_INSNS)) { printf("FAIL: can't find expected subsequence of instructions\n"); result = false; if (verbose) { printf("Program:\n"); print_insn(buf, cnt); printf("Expected subsequence:\n"); print_insn(test->expected_insns, MAX_EXPECTED_INSNS); } } if (check_unexpected && find_all_insn_subseqs(buf, test->unexpected_insns, cnt, MAX_UNEXPECTED_INSNS)) { printf("FAIL: found unexpected subsequence of instructions\n"); result = false; if (verbose) { printf("Program:\n"); print_insn(buf, cnt); printf("Un-expected subsequence:\n"); print_insn(test->unexpected_insns, MAX_UNEXPECTED_INSNS); } } free(buf); out: return result; } static void do_test_single(struct bpf_test *test, bool unpriv, int *passes, int *errors) { int fd_prog, btf_fd, expected_ret, alignment_prevented_execution; int prog_len, prog_type = test->prog_type; struct bpf_insn *prog = test->insns; LIBBPF_OPTS(bpf_prog_load_opts, opts); int run_errs, run_successes; int map_fds[MAX_NR_MAPS]; const char *expected_err; int fd_array[2] = { -1, -1 }; int saved_errno; int fixup_skips; __u32 pflags; int i, err; fd_prog = -1; for (i = 0; i < MAX_NR_MAPS; i++) map_fds[i] = -1; btf_fd = -1; if (!prog_type) prog_type = BPF_PROG_TYPE_SOCKET_FILTER; fixup_skips = skips; do_test_fixup(test, prog_type, prog, map_fds, &fd_array[1]); if (test->fill_insns) { prog = test->fill_insns; prog_len = test->prog_len; } else { prog_len = probe_filter_length(prog); } /* If there were some map skips during fixup due to missing bpf * features, skip this test. */ if (fixup_skips != skips) return; pflags = BPF_F_TEST_RND_HI32 | BPF_F_TEST_REG_INVARIANTS; if (test->flags & F_LOAD_WITH_STRICT_ALIGNMENT) pflags |= BPF_F_STRICT_ALIGNMENT; if (test->flags & F_NEEDS_EFFICIENT_UNALIGNED_ACCESS) pflags |= BPF_F_ANY_ALIGNMENT; if (test->flags & ~3) pflags |= test->flags; expected_ret = unpriv && test->result_unpriv != UNDEF ? test->result_unpriv : test->result; expected_err = unpriv && test->errstr_unpriv ? test->errstr_unpriv : test->errstr; opts.expected_attach_type = test->expected_attach_type; if (verbose) opts.log_level = verif_log_level | 4; /* force stats */ else if (expected_ret == VERBOSE_ACCEPT) opts.log_level = 2; else opts.log_level = DEFAULT_LIBBPF_LOG_LEVEL; opts.prog_flags = pflags; if (fd_array[1] != -1) opts.fd_array = &fd_array[0]; if ((prog_type == BPF_PROG_TYPE_TRACING || prog_type == BPF_PROG_TYPE_LSM) && test->kfunc) { int attach_btf_id; attach_btf_id = libbpf_find_vmlinux_btf_id(test->kfunc, opts.expected_attach_type); if (attach_btf_id < 0) { printf("FAIL\nFailed to find BTF ID for '%s'!\n", test->kfunc); (*errors)++; return; } opts.attach_btf_id = attach_btf_id; } if (test->btf_types[0] != 0) { btf_fd = load_btf_for_test(test); if (btf_fd < 0) goto fail_log; opts.prog_btf_fd = btf_fd; } if (test->func_info_cnt != 0) { opts.func_info = test->func_info; opts.func_info_cnt = test->func_info_cnt; opts.func_info_rec_size = sizeof(test->func_info[0]); } opts.log_buf = bpf_vlog; opts.log_size = sizeof(bpf_vlog); fd_prog = bpf_prog_load(prog_type, NULL, "GPL", prog, prog_len, &opts); saved_errno = errno; /* BPF_PROG_TYPE_TRACING requires more setup and * bpf_probe_prog_type won't give correct answer */ if (fd_prog < 0 && prog_type != BPF_PROG_TYPE_TRACING && !libbpf_probe_bpf_prog_type(prog_type, NULL)) { printf("SKIP (unsupported program type %d)\n", prog_type); skips++; goto close_fds; } if (fd_prog < 0 && saved_errno == ENOTSUPP) { printf("SKIP (program uses an unsupported feature)\n"); skips++; goto close_fds; } alignment_prevented_execution = 0; if (expected_ret == ACCEPT || expected_ret == VERBOSE_ACCEPT) { if (fd_prog < 0) { printf("FAIL\nFailed to load prog '%s'!\n", strerror(saved_errno)); goto fail_log; } #ifndef CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS if (fd_prog >= 0 && (test->flags & F_NEEDS_EFFICIENT_UNALIGNED_ACCESS)) alignment_prevented_execution = 1; #endif if (expected_ret == VERBOSE_ACCEPT && !cmp_str_seq(bpf_vlog, expected_err)) { goto fail_log; } } else { if (fd_prog >= 0) { printf("FAIL\nUnexpected success to load!\n"); goto fail_log; } if (!expected_err || !cmp_str_seq(bpf_vlog, expected_err)) { printf("FAIL\nUnexpected error message!\n\tEXP: %s\n\tRES: %s\n", expected_err, bpf_vlog); goto fail_log; } } if (!unpriv && test->insn_processed) { uint32_t insn_processed; char *proc; proc = strstr(bpf_vlog, "processed "); insn_processed = atoi(proc + 10); if (test->insn_processed != insn_processed) { printf("FAIL\nUnexpected insn_processed %u vs %u\n", insn_processed, test->insn_processed); goto fail_log; } } if (verbose) printf(", verifier log:\n%s", bpf_vlog); if (!check_xlated_program(test, fd_prog)) goto fail_log; run_errs = 0; run_successes = 0; if (!alignment_prevented_execution && fd_prog >= 0 && test->runs >= 0) { uint32_t expected_val; int i; if (!test->runs) test->runs = 1; for (i = 0; i < test->runs; i++) { if (unpriv && test->retvals[i].retval_unpriv) expected_val = test->retvals[i].retval_unpriv; else expected_val = test->retvals[i].retval; err = do_prog_test_run(fd_prog, unpriv, expected_val, test->retvals[i].data, sizeof(test->retvals[i].data)); if (err) { printf("(run %d/%d) ", i + 1, test->runs); run_errs++; } else { run_successes++; } } } if (!run_errs) { (*passes)++; if (run_successes > 1) printf("%d cases ", run_successes); printf("OK"); if (alignment_prevented_execution) printf(" (NOTE: not executed due to unknown alignment)"); printf("\n"); } else { printf("\n"); goto fail_log; } close_fds: if (test->fill_insns) free(test->fill_insns); close(fd_prog); close(btf_fd); for (i = 0; i < MAX_NR_MAPS; i++) close(map_fds[i]); sched_yield(); return; fail_log: (*errors)++; printf("%s", bpf_vlog); goto close_fds; } static bool is_admin(void) { __u64 caps; /* The test checks for finer cap as CAP_NET_ADMIN, * CAP_PERFMON, and CAP_BPF instead of CAP_SYS_ADMIN. * Thus, disable CAP_SYS_ADMIN at the beginning. */ if (cap_disable_effective(1ULL << CAP_SYS_ADMIN, &caps)) { perror("cap_disable_effective(CAP_SYS_ADMIN)"); return false; } return (caps & ADMIN_CAPS) == ADMIN_CAPS; } static bool test_as_unpriv(struct bpf_test *test) { #ifndef CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS /* Some architectures have strict alignment requirements. In * that case, the BPF verifier detects if a program has * unaligned accesses and rejects them. A user can pass * BPF_F_ANY_ALIGNMENT to a program to override this * check. That, however, will only work when a privileged user * loads a program. An unprivileged user loading a program * with this flag will be rejected prior entering the * verifier. */ if (test->flags & F_NEEDS_EFFICIENT_UNALIGNED_ACCESS) return false; #endif return !test->prog_type || test->prog_type == BPF_PROG_TYPE_SOCKET_FILTER || test->prog_type == BPF_PROG_TYPE_CGROUP_SKB; } static int do_test(bool unpriv, unsigned int from, unsigned int to) { int i, passes = 0, errors = 0; /* ensure previous instance of the module is unloaded */ unload_bpf_testmod(verbose); if (load_bpf_testmod(verbose)) return EXIT_FAILURE; for (i = from; i < to; i++) { struct bpf_test *test = &tests[i]; /* Program types that are not supported by non-root we * skip right away. */ if (test_as_unpriv(test) && unpriv_disabled) { printf("#%d/u %s SKIP\n", i, test->descr); skips++; } else if (test_as_unpriv(test)) { if (!unpriv) set_admin(false); printf("#%d/u %s ", i, test->descr); do_test_single(test, true, &passes, &errors); if (!unpriv) set_admin(true); } if (unpriv) { printf("#%d/p %s SKIP\n", i, test->descr); skips++; } else { printf("#%d/p %s ", i, test->descr); do_test_single(test, false, &passes, &errors); } } unload_bpf_testmod(verbose); kfuncs_cleanup(); printf("Summary: %d PASSED, %d SKIPPED, %d FAILED\n", passes, skips, errors); return errors ? EXIT_FAILURE : EXIT_SUCCESS; } int main(int argc, char **argv) { unsigned int from = 0, to = ARRAY_SIZE(tests); bool unpriv = !is_admin(); int arg = 1; if (argc > 1 && strcmp(argv[1], "-v") == 0) { arg++; verbose = true; verif_log_level = 1; argc--; } if (argc > 1 && strcmp(argv[1], "-vv") == 0) { arg++; verbose = true; verif_log_level = 2; argc--; } if (argc == 3) { unsigned int l = atoi(argv[arg]); unsigned int u = atoi(argv[arg + 1]); if (l < to && u < to) { from = l; to = u + 1; } } else if (argc == 2) { unsigned int t = atoi(argv[arg]); if (t < to) { from = t; to = t + 1; } } unpriv_disabled = get_unpriv_disabled(); if (unpriv && unpriv_disabled) { printf("Cannot run as unprivileged user with sysctl %s.\n", UNPRIV_SYSCTL); return EXIT_FAILURE; } /* Use libbpf 1.0 API mode */ libbpf_set_strict_mode(LIBBPF_STRICT_ALL); bpf_semi_rand_init(); return do_test(unpriv, from, to); }
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1