Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Peter Xu | 2300 | 69.70% | 10 | 20.41% |
Andrew Jones | 435 | 13.18% | 13 | 26.53% |
Sean Christopherson | 184 | 5.58% | 13 | 26.53% |
Gavin Shan | 131 | 3.97% | 2 | 4.08% |
Paolo Bonzini | 111 | 3.36% | 4 | 8.16% |
Thomas Huth | 107 | 3.24% | 2 | 4.08% |
Marc Zyngier | 19 | 0.58% | 2 | 4.08% |
Jay Zhou | 9 | 0.27% | 1 | 2.04% |
Andy Shevchenko | 2 | 0.06% | 1 | 2.04% |
Andrea Parri | 2 | 0.06% | 1 | 2.04% |
Total | 3300 | 49 |
// SPDX-License-Identifier: GPL-2.0 /* * KVM dirty page logging test * * Copyright (C) 2018, Red Hat, Inc. */ #define _GNU_SOURCE /* for program_invocation_name */ #include <stdio.h> #include <stdlib.h> #include <pthread.h> #include <semaphore.h> #include <sys/types.h> #include <signal.h> #include <errno.h> #include <linux/bitmap.h> #include <linux/bitops.h> #include <linux/atomic.h> #include <asm/barrier.h> #include "kvm_util.h" #include "test_util.h" #include "guest_modes.h" #include "processor.h" #define DIRTY_MEM_BITS 30 /* 1G */ #define PAGE_SHIFT_4K 12 /* The memory slot index to track dirty pages */ #define TEST_MEM_SLOT_INDEX 1 /* Default guest test virtual memory offset */ #define DEFAULT_GUEST_TEST_MEM 0xc0000000 /* How many pages to dirty for each guest loop */ #define TEST_PAGES_PER_LOOP 1024 /* How many host loops to run (one KVM_GET_DIRTY_LOG for each loop) */ #define TEST_HOST_LOOP_N 32UL /* Interval for each host loop (ms) */ #define TEST_HOST_LOOP_INTERVAL 10UL /* Dirty bitmaps are always little endian, so we need to swap on big endian */ #if defined(__s390x__) # define BITOP_LE_SWIZZLE ((BITS_PER_LONG-1) & ~0x7) # define test_bit_le(nr, addr) \ test_bit((nr) ^ BITOP_LE_SWIZZLE, addr) # define __set_bit_le(nr, addr) \ __set_bit((nr) ^ BITOP_LE_SWIZZLE, addr) # define __clear_bit_le(nr, addr) \ __clear_bit((nr) ^ BITOP_LE_SWIZZLE, addr) # define __test_and_set_bit_le(nr, addr) \ __test_and_set_bit((nr) ^ BITOP_LE_SWIZZLE, addr) # define __test_and_clear_bit_le(nr, addr) \ __test_and_clear_bit((nr) ^ BITOP_LE_SWIZZLE, addr) #else # define test_bit_le test_bit # define __set_bit_le __set_bit # define __clear_bit_le __clear_bit # define __test_and_set_bit_le __test_and_set_bit # define __test_and_clear_bit_le __test_and_clear_bit #endif #define TEST_DIRTY_RING_COUNT 65536 #define SIG_IPI SIGUSR1 /* * Guest/Host shared variables. Ensure addr_gva2hva() and/or * sync_global_to/from_guest() are used when accessing from * the host. READ/WRITE_ONCE() should also be used with anything * that may change. */ static uint64_t host_page_size; static uint64_t guest_page_size; static uint64_t guest_num_pages; static uint64_t random_array[TEST_PAGES_PER_LOOP]; static uint64_t iteration; /* * Guest physical memory offset of the testing memory slot. * This will be set to the topmost valid physical address minus * the test memory size. */ static uint64_t guest_test_phys_mem; /* * Guest virtual memory offset of the testing memory slot. * Must not conflict with identity mapped test code. */ static uint64_t guest_test_virt_mem = DEFAULT_GUEST_TEST_MEM; /* * Continuously write to the first 8 bytes of a random pages within * the testing memory region. */ static void guest_code(void) { uint64_t addr; int i; /* * On s390x, all pages of a 1M segment are initially marked as dirty * when a page of the segment is written to for the very first time. * To compensate this specialty in this test, we need to touch all * pages during the first iteration. */ for (i = 0; i < guest_num_pages; i++) { addr = guest_test_virt_mem + i * guest_page_size; *(uint64_t *)addr = READ_ONCE(iteration); } while (true) { for (i = 0; i < TEST_PAGES_PER_LOOP; i++) { addr = guest_test_virt_mem; addr += (READ_ONCE(random_array[i]) % guest_num_pages) * guest_page_size; addr = align_down(addr, host_page_size); *(uint64_t *)addr = READ_ONCE(iteration); } /* Tell the host that we need more random numbers */ GUEST_SYNC(1); } } /* Host variables */ static bool host_quit; /* Points to the test VM memory region on which we track dirty logs */ static void *host_test_mem; static uint64_t host_num_pages; /* For statistics only */ static uint64_t host_dirty_count; static uint64_t host_clear_count; static uint64_t host_track_next_count; /* Whether dirty ring reset is requested, or finished */ static sem_t sem_vcpu_stop; static sem_t sem_vcpu_cont; /* * This is only set by main thread, and only cleared by vcpu thread. It is * used to request vcpu thread to stop at the next GUEST_SYNC, since GUEST_SYNC * is the only place that we'll guarantee both "dirty bit" and "dirty data" * will match. E.g., SIG_IPI won't guarantee that if the vcpu is interrupted * after setting dirty bit but before the data is written. */ static atomic_t vcpu_sync_stop_requested; /* * This is updated by the vcpu thread to tell the host whether it's a * ring-full event. It should only be read until a sem_wait() of * sem_vcpu_stop and before vcpu continues to run. */ static bool dirty_ring_vcpu_ring_full; /* * This is only used for verifying the dirty pages. Dirty ring has a very * tricky case when the ring just got full, kvm will do userspace exit due to * ring full. When that happens, the very last PFN is set but actually the * data is not changed (the guest WRITE is not really applied yet), because * we found that the dirty ring is full, refused to continue the vcpu, and * recorded the dirty gfn with the old contents. * * For this specific case, it's safe to skip checking this pfn for this * bit, because it's a redundant bit, and when the write happens later the bit * will be set again. We use this variable to always keep track of the latest * dirty gfn we've collected, so that if a mismatch of data found later in the * verifying process, we let it pass. */ static uint64_t dirty_ring_last_page; enum log_mode_t { /* Only use KVM_GET_DIRTY_LOG for logging */ LOG_MODE_DIRTY_LOG = 0, /* Use both KVM_[GET|CLEAR]_DIRTY_LOG for logging */ LOG_MODE_CLEAR_LOG = 1, /* Use dirty ring for logging */ LOG_MODE_DIRTY_RING = 2, LOG_MODE_NUM, /* Run all supported modes */ LOG_MODE_ALL = LOG_MODE_NUM, }; /* Mode of logging to test. Default is to run all supported modes */ static enum log_mode_t host_log_mode_option = LOG_MODE_ALL; /* Logging mode for current run */ static enum log_mode_t host_log_mode; static pthread_t vcpu_thread; static uint32_t test_dirty_ring_count = TEST_DIRTY_RING_COUNT; static void vcpu_kick(void) { pthread_kill(vcpu_thread, SIG_IPI); } /* * In our test we do signal tricks, let's use a better version of * sem_wait to avoid signal interrupts */ static void sem_wait_until(sem_t *sem) { int ret; do ret = sem_wait(sem); while (ret == -1 && errno == EINTR); } static bool clear_log_supported(void) { return kvm_has_cap(KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2); } static void clear_log_create_vm_done(struct kvm_vm *vm) { u64 manual_caps; manual_caps = kvm_check_cap(KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2); TEST_ASSERT(manual_caps, "MANUAL_CAPS is zero!"); manual_caps &= (KVM_DIRTY_LOG_MANUAL_PROTECT_ENABLE | KVM_DIRTY_LOG_INITIALLY_SET); vm_enable_cap(vm, KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2, manual_caps); } static void dirty_log_collect_dirty_pages(struct kvm_vcpu *vcpu, int slot, void *bitmap, uint32_t num_pages, uint32_t *unused) { kvm_vm_get_dirty_log(vcpu->vm, slot, bitmap); } static void clear_log_collect_dirty_pages(struct kvm_vcpu *vcpu, int slot, void *bitmap, uint32_t num_pages, uint32_t *unused) { kvm_vm_get_dirty_log(vcpu->vm, slot, bitmap); kvm_vm_clear_dirty_log(vcpu->vm, slot, bitmap, 0, num_pages); } /* Should only be called after a GUEST_SYNC */ static void vcpu_handle_sync_stop(void) { if (atomic_read(&vcpu_sync_stop_requested)) { /* It means main thread is sleeping waiting */ atomic_set(&vcpu_sync_stop_requested, false); sem_post(&sem_vcpu_stop); sem_wait_until(&sem_vcpu_cont); } } static void default_after_vcpu_run(struct kvm_vcpu *vcpu, int ret, int err) { struct kvm_run *run = vcpu->run; TEST_ASSERT(ret == 0 || (ret == -1 && err == EINTR), "vcpu run failed: errno=%d", err); TEST_ASSERT(get_ucall(vcpu, NULL) == UCALL_SYNC, "Invalid guest sync status: exit_reason=%s", exit_reason_str(run->exit_reason)); vcpu_handle_sync_stop(); } static bool dirty_ring_supported(void) { return (kvm_has_cap(KVM_CAP_DIRTY_LOG_RING) || kvm_has_cap(KVM_CAP_DIRTY_LOG_RING_ACQ_REL)); } static void dirty_ring_create_vm_done(struct kvm_vm *vm) { uint64_t pages; uint32_t limit; /* * We rely on vcpu exit due to full dirty ring state. Adjust * the ring buffer size to ensure we're able to reach the * full dirty ring state. */ pages = (1ul << (DIRTY_MEM_BITS - vm->page_shift)) + 3; pages = vm_adjust_num_guest_pages(vm->mode, pages); if (vm->page_size < getpagesize()) pages = vm_num_host_pages(vm->mode, pages); limit = 1 << (31 - __builtin_clz(pages)); test_dirty_ring_count = 1 << (31 - __builtin_clz(test_dirty_ring_count)); test_dirty_ring_count = min(limit, test_dirty_ring_count); pr_info("dirty ring count: 0x%x\n", test_dirty_ring_count); /* * Switch to dirty ring mode after VM creation but before any * of the vcpu creation. */ vm_enable_dirty_ring(vm, test_dirty_ring_count * sizeof(struct kvm_dirty_gfn)); } static inline bool dirty_gfn_is_dirtied(struct kvm_dirty_gfn *gfn) { return smp_load_acquire(&gfn->flags) == KVM_DIRTY_GFN_F_DIRTY; } static inline void dirty_gfn_set_collected(struct kvm_dirty_gfn *gfn) { smp_store_release(&gfn->flags, KVM_DIRTY_GFN_F_RESET); } static uint32_t dirty_ring_collect_one(struct kvm_dirty_gfn *dirty_gfns, int slot, void *bitmap, uint32_t num_pages, uint32_t *fetch_index) { struct kvm_dirty_gfn *cur; uint32_t count = 0; while (true) { cur = &dirty_gfns[*fetch_index % test_dirty_ring_count]; if (!dirty_gfn_is_dirtied(cur)) break; TEST_ASSERT(cur->slot == slot, "Slot number didn't match: " "%u != %u", cur->slot, slot); TEST_ASSERT(cur->offset < num_pages, "Offset overflow: " "0x%llx >= 0x%x", cur->offset, num_pages); //pr_info("fetch 0x%x page %llu\n", *fetch_index, cur->offset); __set_bit_le(cur->offset, bitmap); dirty_ring_last_page = cur->offset; dirty_gfn_set_collected(cur); (*fetch_index)++; count++; } return count; } static void dirty_ring_wait_vcpu(void) { /* This makes sure that hardware PML cache flushed */ vcpu_kick(); sem_wait_until(&sem_vcpu_stop); } static void dirty_ring_continue_vcpu(void) { pr_info("Notifying vcpu to continue\n"); sem_post(&sem_vcpu_cont); } static void dirty_ring_collect_dirty_pages(struct kvm_vcpu *vcpu, int slot, void *bitmap, uint32_t num_pages, uint32_t *ring_buf_idx) { uint32_t count = 0, cleared; bool continued_vcpu = false; dirty_ring_wait_vcpu(); if (!dirty_ring_vcpu_ring_full) { /* * This is not a ring-full event, it's safe to allow * vcpu to continue */ dirty_ring_continue_vcpu(); continued_vcpu = true; } /* Only have one vcpu */ count = dirty_ring_collect_one(vcpu_map_dirty_ring(vcpu), slot, bitmap, num_pages, ring_buf_idx); cleared = kvm_vm_reset_dirty_ring(vcpu->vm); /* * Cleared pages should be the same as collected, as KVM is supposed to * clear only the entries that have been harvested. */ TEST_ASSERT(cleared == count, "Reset dirty pages (%u) mismatch " "with collected (%u)", cleared, count); if (!continued_vcpu) { TEST_ASSERT(dirty_ring_vcpu_ring_full, "Didn't continue vcpu even without ring full"); dirty_ring_continue_vcpu(); } pr_info("Iteration %ld collected %u pages\n", iteration, count); } static void dirty_ring_after_vcpu_run(struct kvm_vcpu *vcpu, int ret, int err) { struct kvm_run *run = vcpu->run; /* A ucall-sync or ring-full event is allowed */ if (get_ucall(vcpu, NULL) == UCALL_SYNC) { /* We should allow this to continue */ ; } else if (run->exit_reason == KVM_EXIT_DIRTY_RING_FULL || (ret == -1 && err == EINTR)) { /* Update the flag first before pause */ WRITE_ONCE(dirty_ring_vcpu_ring_full, run->exit_reason == KVM_EXIT_DIRTY_RING_FULL); sem_post(&sem_vcpu_stop); pr_info("vcpu stops because %s...\n", dirty_ring_vcpu_ring_full ? "dirty ring is full" : "vcpu is kicked out"); sem_wait_until(&sem_vcpu_cont); pr_info("vcpu continues now.\n"); } else { TEST_ASSERT(false, "Invalid guest sync status: " "exit_reason=%s", exit_reason_str(run->exit_reason)); } } struct log_mode { const char *name; /* Return true if this mode is supported, otherwise false */ bool (*supported)(void); /* Hook when the vm creation is done (before vcpu creation) */ void (*create_vm_done)(struct kvm_vm *vm); /* Hook to collect the dirty pages into the bitmap provided */ void (*collect_dirty_pages) (struct kvm_vcpu *vcpu, int slot, void *bitmap, uint32_t num_pages, uint32_t *ring_buf_idx); /* Hook to call when after each vcpu run */ void (*after_vcpu_run)(struct kvm_vcpu *vcpu, int ret, int err); } log_modes[LOG_MODE_NUM] = { { .name = "dirty-log", .collect_dirty_pages = dirty_log_collect_dirty_pages, .after_vcpu_run = default_after_vcpu_run, }, { .name = "clear-log", .supported = clear_log_supported, .create_vm_done = clear_log_create_vm_done, .collect_dirty_pages = clear_log_collect_dirty_pages, .after_vcpu_run = default_after_vcpu_run, }, { .name = "dirty-ring", .supported = dirty_ring_supported, .create_vm_done = dirty_ring_create_vm_done, .collect_dirty_pages = dirty_ring_collect_dirty_pages, .after_vcpu_run = dirty_ring_after_vcpu_run, }, }; /* * We use this bitmap to track some pages that should have its dirty * bit set in the _next_ iteration. For example, if we detected the * page value changed to current iteration but at the same time the * page bit is cleared in the latest bitmap, then the system must * report that write in the next get dirty log call. */ static unsigned long *host_bmap_track; static void log_modes_dump(void) { int i; printf("all"); for (i = 0; i < LOG_MODE_NUM; i++) printf(", %s", log_modes[i].name); printf("\n"); } static bool log_mode_supported(void) { struct log_mode *mode = &log_modes[host_log_mode]; if (mode->supported) return mode->supported(); return true; } static void log_mode_create_vm_done(struct kvm_vm *vm) { struct log_mode *mode = &log_modes[host_log_mode]; if (mode->create_vm_done) mode->create_vm_done(vm); } static void log_mode_collect_dirty_pages(struct kvm_vcpu *vcpu, int slot, void *bitmap, uint32_t num_pages, uint32_t *ring_buf_idx) { struct log_mode *mode = &log_modes[host_log_mode]; TEST_ASSERT(mode->collect_dirty_pages != NULL, "collect_dirty_pages() is required for any log mode!"); mode->collect_dirty_pages(vcpu, slot, bitmap, num_pages, ring_buf_idx); } static void log_mode_after_vcpu_run(struct kvm_vcpu *vcpu, int ret, int err) { struct log_mode *mode = &log_modes[host_log_mode]; if (mode->after_vcpu_run) mode->after_vcpu_run(vcpu, ret, err); } static void generate_random_array(uint64_t *guest_array, uint64_t size) { uint64_t i; for (i = 0; i < size; i++) guest_array[i] = random(); } static void *vcpu_worker(void *data) { int ret; struct kvm_vcpu *vcpu = data; struct kvm_vm *vm = vcpu->vm; uint64_t *guest_array; uint64_t pages_count = 0; struct kvm_signal_mask *sigmask = alloca(offsetof(struct kvm_signal_mask, sigset) + sizeof(sigset_t)); sigset_t *sigset = (sigset_t *) &sigmask->sigset; /* * SIG_IPI is unblocked atomically while in KVM_RUN. It causes the * ioctl to return with -EINTR, but it is still pending and we need * to accept it with the sigwait. */ sigmask->len = 8; pthread_sigmask(0, NULL, sigset); sigdelset(sigset, SIG_IPI); vcpu_ioctl(vcpu, KVM_SET_SIGNAL_MASK, sigmask); sigemptyset(sigset); sigaddset(sigset, SIG_IPI); guest_array = addr_gva2hva(vm, (vm_vaddr_t)random_array); while (!READ_ONCE(host_quit)) { /* Clear any existing kick signals */ generate_random_array(guest_array, TEST_PAGES_PER_LOOP); pages_count += TEST_PAGES_PER_LOOP; /* Let the guest dirty the random pages */ ret = __vcpu_run(vcpu); if (ret == -1 && errno == EINTR) { int sig = -1; sigwait(sigset, &sig); assert(sig == SIG_IPI); } log_mode_after_vcpu_run(vcpu, ret, errno); } pr_info("Dirtied %"PRIu64" pages\n", pages_count); return NULL; } static void vm_dirty_log_verify(enum vm_guest_mode mode, unsigned long *bmap) { uint64_t step = vm_num_host_pages(mode, 1); uint64_t page; uint64_t *value_ptr; uint64_t min_iter = 0; for (page = 0; page < host_num_pages; page += step) { value_ptr = host_test_mem + page * host_page_size; /* If this is a special page that we were tracking... */ if (__test_and_clear_bit_le(page, host_bmap_track)) { host_track_next_count++; TEST_ASSERT(test_bit_le(page, bmap), "Page %"PRIu64" should have its dirty bit " "set in this iteration but it is missing", page); } if (__test_and_clear_bit_le(page, bmap)) { bool matched; host_dirty_count++; /* * If the bit is set, the value written onto * the corresponding page should be either the * previous iteration number or the current one. */ matched = (*value_ptr == iteration || *value_ptr == iteration - 1); if (host_log_mode == LOG_MODE_DIRTY_RING && !matched) { if (*value_ptr == iteration - 2 && min_iter <= iteration - 2) { /* * Short answer: this case is special * only for dirty ring test where the * page is the last page before a kvm * dirty ring full in iteration N-2. * * Long answer: Assuming ring size R, * one possible condition is: * * main thr vcpu thr * -------- -------- * iter=1 * write 1 to page 0~(R-1) * full, vmexit * collect 0~(R-1) * kick vcpu * write 1 to (R-1)~(2R-2) * full, vmexit * iter=2 * collect (R-1)~(2R-2) * kick vcpu * write 1 to (2R-2) * (NOTE!!! "1" cached in cpu reg) * write 2 to (2R-1)~(3R-3) * full, vmexit * iter=3 * collect (2R-2)~(3R-3) * (here if we read value on page * "2R-2" is 1, while iter=3!!!) * * This however can only happen once per iteration. */ min_iter = iteration - 1; continue; } else if (page == dirty_ring_last_page) { /* * Please refer to comments in * dirty_ring_last_page. */ continue; } } TEST_ASSERT(matched, "Set page %"PRIu64" value %"PRIu64 " incorrect (iteration=%"PRIu64")", page, *value_ptr, iteration); } else { host_clear_count++; /* * If cleared, the value written can be any * value smaller or equals to the iteration * number. Note that the value can be exactly * (iteration-1) if that write can happen * like this: * * (1) increase loop count to "iteration-1" * (2) write to page P happens (with value * "iteration-1") * (3) get dirty log for "iteration-1"; we'll * see that page P bit is set (dirtied), * and not set the bit in host_bmap_track * (4) increase loop count to "iteration" * (which is current iteration) * (5) get dirty log for current iteration, * we'll see that page P is cleared, with * value "iteration-1". */ TEST_ASSERT(*value_ptr <= iteration, "Clear page %"PRIu64" value %"PRIu64 " incorrect (iteration=%"PRIu64")", page, *value_ptr, iteration); if (*value_ptr == iteration) { /* * This page is _just_ modified; it * should report its dirtyness in the * next run */ __set_bit_le(page, host_bmap_track); } } } } static struct kvm_vm *create_vm(enum vm_guest_mode mode, struct kvm_vcpu **vcpu, uint64_t extra_mem_pages, void *guest_code) { struct kvm_vm *vm; pr_info("Testing guest mode: %s\n", vm_guest_mode_string(mode)); vm = __vm_create(VM_SHAPE(mode), 1, extra_mem_pages); log_mode_create_vm_done(vm); *vcpu = vm_vcpu_add(vm, 0, guest_code); return vm; } struct test_params { unsigned long iterations; unsigned long interval; uint64_t phys_offset; }; static void run_test(enum vm_guest_mode mode, void *arg) { struct test_params *p = arg; struct kvm_vcpu *vcpu; struct kvm_vm *vm; unsigned long *bmap; uint32_t ring_buf_idx = 0; int sem_val; if (!log_mode_supported()) { print_skip("Log mode '%s' not supported", log_modes[host_log_mode].name); return; } /* * We reserve page table for 2 times of extra dirty mem which * will definitely cover the original (1G+) test range. Here * we do the calculation with 4K page size which is the * smallest so the page number will be enough for all archs * (e.g., 64K page size guest will need even less memory for * page tables). */ vm = create_vm(mode, &vcpu, 2ul << (DIRTY_MEM_BITS - PAGE_SHIFT_4K), guest_code); guest_page_size = vm->page_size; /* * A little more than 1G of guest page sized pages. Cover the * case where the size is not aligned to 64 pages. */ guest_num_pages = (1ul << (DIRTY_MEM_BITS - vm->page_shift)) + 3; guest_num_pages = vm_adjust_num_guest_pages(mode, guest_num_pages); host_page_size = getpagesize(); host_num_pages = vm_num_host_pages(mode, guest_num_pages); if (!p->phys_offset) { guest_test_phys_mem = (vm->max_gfn - guest_num_pages) * guest_page_size; guest_test_phys_mem = align_down(guest_test_phys_mem, host_page_size); } else { guest_test_phys_mem = p->phys_offset; } #ifdef __s390x__ /* Align to 1M (segment size) */ guest_test_phys_mem = align_down(guest_test_phys_mem, 1 << 20); #endif pr_info("guest physical test memory offset: 0x%lx\n", guest_test_phys_mem); bmap = bitmap_zalloc(host_num_pages); host_bmap_track = bitmap_zalloc(host_num_pages); /* Add an extra memory slot for testing dirty logging */ vm_userspace_mem_region_add(vm, VM_MEM_SRC_ANONYMOUS, guest_test_phys_mem, TEST_MEM_SLOT_INDEX, guest_num_pages, KVM_MEM_LOG_DIRTY_PAGES); /* Do mapping for the dirty track memory slot */ virt_map(vm, guest_test_virt_mem, guest_test_phys_mem, guest_num_pages); /* Cache the HVA pointer of the region */ host_test_mem = addr_gpa2hva(vm, (vm_paddr_t)guest_test_phys_mem); /* Export the shared variables to the guest */ sync_global_to_guest(vm, host_page_size); sync_global_to_guest(vm, guest_page_size); sync_global_to_guest(vm, guest_test_virt_mem); sync_global_to_guest(vm, guest_num_pages); /* Start the iterations */ iteration = 1; sync_global_to_guest(vm, iteration); WRITE_ONCE(host_quit, false); host_dirty_count = 0; host_clear_count = 0; host_track_next_count = 0; WRITE_ONCE(dirty_ring_vcpu_ring_full, false); /* * Ensure the previous iteration didn't leave a dangling semaphore, i.e. * that the main task and vCPU worker were synchronized and completed * verification of all iterations. */ sem_getvalue(&sem_vcpu_stop, &sem_val); TEST_ASSERT_EQ(sem_val, 0); sem_getvalue(&sem_vcpu_cont, &sem_val); TEST_ASSERT_EQ(sem_val, 0); pthread_create(&vcpu_thread, NULL, vcpu_worker, vcpu); while (iteration < p->iterations) { /* Give the vcpu thread some time to dirty some pages */ usleep(p->interval * 1000); log_mode_collect_dirty_pages(vcpu, TEST_MEM_SLOT_INDEX, bmap, host_num_pages, &ring_buf_idx); /* * See vcpu_sync_stop_requested definition for details on why * we need to stop vcpu when verify data. */ atomic_set(&vcpu_sync_stop_requested, true); sem_wait_until(&sem_vcpu_stop); /* * NOTE: for dirty ring, it's possible that we didn't stop at * GUEST_SYNC but instead we stopped because ring is full; * that's okay too because ring full means we're only missing * the flush of the last page, and since we handle the last * page specially verification will succeed anyway. */ assert(host_log_mode == LOG_MODE_DIRTY_RING || atomic_read(&vcpu_sync_stop_requested) == false); vm_dirty_log_verify(mode, bmap); /* * Set host_quit before sem_vcpu_cont in the final iteration to * ensure that the vCPU worker doesn't resume the guest. As * above, the dirty ring test may stop and wait even when not * explicitly request to do so, i.e. would hang waiting for a * "continue" if it's allowed to resume the guest. */ if (++iteration == p->iterations) WRITE_ONCE(host_quit, true); sem_post(&sem_vcpu_cont); sync_global_to_guest(vm, iteration); } pthread_join(vcpu_thread, NULL); pr_info("Total bits checked: dirty (%"PRIu64"), clear (%"PRIu64"), " "track_next (%"PRIu64")\n", host_dirty_count, host_clear_count, host_track_next_count); free(bmap); free(host_bmap_track); kvm_vm_free(vm); } static void help(char *name) { puts(""); printf("usage: %s [-h] [-i iterations] [-I interval] " "[-p offset] [-m mode]\n", name); puts(""); printf(" -c: hint to dirty ring size, in number of entries\n"); printf(" (only useful for dirty-ring test; default: %"PRIu32")\n", TEST_DIRTY_RING_COUNT); printf(" -i: specify iteration counts (default: %"PRIu64")\n", TEST_HOST_LOOP_N); printf(" -I: specify interval in ms (default: %"PRIu64" ms)\n", TEST_HOST_LOOP_INTERVAL); printf(" -p: specify guest physical test memory offset\n" " Warning: a low offset can conflict with the loaded test code.\n"); printf(" -M: specify the host logging mode " "(default: run all log modes). Supported modes: \n\t"); log_modes_dump(); guest_modes_help(); puts(""); exit(0); } int main(int argc, char *argv[]) { struct test_params p = { .iterations = TEST_HOST_LOOP_N, .interval = TEST_HOST_LOOP_INTERVAL, }; int opt, i; sigset_t sigset; sem_init(&sem_vcpu_stop, 0, 0); sem_init(&sem_vcpu_cont, 0, 0); guest_modes_append_default(); while ((opt = getopt(argc, argv, "c:hi:I:p:m:M:")) != -1) { switch (opt) { case 'c': test_dirty_ring_count = strtol(optarg, NULL, 10); break; case 'i': p.iterations = strtol(optarg, NULL, 10); break; case 'I': p.interval = strtol(optarg, NULL, 10); break; case 'p': p.phys_offset = strtoull(optarg, NULL, 0); break; case 'm': guest_modes_cmdline(optarg); break; case 'M': if (!strcmp(optarg, "all")) { host_log_mode_option = LOG_MODE_ALL; break; } for (i = 0; i < LOG_MODE_NUM; i++) { if (!strcmp(optarg, log_modes[i].name)) { pr_info("Setting log mode to: '%s'\n", optarg); host_log_mode_option = i; break; } } if (i == LOG_MODE_NUM) { printf("Log mode '%s' invalid. Please choose " "from: ", optarg); log_modes_dump(); exit(1); } break; case 'h': default: help(argv[0]); break; } } TEST_ASSERT(p.iterations > 2, "Iterations must be greater than two"); TEST_ASSERT(p.interval > 0, "Interval must be greater than zero"); pr_info("Test iterations: %"PRIu64", interval: %"PRIu64" (ms)\n", p.iterations, p.interval); srandom(time(0)); /* Ensure that vCPU threads start with SIG_IPI blocked. */ sigemptyset(&sigset); sigaddset(&sigset, SIG_IPI); pthread_sigmask(SIG_BLOCK, &sigset, NULL); if (host_log_mode_option == LOG_MODE_ALL) { /* Run each log mode */ for (i = 0; i < LOG_MODE_NUM; i++) { pr_info("Testing Log Mode '%s'\n", log_modes[i].name); host_log_mode = i; for_each_guest_mode(run_test, &p); } } else { host_log_mode = host_log_mode_option; for_each_guest_mode(run_test, &p); } return 0; }
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1