Contributors: 6
Author Tokens Token Proportion Commits Commit Proportion
Oliver Upton 483 85.19% 1 7.69%
Sean Christopherson 54 9.52% 8 61.54%
Paolo Bonzini 25 4.41% 1 7.69%
Vipin Sharma 3 0.53% 1 7.69%
Andrew Jones 1 0.18% 1 7.69%
Thomas Gleixner 1 0.18% 1 7.69%
Total 567 13


// SPDX-License-Identifier: GPL-2.0-only
/*
 * Copyright (C) 2020, Google LLC.
 *
 * Tests for KVM paravirtual feature disablement
 */
#include <asm/kvm_para.h>
#include <linux/kvm_para.h>
#include <stdint.h>

#include "test_util.h"
#include "kvm_util.h"
#include "processor.h"

struct msr_data {
	uint32_t idx;
	const char *name;
};

#define TEST_MSR(msr) { .idx = msr, .name = #msr }
#define UCALL_PR_MSR 0xdeadbeef
#define PR_MSR(msr) ucall(UCALL_PR_MSR, 1, msr)

/*
 * KVM paravirtual msrs to test. Expect a #GP if any of these msrs are read or
 * written, as the KVM_CPUID_FEATURES leaf is cleared.
 */
static struct msr_data msrs_to_test[] = {
	TEST_MSR(MSR_KVM_SYSTEM_TIME),
	TEST_MSR(MSR_KVM_SYSTEM_TIME_NEW),
	TEST_MSR(MSR_KVM_WALL_CLOCK),
	TEST_MSR(MSR_KVM_WALL_CLOCK_NEW),
	TEST_MSR(MSR_KVM_ASYNC_PF_EN),
	TEST_MSR(MSR_KVM_STEAL_TIME),
	TEST_MSR(MSR_KVM_PV_EOI_EN),
	TEST_MSR(MSR_KVM_POLL_CONTROL),
	TEST_MSR(MSR_KVM_ASYNC_PF_INT),
	TEST_MSR(MSR_KVM_ASYNC_PF_ACK),
};

static void test_msr(struct msr_data *msr)
{
	uint64_t ignored;
	uint8_t vector;

	PR_MSR(msr);

	vector = rdmsr_safe(msr->idx, &ignored);
	GUEST_ASSERT_EQ(vector, GP_VECTOR);

	vector = wrmsr_safe(msr->idx, 0);
	GUEST_ASSERT_EQ(vector, GP_VECTOR);
}

struct hcall_data {
	uint64_t nr;
	const char *name;
};

#define TEST_HCALL(hc) { .nr = hc, .name = #hc }
#define UCALL_PR_HCALL 0xdeadc0de
#define PR_HCALL(hc) ucall(UCALL_PR_HCALL, 1, hc)

/*
 * KVM hypercalls to test. Expect -KVM_ENOSYS when called, as the corresponding
 * features have been cleared in KVM_CPUID_FEATURES.
 */
static struct hcall_data hcalls_to_test[] = {
	TEST_HCALL(KVM_HC_KICK_CPU),
	TEST_HCALL(KVM_HC_SEND_IPI),
	TEST_HCALL(KVM_HC_SCHED_YIELD),
};

static void test_hcall(struct hcall_data *hc)
{
	uint64_t r;

	PR_HCALL(hc);
	r = kvm_hypercall(hc->nr, 0, 0, 0, 0);
	GUEST_ASSERT_EQ(r, -KVM_ENOSYS);
}

static void guest_main(void)
{
	int i;

	for (i = 0; i < ARRAY_SIZE(msrs_to_test); i++) {
		test_msr(&msrs_to_test[i]);
	}

	for (i = 0; i < ARRAY_SIZE(hcalls_to_test); i++) {
		test_hcall(&hcalls_to_test[i]);
	}

	GUEST_DONE();
}

static void pr_msr(struct ucall *uc)
{
	struct msr_data *msr = (struct msr_data *)uc->args[0];

	pr_info("testing msr: %s (%#x)\n", msr->name, msr->idx);
}

static void pr_hcall(struct ucall *uc)
{
	struct hcall_data *hc = (struct hcall_data *)uc->args[0];

	pr_info("testing hcall: %s (%lu)\n", hc->name, hc->nr);
}

static void enter_guest(struct kvm_vcpu *vcpu)
{
	struct ucall uc;

	while (true) {
		vcpu_run(vcpu);
		TEST_ASSERT_KVM_EXIT_REASON(vcpu, KVM_EXIT_IO);

		switch (get_ucall(vcpu, &uc)) {
		case UCALL_PR_MSR:
			pr_msr(&uc);
			break;
		case UCALL_PR_HCALL:
			pr_hcall(&uc);
			break;
		case UCALL_ABORT:
			REPORT_GUEST_ASSERT(uc);
			return;
		case UCALL_DONE:
			return;
		}
	}
}

int main(void)
{
	struct kvm_vcpu *vcpu;
	struct kvm_vm *vm;

	TEST_REQUIRE(kvm_has_cap(KVM_CAP_ENFORCE_PV_FEATURE_CPUID));

	vm = vm_create_with_one_vcpu(&vcpu, guest_main);

	vcpu_enable_cap(vcpu, KVM_CAP_ENFORCE_PV_FEATURE_CPUID, 1);

	vcpu_clear_cpuid_entry(vcpu, KVM_CPUID_FEATURES);

	vm_init_descriptor_tables(vm);
	vcpu_init_descriptor_tables(vcpu);

	enter_guest(vcpu);
	kvm_vm_free(vm);
}