Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
David Howells | 981 | 45.21% | 14 | 41.18% |
Herbert Xu | 396 | 18.25% | 1 | 2.94% |
Eric Biggers | 319 | 14.70% | 6 | 17.65% |
Vitaly Chikunov | 287 | 13.23% | 3 | 8.82% |
Tadeusz Struk | 73 | 3.36% | 1 | 2.94% |
Dan Carpenter | 43 | 1.98% | 1 | 2.94% |
Stefan Berger | 35 | 1.61% | 1 | 2.94% |
Dmitry Kasatkin | 12 | 0.55% | 1 | 2.94% |
Denis Kenzior | 10 | 0.46% | 1 | 2.94% |
Tianjia Zhang | 5 | 0.23% | 1 | 2.94% |
Mahmoud Adam | 4 | 0.18% | 1 | 2.94% |
Dimitri John Ledkov | 3 | 0.14% | 1 | 2.94% |
Mauro Carvalho Chehab | 1 | 0.05% | 1 | 2.94% |
Thomas Gleixner | 1 | 0.05% | 1 | 2.94% |
Total | 2170 | 34 |
// SPDX-License-Identifier: GPL-2.0-or-later /* In-software asymmetric public-key crypto subtype * * See Documentation/crypto/asymmetric-keys.rst * * Copyright (C) 2012 Red Hat, Inc. All Rights Reserved. * Written by David Howells (dhowells@redhat.com) */ #define pr_fmt(fmt) "PKEY: "fmt #include <crypto/akcipher.h> #include <crypto/public_key.h> #include <crypto/sig.h> #include <keys/asymmetric-subtype.h> #include <linux/asn1.h> #include <linux/err.h> #include <linux/kernel.h> #include <linux/module.h> #include <linux/seq_file.h> #include <linux/slab.h> #include <linux/string.h> MODULE_DESCRIPTION("In-software asymmetric public-key subtype"); MODULE_AUTHOR("Red Hat, Inc."); MODULE_LICENSE("GPL"); /* * Provide a part of a description of the key for /proc/keys. */ static void public_key_describe(const struct key *asymmetric_key, struct seq_file *m) { struct public_key *key = asymmetric_key->payload.data[asym_crypto]; if (key) seq_printf(m, "%s.%s", key->id_type, key->pkey_algo); } /* * Destroy a public key algorithm key. */ void public_key_free(struct public_key *key) { if (key) { kfree_sensitive(key->key); kfree(key->params); kfree(key); } } EXPORT_SYMBOL_GPL(public_key_free); /* * Destroy a public key algorithm key. */ static void public_key_destroy(void *payload0, void *payload3) { public_key_free(payload0); public_key_signature_free(payload3); } /* * Given a public_key, and an encoding and hash_algo to be used for signing * and/or verification with that key, determine the name of the corresponding * akcipher algorithm. Also check that encoding and hash_algo are allowed. */ static int software_key_determine_akcipher(const struct public_key *pkey, const char *encoding, const char *hash_algo, char alg_name[CRYPTO_MAX_ALG_NAME], bool *sig, enum kernel_pkey_operation op) { int n; *sig = true; if (!encoding) return -EINVAL; if (strcmp(pkey->pkey_algo, "rsa") == 0) { /* * RSA signatures usually use EMSA-PKCS1-1_5 [RFC3447 sec 8.2]. */ if (strcmp(encoding, "pkcs1") == 0) { *sig = op == kernel_pkey_sign || op == kernel_pkey_verify; if (!hash_algo) { n = snprintf(alg_name, CRYPTO_MAX_ALG_NAME, "pkcs1pad(%s)", pkey->pkey_algo); } else { n = snprintf(alg_name, CRYPTO_MAX_ALG_NAME, "pkcs1pad(%s,%s)", pkey->pkey_algo, hash_algo); } return n >= CRYPTO_MAX_ALG_NAME ? -EINVAL : 0; } if (strcmp(encoding, "raw") != 0) return -EINVAL; /* * Raw RSA cannot differentiate between different hash * algorithms. */ if (hash_algo) return -EINVAL; *sig = false; } else if (strncmp(pkey->pkey_algo, "ecdsa", 5) == 0) { if (strcmp(encoding, "x962") != 0) return -EINVAL; /* * ECDSA signatures are taken over a raw hash, so they don't * differentiate between different hash algorithms. That means * that the verifier should hard-code a specific hash algorithm. * Unfortunately, in practice ECDSA is used with multiple SHAs, * so we have to allow all of them and not just one. */ if (!hash_algo) return -EINVAL; if (strcmp(hash_algo, "sha1") != 0 && strcmp(hash_algo, "sha224") != 0 && strcmp(hash_algo, "sha256") != 0 && strcmp(hash_algo, "sha384") != 0 && strcmp(hash_algo, "sha512") != 0 && strcmp(hash_algo, "sha3-256") != 0 && strcmp(hash_algo, "sha3-384") != 0 && strcmp(hash_algo, "sha3-512") != 0) return -EINVAL; } else if (strcmp(pkey->pkey_algo, "sm2") == 0) { if (strcmp(encoding, "raw") != 0) return -EINVAL; if (!hash_algo) return -EINVAL; if (strcmp(hash_algo, "sm3") != 0) return -EINVAL; } else if (strcmp(pkey->pkey_algo, "ecrdsa") == 0) { if (strcmp(encoding, "raw") != 0) return -EINVAL; if (!hash_algo) return -EINVAL; if (strcmp(hash_algo, "streebog256") != 0 && strcmp(hash_algo, "streebog512") != 0) return -EINVAL; } else { /* Unknown public key algorithm */ return -ENOPKG; } if (strscpy(alg_name, pkey->pkey_algo, CRYPTO_MAX_ALG_NAME) < 0) return -EINVAL; return 0; } static u8 *pkey_pack_u32(u8 *dst, u32 val) { memcpy(dst, &val, sizeof(val)); return dst + sizeof(val); } /* * Query information about a key. */ static int software_key_query(const struct kernel_pkey_params *params, struct kernel_pkey_query *info) { struct crypto_akcipher *tfm; struct public_key *pkey = params->key->payload.data[asym_crypto]; char alg_name[CRYPTO_MAX_ALG_NAME]; struct crypto_sig *sig; u8 *key, *ptr; int ret, len; bool issig; ret = software_key_determine_akcipher(pkey, params->encoding, params->hash_algo, alg_name, &issig, kernel_pkey_sign); if (ret < 0) return ret; key = kmalloc(pkey->keylen + sizeof(u32) * 2 + pkey->paramlen, GFP_KERNEL); if (!key) return -ENOMEM; memcpy(key, pkey->key, pkey->keylen); ptr = key + pkey->keylen; ptr = pkey_pack_u32(ptr, pkey->algo); ptr = pkey_pack_u32(ptr, pkey->paramlen); memcpy(ptr, pkey->params, pkey->paramlen); if (issig) { sig = crypto_alloc_sig(alg_name, 0, 0); if (IS_ERR(sig)) { ret = PTR_ERR(sig); goto error_free_key; } if (pkey->key_is_private) ret = crypto_sig_set_privkey(sig, key, pkey->keylen); else ret = crypto_sig_set_pubkey(sig, key, pkey->keylen); if (ret < 0) goto error_free_tfm; len = crypto_sig_maxsize(sig); info->supported_ops = KEYCTL_SUPPORTS_VERIFY; if (pkey->key_is_private) info->supported_ops |= KEYCTL_SUPPORTS_SIGN; if (strcmp(params->encoding, "pkcs1") == 0) { info->supported_ops |= KEYCTL_SUPPORTS_ENCRYPT; if (pkey->key_is_private) info->supported_ops |= KEYCTL_SUPPORTS_DECRYPT; } } else { tfm = crypto_alloc_akcipher(alg_name, 0, 0); if (IS_ERR(tfm)) { ret = PTR_ERR(tfm); goto error_free_key; } if (pkey->key_is_private) ret = crypto_akcipher_set_priv_key(tfm, key, pkey->keylen); else ret = crypto_akcipher_set_pub_key(tfm, key, pkey->keylen); if (ret < 0) goto error_free_tfm; len = crypto_akcipher_maxsize(tfm); info->supported_ops = KEYCTL_SUPPORTS_ENCRYPT; if (pkey->key_is_private) info->supported_ops |= KEYCTL_SUPPORTS_DECRYPT; } info->key_size = len * 8; if (strncmp(pkey->pkey_algo, "ecdsa", 5) == 0) { /* * ECDSA key sizes are much smaller than RSA, and thus could * operate on (hashed) inputs that are larger than key size. * For example SHA384-hashed input used with secp256r1 * based keys. Set max_data_size to be at least as large as * the largest supported hash size (SHA512) */ info->max_data_size = 64; /* * Verify takes ECDSA-Sig (described in RFC 5480) as input, * which is actually 2 'key_size'-bit integers encoded in * ASN.1. Account for the ASN.1 encoding overhead here. */ info->max_sig_size = 2 * (len + 3) + 2; } else { info->max_data_size = len; info->max_sig_size = len; } info->max_enc_size = len; info->max_dec_size = len; ret = 0; error_free_tfm: if (issig) crypto_free_sig(sig); else crypto_free_akcipher(tfm); error_free_key: kfree_sensitive(key); pr_devel("<==%s() = %d\n", __func__, ret); return ret; } /* * Do encryption, decryption and signing ops. */ static int software_key_eds_op(struct kernel_pkey_params *params, const void *in, void *out) { const struct public_key *pkey = params->key->payload.data[asym_crypto]; char alg_name[CRYPTO_MAX_ALG_NAME]; struct crypto_akcipher *tfm; struct crypto_sig *sig; char *key, *ptr; bool issig; int ksz; int ret; pr_devel("==>%s()\n", __func__); ret = software_key_determine_akcipher(pkey, params->encoding, params->hash_algo, alg_name, &issig, params->op); if (ret < 0) return ret; key = kmalloc(pkey->keylen + sizeof(u32) * 2 + pkey->paramlen, GFP_KERNEL); if (!key) return -ENOMEM; memcpy(key, pkey->key, pkey->keylen); ptr = key + pkey->keylen; ptr = pkey_pack_u32(ptr, pkey->algo); ptr = pkey_pack_u32(ptr, pkey->paramlen); memcpy(ptr, pkey->params, pkey->paramlen); if (issig) { sig = crypto_alloc_sig(alg_name, 0, 0); if (IS_ERR(sig)) { ret = PTR_ERR(sig); goto error_free_key; } if (pkey->key_is_private) ret = crypto_sig_set_privkey(sig, key, pkey->keylen); else ret = crypto_sig_set_pubkey(sig, key, pkey->keylen); if (ret) goto error_free_tfm; ksz = crypto_sig_maxsize(sig); } else { tfm = crypto_alloc_akcipher(alg_name, 0, 0); if (IS_ERR(tfm)) { ret = PTR_ERR(tfm); goto error_free_key; } if (pkey->key_is_private) ret = crypto_akcipher_set_priv_key(tfm, key, pkey->keylen); else ret = crypto_akcipher_set_pub_key(tfm, key, pkey->keylen); if (ret) goto error_free_tfm; ksz = crypto_akcipher_maxsize(tfm); } ret = -EINVAL; /* Perform the encryption calculation. */ switch (params->op) { case kernel_pkey_encrypt: if (issig) break; ret = crypto_akcipher_sync_encrypt(tfm, in, params->in_len, out, params->out_len); break; case kernel_pkey_decrypt: if (issig) break; ret = crypto_akcipher_sync_decrypt(tfm, in, params->in_len, out, params->out_len); break; case kernel_pkey_sign: if (!issig) break; ret = crypto_sig_sign(sig, in, params->in_len, out, params->out_len); break; default: BUG(); } if (ret == 0) ret = ksz; error_free_tfm: if (issig) crypto_free_sig(sig); else crypto_free_akcipher(tfm); error_free_key: kfree_sensitive(key); pr_devel("<==%s() = %d\n", __func__, ret); return ret; } /* * Verify a signature using a public key. */ int public_key_verify_signature(const struct public_key *pkey, const struct public_key_signature *sig) { char alg_name[CRYPTO_MAX_ALG_NAME]; struct crypto_sig *tfm; char *key, *ptr; bool issig; int ret; pr_devel("==>%s()\n", __func__); BUG_ON(!pkey); BUG_ON(!sig); BUG_ON(!sig->s); /* * If the signature specifies a public key algorithm, it *must* match * the key's actual public key algorithm. * * Small exception: ECDSA signatures don't specify the curve, but ECDSA * keys do. So the strings can mismatch slightly in that case: * "ecdsa-nist-*" for the key, but "ecdsa" for the signature. */ if (sig->pkey_algo) { if (strcmp(pkey->pkey_algo, sig->pkey_algo) != 0 && (strncmp(pkey->pkey_algo, "ecdsa-", 6) != 0 || strcmp(sig->pkey_algo, "ecdsa") != 0)) return -EKEYREJECTED; } ret = software_key_determine_akcipher(pkey, sig->encoding, sig->hash_algo, alg_name, &issig, kernel_pkey_verify); if (ret < 0) return ret; tfm = crypto_alloc_sig(alg_name, 0, 0); if (IS_ERR(tfm)) return PTR_ERR(tfm); key = kmalloc(pkey->keylen + sizeof(u32) * 2 + pkey->paramlen, GFP_KERNEL); if (!key) { ret = -ENOMEM; goto error_free_tfm; } memcpy(key, pkey->key, pkey->keylen); ptr = key + pkey->keylen; ptr = pkey_pack_u32(ptr, pkey->algo); ptr = pkey_pack_u32(ptr, pkey->paramlen); memcpy(ptr, pkey->params, pkey->paramlen); if (pkey->key_is_private) ret = crypto_sig_set_privkey(tfm, key, pkey->keylen); else ret = crypto_sig_set_pubkey(tfm, key, pkey->keylen); if (ret) goto error_free_key; ret = crypto_sig_verify(tfm, sig->s, sig->s_size, sig->digest, sig->digest_size); error_free_key: kfree_sensitive(key); error_free_tfm: crypto_free_sig(tfm); pr_devel("<==%s() = %d\n", __func__, ret); if (WARN_ON_ONCE(ret > 0)) ret = -EINVAL; return ret; } EXPORT_SYMBOL_GPL(public_key_verify_signature); static int public_key_verify_signature_2(const struct key *key, const struct public_key_signature *sig) { const struct public_key *pk = key->payload.data[asym_crypto]; return public_key_verify_signature(pk, sig); } /* * Public key algorithm asymmetric key subtype */ struct asymmetric_key_subtype public_key_subtype = { .owner = THIS_MODULE, .name = "public_key", .name_len = sizeof("public_key") - 1, .describe = public_key_describe, .destroy = public_key_destroy, .query = software_key_query, .eds_op = software_key_eds_op, .verify_signature = public_key_verify_signature_2, }; EXPORT_SYMBOL_GPL(public_key_subtype);
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1