Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Stefan Berger | 1721 | 96.79% | 1 | 14.29% |
Saulo Alessandre | 30 | 1.69% | 1 | 14.29% |
Salvatore Benedetto | 15 | 0.84% | 1 | 14.29% |
Daniele Alessandrelli | 5 | 0.28% | 1 | 14.29% |
James Morris | 3 | 0.17% | 1 | 14.29% |
Eric Biggers | 2 | 0.11% | 1 | 14.29% |
Xiu Jianfeng | 2 | 0.11% | 1 | 14.29% |
Total | 1778 | 7 |
// SPDX-License-Identifier: GPL-2.0+ /* * Copyright (c) 2021 IBM Corporation */ #include <linux/module.h> #include <crypto/internal/akcipher.h> #include <crypto/internal/ecc.h> #include <crypto/akcipher.h> #include <crypto/ecdh.h> #include <linux/asn1_decoder.h> #include <linux/scatterlist.h> #include "ecdsasignature.asn1.h" struct ecc_ctx { unsigned int curve_id; const struct ecc_curve *curve; bool pub_key_set; u64 x[ECC_MAX_DIGITS]; /* pub key x and y coordinates */ u64 y[ECC_MAX_DIGITS]; struct ecc_point pub_key; }; struct ecdsa_signature_ctx { const struct ecc_curve *curve; u64 r[ECC_MAX_DIGITS]; u64 s[ECC_MAX_DIGITS]; }; /* * Get the r and s components of a signature from the X509 certificate. */ static int ecdsa_get_signature_rs(u64 *dest, size_t hdrlen, unsigned char tag, const void *value, size_t vlen, unsigned int ndigits) { size_t keylen = ndigits * sizeof(u64); ssize_t diff = vlen - keylen; const char *d = value; u8 rs[ECC_MAX_BYTES]; if (!value || !vlen) return -EINVAL; /* diff = 0: 'value' has exacly the right size * diff > 0: 'value' has too many bytes; one leading zero is allowed that * makes the value a positive integer; error on more * diff < 0: 'value' is missing leading zeros, which we add */ if (diff > 0) { /* skip over leading zeros that make 'value' a positive int */ if (*d == 0) { vlen -= 1; diff--; d++; } if (diff) return -EINVAL; } if (-diff >= keylen) return -EINVAL; if (diff) { /* leading zeros not given in 'value' */ memset(rs, 0, -diff); } memcpy(&rs[-diff], d, vlen); ecc_swap_digits((u64 *)rs, dest, ndigits); return 0; } int ecdsa_get_signature_r(void *context, size_t hdrlen, unsigned char tag, const void *value, size_t vlen) { struct ecdsa_signature_ctx *sig = context; return ecdsa_get_signature_rs(sig->r, hdrlen, tag, value, vlen, sig->curve->g.ndigits); } int ecdsa_get_signature_s(void *context, size_t hdrlen, unsigned char tag, const void *value, size_t vlen) { struct ecdsa_signature_ctx *sig = context; return ecdsa_get_signature_rs(sig->s, hdrlen, tag, value, vlen, sig->curve->g.ndigits); } static int _ecdsa_verify(struct ecc_ctx *ctx, const u64 *hash, const u64 *r, const u64 *s) { const struct ecc_curve *curve = ctx->curve; unsigned int ndigits = curve->g.ndigits; u64 s1[ECC_MAX_DIGITS]; u64 u1[ECC_MAX_DIGITS]; u64 u2[ECC_MAX_DIGITS]; u64 x1[ECC_MAX_DIGITS]; u64 y1[ECC_MAX_DIGITS]; struct ecc_point res = ECC_POINT_INIT(x1, y1, ndigits); /* 0 < r < n and 0 < s < n */ if (vli_is_zero(r, ndigits) || vli_cmp(r, curve->n, ndigits) >= 0 || vli_is_zero(s, ndigits) || vli_cmp(s, curve->n, ndigits) >= 0) return -EBADMSG; /* hash is given */ pr_devel("hash : %016llx %016llx ... %016llx\n", hash[ndigits - 1], hash[ndigits - 2], hash[0]); /* s1 = (s^-1) mod n */ vli_mod_inv(s1, s, curve->n, ndigits); /* u1 = (hash * s1) mod n */ vli_mod_mult_slow(u1, hash, s1, curve->n, ndigits); /* u2 = (r * s1) mod n */ vli_mod_mult_slow(u2, r, s1, curve->n, ndigits); /* res = u1*G + u2 * pub_key */ ecc_point_mult_shamir(&res, u1, &curve->g, u2, &ctx->pub_key, curve); /* res.x = res.x mod n (if res.x > order) */ if (unlikely(vli_cmp(res.x, curve->n, ndigits) == 1)) /* faster alternative for NIST p384, p256 & p192 */ vli_sub(res.x, res.x, curve->n, ndigits); if (!vli_cmp(res.x, r, ndigits)) return 0; return -EKEYREJECTED; } /* * Verify an ECDSA signature. */ static int ecdsa_verify(struct akcipher_request *req) { struct crypto_akcipher *tfm = crypto_akcipher_reqtfm(req); struct ecc_ctx *ctx = akcipher_tfm_ctx(tfm); size_t keylen = ctx->curve->g.ndigits * sizeof(u64); struct ecdsa_signature_ctx sig_ctx = { .curve = ctx->curve, }; u8 rawhash[ECC_MAX_BYTES]; u64 hash[ECC_MAX_DIGITS]; unsigned char *buffer; ssize_t diff; int ret; if (unlikely(!ctx->pub_key_set)) return -EINVAL; buffer = kmalloc(req->src_len + req->dst_len, GFP_KERNEL); if (!buffer) return -ENOMEM; sg_pcopy_to_buffer(req->src, sg_nents_for_len(req->src, req->src_len + req->dst_len), buffer, req->src_len + req->dst_len, 0); ret = asn1_ber_decoder(&ecdsasignature_decoder, &sig_ctx, buffer, req->src_len); if (ret < 0) goto error; /* if the hash is shorter then we will add leading zeros to fit to ndigits */ diff = keylen - req->dst_len; if (diff >= 0) { if (diff) memset(rawhash, 0, diff); memcpy(&rawhash[diff], buffer + req->src_len, req->dst_len); } else if (diff < 0) { /* given hash is longer, we take the left-most bytes */ memcpy(&rawhash, buffer + req->src_len, keylen); } ecc_swap_digits((u64 *)rawhash, hash, ctx->curve->g.ndigits); ret = _ecdsa_verify(ctx, hash, sig_ctx.r, sig_ctx.s); error: kfree(buffer); return ret; } static int ecdsa_ecc_ctx_init(struct ecc_ctx *ctx, unsigned int curve_id) { ctx->curve_id = curve_id; ctx->curve = ecc_get_curve(curve_id); if (!ctx->curve) return -EINVAL; return 0; } static void ecdsa_ecc_ctx_deinit(struct ecc_ctx *ctx) { ctx->pub_key_set = false; } static int ecdsa_ecc_ctx_reset(struct ecc_ctx *ctx) { unsigned int curve_id = ctx->curve_id; int ret; ecdsa_ecc_ctx_deinit(ctx); ret = ecdsa_ecc_ctx_init(ctx, curve_id); if (ret == 0) ctx->pub_key = ECC_POINT_INIT(ctx->x, ctx->y, ctx->curve->g.ndigits); return ret; } /* * Set the public key given the raw uncompressed key data from an X509 * certificate. The key data contain the concatenated X and Y coordinates of * the public key. */ static int ecdsa_set_pub_key(struct crypto_akcipher *tfm, const void *key, unsigned int keylen) { struct ecc_ctx *ctx = akcipher_tfm_ctx(tfm); const unsigned char *d = key; const u64 *digits = (const u64 *)&d[1]; unsigned int ndigits; int ret; ret = ecdsa_ecc_ctx_reset(ctx); if (ret < 0) return ret; if (keylen < 1 || (((keylen - 1) >> 1) % sizeof(u64)) != 0) return -EINVAL; /* we only accept uncompressed format indicated by '4' */ if (d[0] != 4) return -EINVAL; keylen--; ndigits = (keylen >> 1) / sizeof(u64); if (ndigits != ctx->curve->g.ndigits) return -EINVAL; ecc_swap_digits(digits, ctx->pub_key.x, ndigits); ecc_swap_digits(&digits[ndigits], ctx->pub_key.y, ndigits); ret = ecc_is_pubkey_valid_full(ctx->curve, &ctx->pub_key); ctx->pub_key_set = ret == 0; return ret; } static void ecdsa_exit_tfm(struct crypto_akcipher *tfm) { struct ecc_ctx *ctx = akcipher_tfm_ctx(tfm); ecdsa_ecc_ctx_deinit(ctx); } static unsigned int ecdsa_max_size(struct crypto_akcipher *tfm) { struct ecc_ctx *ctx = akcipher_tfm_ctx(tfm); return ctx->pub_key.ndigits << ECC_DIGITS_TO_BYTES_SHIFT; } static int ecdsa_nist_p384_init_tfm(struct crypto_akcipher *tfm) { struct ecc_ctx *ctx = akcipher_tfm_ctx(tfm); return ecdsa_ecc_ctx_init(ctx, ECC_CURVE_NIST_P384); } static struct akcipher_alg ecdsa_nist_p384 = { .verify = ecdsa_verify, .set_pub_key = ecdsa_set_pub_key, .max_size = ecdsa_max_size, .init = ecdsa_nist_p384_init_tfm, .exit = ecdsa_exit_tfm, .base = { .cra_name = "ecdsa-nist-p384", .cra_driver_name = "ecdsa-nist-p384-generic", .cra_priority = 100, .cra_module = THIS_MODULE, .cra_ctxsize = sizeof(struct ecc_ctx), }, }; static int ecdsa_nist_p256_init_tfm(struct crypto_akcipher *tfm) { struct ecc_ctx *ctx = akcipher_tfm_ctx(tfm); return ecdsa_ecc_ctx_init(ctx, ECC_CURVE_NIST_P256); } static struct akcipher_alg ecdsa_nist_p256 = { .verify = ecdsa_verify, .set_pub_key = ecdsa_set_pub_key, .max_size = ecdsa_max_size, .init = ecdsa_nist_p256_init_tfm, .exit = ecdsa_exit_tfm, .base = { .cra_name = "ecdsa-nist-p256", .cra_driver_name = "ecdsa-nist-p256-generic", .cra_priority = 100, .cra_module = THIS_MODULE, .cra_ctxsize = sizeof(struct ecc_ctx), }, }; static int ecdsa_nist_p192_init_tfm(struct crypto_akcipher *tfm) { struct ecc_ctx *ctx = akcipher_tfm_ctx(tfm); return ecdsa_ecc_ctx_init(ctx, ECC_CURVE_NIST_P192); } static struct akcipher_alg ecdsa_nist_p192 = { .verify = ecdsa_verify, .set_pub_key = ecdsa_set_pub_key, .max_size = ecdsa_max_size, .init = ecdsa_nist_p192_init_tfm, .exit = ecdsa_exit_tfm, .base = { .cra_name = "ecdsa-nist-p192", .cra_driver_name = "ecdsa-nist-p192-generic", .cra_priority = 100, .cra_module = THIS_MODULE, .cra_ctxsize = sizeof(struct ecc_ctx), }, }; static bool ecdsa_nist_p192_registered; static int __init ecdsa_init(void) { int ret; /* NIST p192 may not be available in FIPS mode */ ret = crypto_register_akcipher(&ecdsa_nist_p192); ecdsa_nist_p192_registered = ret == 0; ret = crypto_register_akcipher(&ecdsa_nist_p256); if (ret) goto nist_p256_error; ret = crypto_register_akcipher(&ecdsa_nist_p384); if (ret) goto nist_p384_error; return 0; nist_p384_error: crypto_unregister_akcipher(&ecdsa_nist_p256); nist_p256_error: if (ecdsa_nist_p192_registered) crypto_unregister_akcipher(&ecdsa_nist_p192); return ret; } static void __exit ecdsa_exit(void) { if (ecdsa_nist_p192_registered) crypto_unregister_akcipher(&ecdsa_nist_p192); crypto_unregister_akcipher(&ecdsa_nist_p256); crypto_unregister_akcipher(&ecdsa_nist_p384); } subsys_initcall(ecdsa_init); module_exit(ecdsa_exit); MODULE_LICENSE("GPL"); MODULE_AUTHOR("Stefan Berger <stefanb@linux.ibm.com>"); MODULE_DESCRIPTION("ECDSA generic algorithm"); MODULE_ALIAS_CRYPTO("ecdsa-generic");
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1