Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Nathan Huckleberry | 892 | 100.00% | 2 | 100.00% |
Total | 892 | 2 |
// SPDX-License-Identifier: GPL-2.0-only /* * POLYVAL: hash function for HCTR2. * * Copyright (c) 2007 Nokia Siemens Networks - Mikko Herranen <mh1@iki.fi> * Copyright (c) 2009 Intel Corp. * Author: Huang Ying <ying.huang@intel.com> * Copyright 2021 Google LLC */ /* * Code based on crypto/ghash-generic.c * * POLYVAL is a keyed hash function similar to GHASH. POLYVAL uses a different * modulus for finite field multiplication which makes hardware accelerated * implementations on little-endian machines faster. POLYVAL is used in the * kernel to implement HCTR2, but was originally specified for AES-GCM-SIV * (RFC 8452). * * For more information see: * Length-preserving encryption with HCTR2: * https://eprint.iacr.org/2021/1441.pdf * AES-GCM-SIV: Nonce Misuse-Resistant Authenticated Encryption: * https://datatracker.ietf.org/doc/html/rfc8452 * * Like GHASH, POLYVAL is not a cryptographic hash function and should * not be used outside of crypto modes explicitly designed to use POLYVAL. * * This implementation uses a convenient trick involving the GHASH and POLYVAL * fields. This trick allows multiplication in the POLYVAL field to be * implemented by using multiplication in the GHASH field as a subroutine. An * element of the POLYVAL field can be converted to an element of the GHASH * field by computing x*REVERSE(a), where REVERSE reverses the byte-ordering of * a. Similarly, an element of the GHASH field can be converted back to the * POLYVAL field by computing REVERSE(x^{-1}*a). For more information, see: * https://datatracker.ietf.org/doc/html/rfc8452#appendix-A * * By using this trick, we do not need to implement the POLYVAL field for the * generic implementation. * * Warning: this generic implementation is not intended to be used in practice * and is not constant time. For practical use, a hardware accelerated * implementation of POLYVAL should be used instead. * */ #include <asm/unaligned.h> #include <crypto/algapi.h> #include <crypto/gf128mul.h> #include <crypto/polyval.h> #include <crypto/internal/hash.h> #include <linux/crypto.h> #include <linux/init.h> #include <linux/kernel.h> #include <linux/module.h> struct polyval_tfm_ctx { struct gf128mul_4k *gf128; }; struct polyval_desc_ctx { union { u8 buffer[POLYVAL_BLOCK_SIZE]; be128 buffer128; }; u32 bytes; }; static void copy_and_reverse(u8 dst[POLYVAL_BLOCK_SIZE], const u8 src[POLYVAL_BLOCK_SIZE]) { u64 a = get_unaligned((const u64 *)&src[0]); u64 b = get_unaligned((const u64 *)&src[8]); put_unaligned(swab64(a), (u64 *)&dst[8]); put_unaligned(swab64(b), (u64 *)&dst[0]); } /* * Performs multiplication in the POLYVAL field using the GHASH field as a * subroutine. This function is used as a fallback for hardware accelerated * implementations when simd registers are unavailable. * * Note: This function is not used for polyval-generic, instead we use the 4k * lookup table implementation for finite field multiplication. */ void polyval_mul_non4k(u8 *op1, const u8 *op2) { be128 a, b; // Assume one argument is in Montgomery form and one is not. copy_and_reverse((u8 *)&a, op1); copy_and_reverse((u8 *)&b, op2); gf128mul_x_lle(&a, &a); gf128mul_lle(&a, &b); copy_and_reverse(op1, (u8 *)&a); } EXPORT_SYMBOL_GPL(polyval_mul_non4k); /* * Perform a POLYVAL update using non4k multiplication. This function is used * as a fallback for hardware accelerated implementations when simd registers * are unavailable. * * Note: This function is not used for polyval-generic, instead we use the 4k * lookup table implementation of finite field multiplication. */ void polyval_update_non4k(const u8 *key, const u8 *in, size_t nblocks, u8 *accumulator) { while (nblocks--) { crypto_xor(accumulator, in, POLYVAL_BLOCK_SIZE); polyval_mul_non4k(accumulator, key); in += POLYVAL_BLOCK_SIZE; } } EXPORT_SYMBOL_GPL(polyval_update_non4k); static int polyval_setkey(struct crypto_shash *tfm, const u8 *key, unsigned int keylen) { struct polyval_tfm_ctx *ctx = crypto_shash_ctx(tfm); be128 k; if (keylen != POLYVAL_BLOCK_SIZE) return -EINVAL; gf128mul_free_4k(ctx->gf128); BUILD_BUG_ON(sizeof(k) != POLYVAL_BLOCK_SIZE); copy_and_reverse((u8 *)&k, key); gf128mul_x_lle(&k, &k); ctx->gf128 = gf128mul_init_4k_lle(&k); memzero_explicit(&k, POLYVAL_BLOCK_SIZE); if (!ctx->gf128) return -ENOMEM; return 0; } static int polyval_init(struct shash_desc *desc) { struct polyval_desc_ctx *dctx = shash_desc_ctx(desc); memset(dctx, 0, sizeof(*dctx)); return 0; } static int polyval_update(struct shash_desc *desc, const u8 *src, unsigned int srclen) { struct polyval_desc_ctx *dctx = shash_desc_ctx(desc); const struct polyval_tfm_ctx *ctx = crypto_shash_ctx(desc->tfm); u8 *pos; u8 tmp[POLYVAL_BLOCK_SIZE]; int n; if (dctx->bytes) { n = min(srclen, dctx->bytes); pos = dctx->buffer + dctx->bytes - 1; dctx->bytes -= n; srclen -= n; while (n--) *pos-- ^= *src++; if (!dctx->bytes) gf128mul_4k_lle(&dctx->buffer128, ctx->gf128); } while (srclen >= POLYVAL_BLOCK_SIZE) { copy_and_reverse(tmp, src); crypto_xor(dctx->buffer, tmp, POLYVAL_BLOCK_SIZE); gf128mul_4k_lle(&dctx->buffer128, ctx->gf128); src += POLYVAL_BLOCK_SIZE; srclen -= POLYVAL_BLOCK_SIZE; } if (srclen) { dctx->bytes = POLYVAL_BLOCK_SIZE - srclen; pos = dctx->buffer + POLYVAL_BLOCK_SIZE - 1; while (srclen--) *pos-- ^= *src++; } return 0; } static int polyval_final(struct shash_desc *desc, u8 *dst) { struct polyval_desc_ctx *dctx = shash_desc_ctx(desc); const struct polyval_tfm_ctx *ctx = crypto_shash_ctx(desc->tfm); if (dctx->bytes) gf128mul_4k_lle(&dctx->buffer128, ctx->gf128); copy_and_reverse(dst, dctx->buffer); return 0; } static void polyval_exit_tfm(struct crypto_tfm *tfm) { struct polyval_tfm_ctx *ctx = crypto_tfm_ctx(tfm); gf128mul_free_4k(ctx->gf128); } static struct shash_alg polyval_alg = { .digestsize = POLYVAL_DIGEST_SIZE, .init = polyval_init, .update = polyval_update, .final = polyval_final, .setkey = polyval_setkey, .descsize = sizeof(struct polyval_desc_ctx), .base = { .cra_name = "polyval", .cra_driver_name = "polyval-generic", .cra_priority = 100, .cra_blocksize = POLYVAL_BLOCK_SIZE, .cra_ctxsize = sizeof(struct polyval_tfm_ctx), .cra_module = THIS_MODULE, .cra_exit = polyval_exit_tfm, }, }; static int __init polyval_mod_init(void) { return crypto_register_shash(&polyval_alg); } static void __exit polyval_mod_exit(void) { crypto_unregister_shash(&polyval_alg); } subsys_initcall(polyval_mod_init); module_exit(polyval_mod_exit); MODULE_LICENSE("GPL"); MODULE_DESCRIPTION("POLYVAL hash function"); MODULE_ALIAS_CRYPTO("polyval"); MODULE_ALIAS_CRYPTO("polyval-generic");
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1