Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Nathan Huckleberry | 909 | 97.95% | 1 | 12.50% |
James Morris | 7 | 0.75% | 1 | 12.50% |
Herbert Xu | 5 | 0.54% | 2 | 25.00% |
Ard Biesheuvel | 3 | 0.32% | 1 | 12.50% |
Eric Biggers | 2 | 0.22% | 1 | 12.50% |
Tejun Heo | 1 | 0.11% | 1 | 12.50% |
Thomas Gleixner | 1 | 0.11% | 1 | 12.50% |
Total | 928 | 8 |
// SPDX-License-Identifier: GPL-2.0-or-later /* * XCTR: XOR Counter mode - Adapted from ctr.c * * (C) Copyright IBM Corp. 2007 - Joy Latten <latten@us.ibm.com> * Copyright 2021 Google LLC */ /* * XCTR mode is a blockcipher mode of operation used to implement HCTR2. XCTR is * closely related to the CTR mode of operation; the main difference is that CTR * generates the keystream using E(CTR + IV) whereas XCTR generates the * keystream using E(CTR ^ IV). This allows implementations to avoid dealing * with multi-limb integers (as is required in CTR mode). XCTR is also specified * using little-endian arithmetic which makes it slightly faster on LE machines. * * See the HCTR2 paper for more details: * Length-preserving encryption with HCTR2 * (https://eprint.iacr.org/2021/1441.pdf) */ #include <crypto/algapi.h> #include <crypto/internal/cipher.h> #include <crypto/internal/skcipher.h> #include <linux/err.h> #include <linux/init.h> #include <linux/kernel.h> #include <linux/module.h> #include <linux/slab.h> /* For now this implementation is limited to 16-byte blocks for simplicity */ #define XCTR_BLOCKSIZE 16 static void crypto_xctr_crypt_final(struct skcipher_walk *walk, struct crypto_cipher *tfm, u32 byte_ctr) { u8 keystream[XCTR_BLOCKSIZE]; const u8 *src = walk->src.virt.addr; u8 *dst = walk->dst.virt.addr; unsigned int nbytes = walk->nbytes; __le32 ctr32 = cpu_to_le32(byte_ctr / XCTR_BLOCKSIZE + 1); crypto_xor(walk->iv, (u8 *)&ctr32, sizeof(ctr32)); crypto_cipher_encrypt_one(tfm, keystream, walk->iv); crypto_xor_cpy(dst, keystream, src, nbytes); crypto_xor(walk->iv, (u8 *)&ctr32, sizeof(ctr32)); } static int crypto_xctr_crypt_segment(struct skcipher_walk *walk, struct crypto_cipher *tfm, u32 byte_ctr) { void (*fn)(struct crypto_tfm *, u8 *, const u8 *) = crypto_cipher_alg(tfm)->cia_encrypt; const u8 *src = walk->src.virt.addr; u8 *dst = walk->dst.virt.addr; unsigned int nbytes = walk->nbytes; __le32 ctr32 = cpu_to_le32(byte_ctr / XCTR_BLOCKSIZE + 1); do { crypto_xor(walk->iv, (u8 *)&ctr32, sizeof(ctr32)); fn(crypto_cipher_tfm(tfm), dst, walk->iv); crypto_xor(dst, src, XCTR_BLOCKSIZE); crypto_xor(walk->iv, (u8 *)&ctr32, sizeof(ctr32)); le32_add_cpu(&ctr32, 1); src += XCTR_BLOCKSIZE; dst += XCTR_BLOCKSIZE; } while ((nbytes -= XCTR_BLOCKSIZE) >= XCTR_BLOCKSIZE); return nbytes; } static int crypto_xctr_crypt_inplace(struct skcipher_walk *walk, struct crypto_cipher *tfm, u32 byte_ctr) { void (*fn)(struct crypto_tfm *, u8 *, const u8 *) = crypto_cipher_alg(tfm)->cia_encrypt; unsigned long alignmask = crypto_cipher_alignmask(tfm); unsigned int nbytes = walk->nbytes; u8 *data = walk->src.virt.addr; u8 tmp[XCTR_BLOCKSIZE + MAX_CIPHER_ALIGNMASK]; u8 *keystream = PTR_ALIGN(tmp + 0, alignmask + 1); __le32 ctr32 = cpu_to_le32(byte_ctr / XCTR_BLOCKSIZE + 1); do { crypto_xor(walk->iv, (u8 *)&ctr32, sizeof(ctr32)); fn(crypto_cipher_tfm(tfm), keystream, walk->iv); crypto_xor(data, keystream, XCTR_BLOCKSIZE); crypto_xor(walk->iv, (u8 *)&ctr32, sizeof(ctr32)); le32_add_cpu(&ctr32, 1); data += XCTR_BLOCKSIZE; } while ((nbytes -= XCTR_BLOCKSIZE) >= XCTR_BLOCKSIZE); return nbytes; } static int crypto_xctr_crypt(struct skcipher_request *req) { struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req); struct crypto_cipher *cipher = skcipher_cipher_simple(tfm); struct skcipher_walk walk; unsigned int nbytes; int err; u32 byte_ctr = 0; err = skcipher_walk_virt(&walk, req, false); while (walk.nbytes >= XCTR_BLOCKSIZE) { if (walk.src.virt.addr == walk.dst.virt.addr) nbytes = crypto_xctr_crypt_inplace(&walk, cipher, byte_ctr); else nbytes = crypto_xctr_crypt_segment(&walk, cipher, byte_ctr); byte_ctr += walk.nbytes - nbytes; err = skcipher_walk_done(&walk, nbytes); } if (walk.nbytes) { crypto_xctr_crypt_final(&walk, cipher, byte_ctr); err = skcipher_walk_done(&walk, 0); } return err; } static int crypto_xctr_create(struct crypto_template *tmpl, struct rtattr **tb) { struct skcipher_instance *inst; struct crypto_alg *alg; int err; inst = skcipher_alloc_instance_simple(tmpl, tb); if (IS_ERR(inst)) return PTR_ERR(inst); alg = skcipher_ialg_simple(inst); /* Block size must be 16 bytes. */ err = -EINVAL; if (alg->cra_blocksize != XCTR_BLOCKSIZE) goto out_free_inst; /* XCTR mode is a stream cipher. */ inst->alg.base.cra_blocksize = 1; /* * To simplify the implementation, configure the skcipher walk to only * give a partial block at the very end, never earlier. */ inst->alg.chunksize = alg->cra_blocksize; inst->alg.encrypt = crypto_xctr_crypt; inst->alg.decrypt = crypto_xctr_crypt; err = skcipher_register_instance(tmpl, inst); if (err) { out_free_inst: inst->free(inst); } return err; } static struct crypto_template crypto_xctr_tmpl = { .name = "xctr", .create = crypto_xctr_create, .module = THIS_MODULE, }; static int __init crypto_xctr_module_init(void) { return crypto_register_template(&crypto_xctr_tmpl); } static void __exit crypto_xctr_module_exit(void) { crypto_unregister_template(&crypto_xctr_tmpl); } subsys_initcall(crypto_xctr_module_init); module_exit(crypto_xctr_module_exit); MODULE_LICENSE("GPL"); MODULE_DESCRIPTION("XCTR block cipher mode of operation"); MODULE_ALIAS_CRYPTO("xctr"); MODULE_IMPORT_NS(CRYPTO_INTERNAL);
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1