Contributors: 11
Author Tokens Token Proportion Commits Commit Proportion
Kumaravel Thiagarajan 2257 62.30% 3 14.29%
Rengarajan S 1259 34.75% 5 23.81%
Andy Shevchenko 59 1.63% 3 14.29%
Wander Lairson Costa 16 0.44% 1 4.76%
Yinghai Lu 10 0.28% 1 4.76%
Thomas Gleixner 6 0.17% 1 4.76%
Jonathan McDowell 5 0.14% 1 4.76%
Peter Hurley 4 0.11% 1 4.76%
Russell King 3 0.08% 2 9.52%
Philippe Langlais 2 0.06% 1 4.76%
Dan Carpenter 2 0.06% 2 9.52%
Total 3623 21


// SPDX-License-Identifier: GPL-2.0
/*
 *  Probe module for 8250/16550-type MCHP PCI serial ports.
 *
 *  Based on drivers/tty/serial/8250/8250_pci.c,
 *
 *  Copyright (C) 2022 Microchip Technology Inc., All Rights Reserved.
 */

#include <linux/array_size.h>
#include <linux/bitfield.h>
#include <linux/bits.h>
#include <linux/circ_buf.h>
#include <linux/device.h>
#include <linux/errno.h>
#include <linux/gfp_types.h>
#include <linux/io.h>
#include <linux/iopoll.h>
#include <linux/minmax.h>
#include <linux/module.h>
#include <linux/mutex.h>
#include <linux/overflow.h>
#include <linux/pci.h>
#include <linux/pm.h>
#include <linux/serial_core.h>
#include <linux/serial_reg.h>
#include <linux/serial_8250.h>
#include <linux/spinlock.h>
#include <linux/string.h>
#include <linux/time.h>
#include <linux/tty.h>
#include <linux/tty_flip.h>
#include <linux/types.h>
#include <linux/units.h>

#include <asm/byteorder.h>

#include "8250.h"
#include "8250_pcilib.h"

#define PCI_DEVICE_ID_EFAR_PCI12000		0xa002
#define PCI_DEVICE_ID_EFAR_PCI11010		0xa012
#define PCI_DEVICE_ID_EFAR_PCI11101		0xa022
#define PCI_DEVICE_ID_EFAR_PCI11400		0xa032
#define PCI_DEVICE_ID_EFAR_PCI11414		0xa042

#define PCI_SUBDEVICE_ID_EFAR_PCI1XXXX_4p	0x0001
#define PCI_SUBDEVICE_ID_EFAR_PCI1XXXX_3p012	0x0002
#define PCI_SUBDEVICE_ID_EFAR_PCI1XXXX_3p013	0x0003
#define PCI_SUBDEVICE_ID_EFAR_PCI1XXXX_3p023	0x0004
#define PCI_SUBDEVICE_ID_EFAR_PCI1XXXX_3p123	0x0005
#define PCI_SUBDEVICE_ID_EFAR_PCI1XXXX_2p01	0x0006
#define PCI_SUBDEVICE_ID_EFAR_PCI1XXXX_2p02	0x0007
#define PCI_SUBDEVICE_ID_EFAR_PCI1XXXX_2p03	0x0008
#define PCI_SUBDEVICE_ID_EFAR_PCI1XXXX_2p12	0x0009
#define PCI_SUBDEVICE_ID_EFAR_PCI1XXXX_2p13	0x000a
#define PCI_SUBDEVICE_ID_EFAR_PCI1XXXX_2p23	0x000b
#define PCI_SUBDEVICE_ID_EFAR_PCI1XXXX_1p0	0x000c
#define PCI_SUBDEVICE_ID_EFAR_PCI1XXXX_1p1	0x000d
#define PCI_SUBDEVICE_ID_EFAR_PCI1XXXX_1p2	0x000e
#define PCI_SUBDEVICE_ID_EFAR_PCI1XXXX_1p3	0x000f

#define PCI_SUBDEVICE_ID_EFAR_PCI12000		PCI_DEVICE_ID_EFAR_PCI12000
#define PCI_SUBDEVICE_ID_EFAR_PCI11010		PCI_DEVICE_ID_EFAR_PCI11010
#define PCI_SUBDEVICE_ID_EFAR_PCI11101		PCI_DEVICE_ID_EFAR_PCI11101
#define PCI_SUBDEVICE_ID_EFAR_PCI11400		PCI_DEVICE_ID_EFAR_PCI11400
#define PCI_SUBDEVICE_ID_EFAR_PCI11414		PCI_DEVICE_ID_EFAR_PCI11414

#define UART_SYSTEM_ADDR_BASE			0x1000
#define UART_DEV_REV_REG			(UART_SYSTEM_ADDR_BASE + 0x00)
#define UART_DEV_REV_MASK			GENMASK(7, 0)
#define UART_SYSLOCK_REG			(UART_SYSTEM_ADDR_BASE + 0xA0)
#define UART_SYSLOCK				BIT(2)
#define SYSLOCK_SLEEP_TIMEOUT			100
#define SYSLOCK_RETRY_CNT			1000

#define UART_RX_BYTE_FIFO			0x00
#define UART_TX_BYTE_FIFO			0x00
#define UART_FIFO_CTL				0x02

#define UART_ACTV_REG				0x11
#define UART_BLOCK_SET_ACTIVE			BIT(0)

#define UART_PCI_CTRL_REG			0x80
#define UART_PCI_CTRL_SET_MULTIPLE_MSI		BIT(4)
#define UART_PCI_CTRL_D3_CLK_ENABLE		BIT(0)

#define ADCL_CFG_REG				0x40
#define ADCL_CFG_POL_SEL			BIT(2)
#define ADCL_CFG_PIN_SEL			BIT(1)
#define ADCL_CFG_EN				BIT(0)

#define UART_BIT_SAMPLE_CNT_8			8
#define UART_BIT_SAMPLE_CNT_16			16
#define BAUD_CLOCK_DIV_INT_MSK			GENMASK(31, 8)
#define ADCL_CFG_RTS_DELAY_MASK			GENMASK(11, 8)

#define UART_WAKE_REG				0x8C
#define UART_WAKE_MASK_REG			0x90
#define UART_WAKE_N_PIN				BIT(2)
#define UART_WAKE_NCTS				BIT(1)
#define UART_WAKE_INT				BIT(0)
#define UART_WAKE_SRCS	\
	(UART_WAKE_N_PIN | UART_WAKE_NCTS | UART_WAKE_INT)

#define UART_BAUD_CLK_DIVISOR_REG		0x54
#define FRAC_DIV_CFG_REG			0x58

#define UART_RESET_REG				0x94
#define UART_RESET_D3_RESET_DISABLE		BIT(16)

#define UART_BURST_STATUS_REG			0x9C
#define UART_TX_BURST_FIFO			0xA0
#define UART_RX_BURST_FIFO			0xA4

#define UART_BIT_DIVISOR_8			0x26731000
#define UART_BIT_DIVISOR_16			0x6ef71000
#define UART_BAUD_4MBPS				4000000

#define MAX_PORTS				4
#define PORT_OFFSET				0x100
#define RX_BUF_SIZE				512
#define UART_BYTE_SIZE                          1
#define UART_BURST_SIZE				4

#define UART_BST_STAT_RX_COUNT_MASK		0x00FF
#define UART_BST_STAT_TX_COUNT_MASK		0xFF00
#define UART_BST_STAT_IIR_INT_PEND		0x100000
#define UART_LSR_OVERRUN_ERR_CLR		0x43
#define UART_BST_STAT_LSR_RX_MASK		0x9F000000
#define UART_BST_STAT_LSR_RX_ERR_MASK		0x9E000000
#define UART_BST_STAT_LSR_OVERRUN_ERR		0x2000000
#define UART_BST_STAT_LSR_PARITY_ERR		0x4000000
#define UART_BST_STAT_LSR_FRAME_ERR		0x8000000
#define UART_BST_STAT_LSR_THRE			0x20000000

struct pci1xxxx_8250 {
	unsigned int nr;
	u8 dev_rev;
	u8 pad[3];
	void __iomem *membase;
	int line[] __counted_by(nr);
};

static const struct serial_rs485 pci1xxxx_rs485_supported = {
	.flags = SER_RS485_ENABLED | SER_RS485_RTS_ON_SEND |
		 SER_RS485_RTS_AFTER_SEND,
	.delay_rts_after_send = 1,
	/* Delay RTS before send is not supported */
};

static int pci1xxxx_set_sys_lock(struct pci1xxxx_8250 *port)
{
	writel(UART_SYSLOCK, port->membase + UART_SYSLOCK_REG);
	return readl(port->membase + UART_SYSLOCK_REG);
}

static int pci1xxxx_acquire_sys_lock(struct pci1xxxx_8250 *port)
{
	u32 regval;

	return readx_poll_timeout(pci1xxxx_set_sys_lock, port, regval,
				  (regval & UART_SYSLOCK),
				  SYSLOCK_SLEEP_TIMEOUT,
				  SYSLOCK_RETRY_CNT * SYSLOCK_SLEEP_TIMEOUT);
}

static void pci1xxxx_release_sys_lock(struct pci1xxxx_8250 *port)
{
	writel(0x0, port->membase + UART_SYSLOCK_REG);
}

static const int logical_to_physical_port_idx[][MAX_PORTS] = {
	{0,  1,  2,  3}, /* PCI12000, PCI11010, PCI11101, PCI11400, PCI11414 */
	{0,  1,  2,  3}, /* PCI4p */
	{0,  1,  2, -1}, /* PCI3p012 */
	{0,  1,  3, -1}, /* PCI3p013 */
	{0,  2,  3, -1}, /* PCI3p023 */
	{1,  2,  3, -1}, /* PCI3p123 */
	{0,  1, -1, -1}, /* PCI2p01 */
	{0,  2, -1, -1}, /* PCI2p02 */
	{0,  3, -1, -1}, /* PCI2p03 */
	{1,  2, -1, -1}, /* PCI2p12 */
	{1,  3, -1, -1}, /* PCI2p13 */
	{2,  3, -1, -1}, /* PCI2p23 */
	{0, -1, -1, -1}, /* PCI1p0 */
	{1, -1, -1, -1}, /* PCI1p1 */
	{2, -1, -1, -1}, /* PCI1p2 */
	{3, -1, -1, -1}, /* PCI1p3 */
};

static int pci1xxxx_get_num_ports(struct pci_dev *dev)
{
	switch (dev->subsystem_device) {
	case PCI_SUBDEVICE_ID_EFAR_PCI1XXXX_1p0:
	case PCI_SUBDEVICE_ID_EFAR_PCI1XXXX_1p1:
	case PCI_SUBDEVICE_ID_EFAR_PCI1XXXX_1p2:
	case PCI_SUBDEVICE_ID_EFAR_PCI1XXXX_1p3:
	case PCI_SUBDEVICE_ID_EFAR_PCI12000:
	case PCI_SUBDEVICE_ID_EFAR_PCI11010:
	case PCI_SUBDEVICE_ID_EFAR_PCI11101:
	case PCI_SUBDEVICE_ID_EFAR_PCI11400:
	default:
		return 1;
	case PCI_SUBDEVICE_ID_EFAR_PCI1XXXX_2p01:
	case PCI_SUBDEVICE_ID_EFAR_PCI1XXXX_2p02:
	case PCI_SUBDEVICE_ID_EFAR_PCI1XXXX_2p03:
	case PCI_SUBDEVICE_ID_EFAR_PCI1XXXX_2p12:
	case PCI_SUBDEVICE_ID_EFAR_PCI1XXXX_2p13:
	case PCI_SUBDEVICE_ID_EFAR_PCI1XXXX_2p23:
		return 2;
	case PCI_SUBDEVICE_ID_EFAR_PCI1XXXX_3p012:
	case PCI_SUBDEVICE_ID_EFAR_PCI1XXXX_3p123:
	case PCI_SUBDEVICE_ID_EFAR_PCI1XXXX_3p013:
	case PCI_SUBDEVICE_ID_EFAR_PCI1XXXX_3p023:
		return 3;
	case PCI_SUBDEVICE_ID_EFAR_PCI1XXXX_4p:
	case PCI_SUBDEVICE_ID_EFAR_PCI11414:
		return 4;
	}
}

static unsigned int pci1xxxx_get_divisor(struct uart_port *port,
					 unsigned int baud, unsigned int *frac)
{
	unsigned int uart_sample_cnt;
	unsigned int quot;

	if (baud >= UART_BAUD_4MBPS)
		uart_sample_cnt = UART_BIT_SAMPLE_CNT_8;
	else
		uart_sample_cnt = UART_BIT_SAMPLE_CNT_16;

	/*
	 * Calculate baud rate sampling period in nanoseconds.
	 * Fractional part x denotes x/255 parts of a nanosecond.
	 */
	quot = NSEC_PER_SEC / (baud * uart_sample_cnt);
	*frac = (NSEC_PER_SEC - quot * baud * uart_sample_cnt) *
		  255 / uart_sample_cnt / baud;

	return quot;
}

static void pci1xxxx_set_divisor(struct uart_port *port, unsigned int baud,
				 unsigned int quot, unsigned int frac)
{
	if (baud >= UART_BAUD_4MBPS)
		writel(UART_BIT_DIVISOR_8, port->membase + FRAC_DIV_CFG_REG);
	else
		writel(UART_BIT_DIVISOR_16, port->membase + FRAC_DIV_CFG_REG);

	writel(FIELD_PREP(BAUD_CLOCK_DIV_INT_MSK, quot) | frac,
	       port->membase + UART_BAUD_CLK_DIVISOR_REG);
}

static int pci1xxxx_rs485_config(struct uart_port *port,
				 struct ktermios *termios,
				 struct serial_rs485 *rs485)
{
	u32 delay_in_baud_periods;
	u32 baud_period_in_ns;
	u32 mode_cfg = 0;
	u32 sample_cnt;
	u32 clock_div;
	u32 frac_div;

	frac_div = readl(port->membase + FRAC_DIV_CFG_REG);

	if (frac_div == UART_BIT_DIVISOR_16)
		sample_cnt = UART_BIT_SAMPLE_CNT_16;
	else
		sample_cnt = UART_BIT_SAMPLE_CNT_8;

	/*
	 * pci1xxxx's uart hardware supports only RTS delay after
	 * Tx and in units of bit times to a maximum of 15
	 */
	if (rs485->flags & SER_RS485_ENABLED) {
		mode_cfg = ADCL_CFG_EN | ADCL_CFG_PIN_SEL;

		if (!(rs485->flags & SER_RS485_RTS_ON_SEND))
			mode_cfg |= ADCL_CFG_POL_SEL;

		if (rs485->delay_rts_after_send) {
			clock_div = readl(port->membase + UART_BAUD_CLK_DIVISOR_REG);
			baud_period_in_ns =
				FIELD_GET(BAUD_CLOCK_DIV_INT_MSK, clock_div) *
				sample_cnt;
			delay_in_baud_periods =
				rs485->delay_rts_after_send * NSEC_PER_MSEC /
				baud_period_in_ns;
			delay_in_baud_periods =
				min_t(u32, delay_in_baud_periods,
				      FIELD_MAX(ADCL_CFG_RTS_DELAY_MASK));
			mode_cfg |= FIELD_PREP(ADCL_CFG_RTS_DELAY_MASK,
					   delay_in_baud_periods);
			rs485->delay_rts_after_send =
				baud_period_in_ns * delay_in_baud_periods /
				NSEC_PER_MSEC;
		}
	}
	writel(mode_cfg, port->membase + ADCL_CFG_REG);
	return 0;
}

static u32 pci1xxxx_read_burst_status(struct uart_port *port)
{
	u32 status;

	status = readl(port->membase + UART_BURST_STATUS_REG);
	if (status & UART_BST_STAT_LSR_RX_ERR_MASK) {
		if (status & UART_BST_STAT_LSR_OVERRUN_ERR) {
			writeb(UART_LSR_OVERRUN_ERR_CLR,
			       port->membase + UART_FIFO_CTL);
			port->icount.overrun++;
		}

		if (status & UART_BST_STAT_LSR_FRAME_ERR)
			port->icount.frame++;

		if (status & UART_BST_STAT_LSR_PARITY_ERR)
			port->icount.parity++;
	}
	return status;
}

static void pci1xxxx_process_read_data(struct uart_port *port,
				       unsigned char *rx_buff, u32 *buff_index,
				       u32 *valid_byte_count)
{
	u32 valid_burst_count = *valid_byte_count / UART_BURST_SIZE;
	u32 *burst_buf;

	/*
	 * Depending on the RX Trigger Level the number of bytes that can be
	 * stored in RX FIFO at a time varies. Each transaction reads data
	 * in DWORDs. If there are less than four remaining valid_byte_count
	 * to read, the data is received one byte at a time.
	 */
	while (valid_burst_count--) {
		if (*buff_index > (RX_BUF_SIZE - UART_BURST_SIZE))
			break;
		burst_buf = (u32 *)&rx_buff[*buff_index];
		*burst_buf = readl(port->membase + UART_RX_BURST_FIFO);
		*buff_index += UART_BURST_SIZE;
		*valid_byte_count -= UART_BURST_SIZE;
	}

	while (*valid_byte_count) {
		if (*buff_index >= RX_BUF_SIZE)
			break;
		rx_buff[*buff_index] = readb(port->membase +
					     UART_RX_BYTE_FIFO);
		*buff_index += UART_BYTE_SIZE;
		*valid_byte_count -= UART_BYTE_SIZE;
	}
}

static void pci1xxxx_rx_burst(struct uart_port *port, u32 uart_status)
{
	u32 valid_byte_count = uart_status & UART_BST_STAT_RX_COUNT_MASK;
	struct tty_port *tty_port = &port->state->port;
	unsigned char rx_buff[RX_BUF_SIZE];
	u32 buff_index = 0;
	u32 copied_len;

	if (valid_byte_count != 0 &&
	    valid_byte_count < RX_BUF_SIZE) {
		pci1xxxx_process_read_data(port, rx_buff, &buff_index,
					   &valid_byte_count);

		copied_len = (u32)tty_insert_flip_string(tty_port, rx_buff,
							 buff_index);

		if (copied_len != buff_index)
			port->icount.overrun += buff_index - copied_len;

		port->icount.rx += buff_index;
		tty_flip_buffer_push(tty_port);
	}
}

static void pci1xxxx_process_write_data(struct uart_port *port,
					struct circ_buf *xmit,
					int *data_empty_count,
					u32 *valid_byte_count)
{
	u32 valid_burst_count = *valid_byte_count / UART_BURST_SIZE;

	/*
	 * Each transaction transfers data in DWORDs. If there are less than
	 * four remaining valid_byte_count to transfer or if the circular
	 * buffer has insufficient space for a DWORD, the data is transferred
	 * one byte at a time.
	 */
	while (valid_burst_count) {
		if (*data_empty_count - UART_BURST_SIZE < 0)
			break;
		if (xmit->tail > (UART_XMIT_SIZE - UART_BURST_SIZE))
			break;
		writel(*(unsigned int *)&xmit->buf[xmit->tail],
		       port->membase + UART_TX_BURST_FIFO);
		*valid_byte_count -= UART_BURST_SIZE;
		*data_empty_count -= UART_BURST_SIZE;
		valid_burst_count -= UART_BYTE_SIZE;

		xmit->tail = (xmit->tail + UART_BURST_SIZE) &
			     (UART_XMIT_SIZE - 1);
	}

	while (*valid_byte_count) {
		if (*data_empty_count - UART_BYTE_SIZE < 0)
			break;
		writeb(xmit->buf[xmit->tail], port->membase +
		       UART_TX_BYTE_FIFO);
		*data_empty_count -= UART_BYTE_SIZE;
		*valid_byte_count -= UART_BYTE_SIZE;

		/*
		 * When the tail of the circular buffer is reached, the next
		 * byte is transferred to the beginning of the buffer.
		 */
		xmit->tail = (xmit->tail + UART_BYTE_SIZE) &
			     (UART_XMIT_SIZE - 1);

		/*
		 * If there are any pending burst count, data is handled by
		 * transmitting DWORDs at a time.
		 */
		if (valid_burst_count && (xmit->tail <
		   (UART_XMIT_SIZE - UART_BURST_SIZE)))
			break;
	}
}

static void pci1xxxx_tx_burst(struct uart_port *port, u32 uart_status)
{
	struct uart_8250_port *up = up_to_u8250p(port);
	u32 valid_byte_count;
	int data_empty_count;
	struct circ_buf *xmit;

	xmit = &port->state->xmit;

	if (port->x_char) {
		writeb(port->x_char, port->membase + UART_TX);
		port->icount.tx++;
		port->x_char = 0;
		return;
	}

	if ((uart_tx_stopped(port)) || (uart_circ_empty(xmit))) {
		port->ops->stop_tx(port);
	} else {
		data_empty_count = (pci1xxxx_read_burst_status(port) &
				    UART_BST_STAT_TX_COUNT_MASK) >> 8;
		do {
			valid_byte_count = uart_circ_chars_pending(xmit);

			pci1xxxx_process_write_data(port, xmit,
						    &data_empty_count,
						    &valid_byte_count);

			port->icount.tx++;
			if (uart_circ_empty(xmit))
				break;
		} while (data_empty_count && valid_byte_count);
	}

	if (uart_circ_chars_pending(xmit) < WAKEUP_CHARS)
		uart_write_wakeup(port);

	 /*
	  * With RPM enabled, we have to wait until the FIFO is empty before
	  * the HW can go idle. So we get here once again with empty FIFO and
	  * disable the interrupt and RPM in __stop_tx()
	  */
	if (uart_circ_empty(xmit) && !(up->capabilities & UART_CAP_RPM))
		port->ops->stop_tx(port);
}

static int pci1xxxx_handle_irq(struct uart_port *port)
{
	unsigned long flags;
	u32 status;

	status = pci1xxxx_read_burst_status(port);

	if (status & UART_BST_STAT_IIR_INT_PEND)
		return 0;

	spin_lock_irqsave(&port->lock, flags);

	if (status & UART_BST_STAT_LSR_RX_MASK)
		pci1xxxx_rx_burst(port, status);

	if (status & UART_BST_STAT_LSR_THRE)
		pci1xxxx_tx_burst(port, status);

	spin_unlock_irqrestore(&port->lock, flags);

	return 1;
}

static bool pci1xxxx_port_suspend(int line)
{
	struct uart_8250_port *up = serial8250_get_port(line);
	struct uart_port *port = &up->port;
	struct tty_port *tport = &port->state->port;
	unsigned long flags;
	bool ret = false;
	u8 wakeup_mask;

	mutex_lock(&tport->mutex);
	if (port->suspended == 0 && port->dev) {
		wakeup_mask = readb(up->port.membase + UART_WAKE_MASK_REG);

		uart_port_lock_irqsave(port, &flags);
		port->mctrl &= ~TIOCM_OUT2;
		port->ops->set_mctrl(port, port->mctrl);
		uart_port_unlock_irqrestore(port, flags);

		ret = (wakeup_mask & UART_WAKE_SRCS) != UART_WAKE_SRCS;
	}

	writeb(UART_WAKE_SRCS, port->membase + UART_WAKE_REG);
	mutex_unlock(&tport->mutex);

	return ret;
}

static void pci1xxxx_port_resume(int line)
{
	struct uart_8250_port *up = serial8250_get_port(line);
	struct uart_port *port = &up->port;
	struct tty_port *tport = &port->state->port;
	unsigned long flags;

	mutex_lock(&tport->mutex);
	writeb(UART_BLOCK_SET_ACTIVE, port->membase + UART_ACTV_REG);
	writeb(UART_WAKE_SRCS, port->membase + UART_WAKE_REG);

	if (port->suspended == 0) {
		uart_port_lock_irqsave(port, &flags);
		port->mctrl |= TIOCM_OUT2;
		port->ops->set_mctrl(port, port->mctrl);
		uart_port_unlock_irqrestore(port, flags);
	}
	mutex_unlock(&tport->mutex);
}

static int pci1xxxx_suspend(struct device *dev)
{
	struct pci1xxxx_8250 *priv = dev_get_drvdata(dev);
	struct pci_dev *pcidev = to_pci_dev(dev);
	bool wakeup = false;
	unsigned int data;
	void __iomem *p;
	int i;

	for (i = 0; i < priv->nr; i++) {
		if (priv->line[i] >= 0) {
			serial8250_suspend_port(priv->line[i]);
			wakeup |= pci1xxxx_port_suspend(priv->line[i]);
		}
	}

	p = pci_ioremap_bar(pcidev, 0);
	if (!p) {
		dev_err(dev, "remapping of bar 0 memory failed");
		return -ENOMEM;
	}

	data = readl(p + UART_RESET_REG);
	writel(data | UART_RESET_D3_RESET_DISABLE, p + UART_RESET_REG);

	if (wakeup)
		writeb(UART_PCI_CTRL_D3_CLK_ENABLE, p + UART_PCI_CTRL_REG);

	iounmap(p);
	device_set_wakeup_enable(dev, true);
	pci_wake_from_d3(pcidev, true);

	return 0;
}

static int pci1xxxx_resume(struct device *dev)
{
	struct pci1xxxx_8250 *priv = dev_get_drvdata(dev);
	struct pci_dev *pcidev = to_pci_dev(dev);
	unsigned int data;
	void __iomem *p;
	int i;

	p = pci_ioremap_bar(pcidev, 0);
	if (!p) {
		dev_err(dev, "remapping of bar 0 memory failed");
		return -ENOMEM;
	}

	data = readl(p + UART_RESET_REG);
	writel(data & ~UART_RESET_D3_RESET_DISABLE, p + UART_RESET_REG);
	iounmap(p);

	for (i = 0; i < priv->nr; i++) {
		if (priv->line[i] >= 0) {
			pci1xxxx_port_resume(priv->line[i]);
			serial8250_resume_port(priv->line[i]);
		}
	}

	return 0;
}

static int pci1xxxx_setup(struct pci_dev *pdev,
			  struct uart_8250_port *port, int port_idx, int rev)
{
	int ret;

	port->port.flags |= UPF_FIXED_TYPE | UPF_SKIP_TEST;
	port->port.type = PORT_MCHP16550A;
	/*
	 * 8250 core considers prescaller value to be always 16.
	 * The MCHP ports support downscaled mode and hence the
	 * functional UART clock can be lower, i.e. 62.5MHz, than
	 * software expects in order to support higher baud rates.
	 * Assign here 64MHz to support 4Mbps.
	 *
	 * The value itself is not really used anywhere except baud
	 * rate calculations, so we can mangle it as we wish.
	 */
	port->port.uartclk = 64 * HZ_PER_MHZ;
	port->port.set_termios = serial8250_do_set_termios;
	port->port.get_divisor = pci1xxxx_get_divisor;
	port->port.set_divisor = pci1xxxx_set_divisor;
	port->port.rs485_config = pci1xxxx_rs485_config;
	port->port.rs485_supported = pci1xxxx_rs485_supported;

	/* From C0 rev Burst operation is supported */
	if (rev >= 0xC0)
		port->port.handle_irq = pci1xxxx_handle_irq;

	ret = serial8250_pci_setup_port(pdev, port, 0, PORT_OFFSET * port_idx, 0);
	if (ret < 0)
		return ret;

	writeb(UART_BLOCK_SET_ACTIVE, port->port.membase + UART_ACTV_REG);
	writeb(UART_WAKE_SRCS, port->port.membase + UART_WAKE_REG);
	writeb(UART_WAKE_N_PIN, port->port.membase + UART_WAKE_MASK_REG);

	return 0;
}

static unsigned int pci1xxxx_get_max_port(int subsys_dev)
{
	unsigned int i = MAX_PORTS;

	if (subsys_dev < ARRAY_SIZE(logical_to_physical_port_idx))
		while (i--) {
			if (logical_to_physical_port_idx[subsys_dev][i] != -1)
				return logical_to_physical_port_idx[subsys_dev][i] + 1;
		}

	if (subsys_dev == PCI_SUBDEVICE_ID_EFAR_PCI11414)
		return 4;

	return 1;
}

static int pci1xxxx_logical_to_physical_port_translate(int subsys_dev, int port)
{
	if (subsys_dev < ARRAY_SIZE(logical_to_physical_port_idx))
		return logical_to_physical_port_idx[subsys_dev][port];

	return logical_to_physical_port_idx[0][port];
}

static int pci1xxxx_get_device_revision(struct pci1xxxx_8250 *priv)
{
	u32 regval;
	int ret;

	/*
	 * DEV REV is a system register, HW Syslock bit
	 * should be acquired before accessing the register
	 */
	ret = pci1xxxx_acquire_sys_lock(priv);
	if (ret)
		return ret;

	regval = readl(priv->membase + UART_DEV_REV_REG);
	priv->dev_rev = regval & UART_DEV_REV_MASK;

	pci1xxxx_release_sys_lock(priv);

	return 0;
}

static int pci1xxxx_serial_probe(struct pci_dev *pdev,
				 const struct pci_device_id *id)
{
	struct device *dev = &pdev->dev;
	struct pci1xxxx_8250 *priv;
	struct uart_8250_port uart;
	unsigned int max_vec_reqd;
	unsigned int nr_ports, i;
	int num_vectors;
	int subsys_dev;
	int port_idx;
	int ret;
	int rc;

	rc = pcim_enable_device(pdev);
	if (rc)
		return rc;

	nr_ports = pci1xxxx_get_num_ports(pdev);

	priv = devm_kzalloc(dev, struct_size(priv, line, nr_ports), GFP_KERNEL);
	if (!priv)
		return -ENOMEM;

	priv->membase = pci_ioremap_bar(pdev, 0);
	if (!priv->membase)
		return -ENOMEM;

	ret = pci1xxxx_get_device_revision(priv);
	if (ret)
		return ret;

	pci_set_master(pdev);

	priv->nr = nr_ports;

	subsys_dev = pdev->subsystem_device;
	max_vec_reqd = pci1xxxx_get_max_port(subsys_dev);

	num_vectors = pci_alloc_irq_vectors(pdev, 1, max_vec_reqd, PCI_IRQ_ALL_TYPES);
	if (num_vectors < 0) {
		pci_iounmap(pdev, priv->membase);
		return num_vectors;
	}

	memset(&uart, 0, sizeof(uart));
	uart.port.flags = UPF_SHARE_IRQ | UPF_FIXED_PORT;
	uart.port.dev = dev;

	if (num_vectors == max_vec_reqd)
		writeb(UART_PCI_CTRL_SET_MULTIPLE_MSI, priv->membase + UART_PCI_CTRL_REG);

	for (i = 0; i < nr_ports; i++) {
		priv->line[i] = -ENODEV;

		port_idx = pci1xxxx_logical_to_physical_port_translate(subsys_dev, i);

		if (num_vectors == max_vec_reqd)
			uart.port.irq = pci_irq_vector(pdev, port_idx);
		else
			uart.port.irq = pci_irq_vector(pdev, 0);

		rc = pci1xxxx_setup(pdev, &uart, port_idx, priv->dev_rev);
		if (rc) {
			dev_warn(dev, "Failed to setup port %u\n", i);
			continue;
		}

		priv->line[i] = serial8250_register_8250_port(&uart);
		if (priv->line[i] < 0) {
			dev_warn(dev,
				"Couldn't register serial port %lx, irq %d, type %d, error %d\n",
				uart.port.iobase, uart.port.irq, uart.port.iotype,
				priv->line[i]);
		}
	}

	pci_set_drvdata(pdev, priv);

	return 0;
}

static void pci1xxxx_serial_remove(struct pci_dev *dev)
{
	struct pci1xxxx_8250 *priv = pci_get_drvdata(dev);
	unsigned int i;

	for (i = 0; i < priv->nr; i++) {
		if (priv->line[i] >= 0)
			serial8250_unregister_port(priv->line[i]);
	}

	pci_free_irq_vectors(dev);
	pci_iounmap(dev, priv->membase);
}

static DEFINE_SIMPLE_DEV_PM_OPS(pci1xxxx_pm_ops, pci1xxxx_suspend, pci1xxxx_resume);

static const struct pci_device_id pci1xxxx_pci_tbl[] = {
	{ PCI_VDEVICE(EFAR, PCI_DEVICE_ID_EFAR_PCI11010) },
	{ PCI_VDEVICE(EFAR, PCI_DEVICE_ID_EFAR_PCI11101) },
	{ PCI_VDEVICE(EFAR, PCI_DEVICE_ID_EFAR_PCI11400) },
	{ PCI_VDEVICE(EFAR, PCI_DEVICE_ID_EFAR_PCI11414) },
	{ PCI_VDEVICE(EFAR, PCI_DEVICE_ID_EFAR_PCI12000) },
	{}
};
MODULE_DEVICE_TABLE(pci, pci1xxxx_pci_tbl);

static struct pci_driver pci1xxxx_pci_driver = {
	.name = "pci1xxxx serial",
	.probe = pci1xxxx_serial_probe,
	.remove = pci1xxxx_serial_remove,
	.driver = {
		.pm     = pm_sleep_ptr(&pci1xxxx_pm_ops),
	},
	.id_table = pci1xxxx_pci_tbl,
};
module_pci_driver(pci1xxxx_pci_driver);

static_assert((ARRAY_SIZE(logical_to_physical_port_idx) == PCI_SUBDEVICE_ID_EFAR_PCI1XXXX_1p3 + 1));

MODULE_IMPORT_NS(SERIAL_8250_PCI);
MODULE_DESCRIPTION("Microchip Technology Inc. PCIe to UART module");
MODULE_AUTHOR("Kumaravel Thiagarajan <kumaravel.thiagarajan@microchip.com>");
MODULE_AUTHOR("Tharun Kumar P <tharunkumar.pasumarthi@microchip.com>");
MODULE_LICENSE("GPL");