Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Daniel Hill | 498 | 95.22% | 1 | 33.33% |
Darrick J. Wong | 22 | 4.21% | 1 | 33.33% |
Randy Dunlap | 3 | 0.57% | 1 | 33.33% |
Total | 523 | 3 |
// SPDX-License-Identifier: GPL-2.0 /* * Functions for incremental mean and variance. * * This program is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License version 2 as published by * the Free Software Foundation. * * This program is distributed in the hope that it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for * more details. * * Copyright © 2022 Daniel B. Hill * * Author: Daniel B. Hill <daniel@gluo.nz> * * Description: * * This is includes some incremental algorithms for mean and variance calculation * * Derived from the paper: https://fanf2.user.srcf.net/hermes/doc/antiforgery/stats.pdf * * Create a struct and if it's the weighted variant set the w field (weight = 2^k). * * Use mean_and_variance[_weighted]_update() on the struct to update it's state. * * Use the mean_and_variance[_weighted]_get_* functions to calculate the mean and variance, some computation * is deferred to these functions for performance reasons. * * see lib/math/mean_and_variance_test.c for examples of usage. * * DO NOT access the mean and variance fields of the weighted variants directly. * DO NOT change the weight after calling update. */ #include <linux/bug.h> #include <linux/compiler.h> #include <linux/export.h> #include <linux/limits.h> #include <linux/math.h> #include <linux/math64.h> #include <linux/module.h> #include "mean_and_variance.h" u128_u u128_div(u128_u n, u64 d) { u128_u r; u64 rem; u64 hi = u128_hi(n); u64 lo = u128_lo(n); u64 h = hi & ((u64) U32_MAX << 32); u64 l = (hi & (u64) U32_MAX) << 32; r = u128_shl(u64_to_u128(div64_u64_rem(h, d, &rem)), 64); r = u128_add(r, u128_shl(u64_to_u128(div64_u64_rem(l + (rem << 32), d, &rem)), 32)); r = u128_add(r, u64_to_u128(div64_u64_rem(lo + (rem << 32), d, &rem))); return r; } EXPORT_SYMBOL_GPL(u128_div); /** * mean_and_variance_get_mean() - get mean from @s * @s: mean and variance number of samples and their sums */ s64 mean_and_variance_get_mean(struct mean_and_variance s) { return s.n ? div64_u64(s.sum, s.n) : 0; } EXPORT_SYMBOL_GPL(mean_and_variance_get_mean); /** * mean_and_variance_get_variance() - get variance from @s1 * @s1: mean and variance number of samples and sums * * see linked pdf equation 12. */ u64 mean_and_variance_get_variance(struct mean_and_variance s1) { if (s1.n) { u128_u s2 = u128_div(s1.sum_squares, s1.n); u64 s3 = abs(mean_and_variance_get_mean(s1)); return u128_lo(u128_sub(s2, u128_square(s3))); } else { return 0; } } EXPORT_SYMBOL_GPL(mean_and_variance_get_variance); /** * mean_and_variance_get_stddev() - get standard deviation from @s * @s: mean and variance number of samples and their sums */ u32 mean_and_variance_get_stddev(struct mean_and_variance s) { return int_sqrt64(mean_and_variance_get_variance(s)); } EXPORT_SYMBOL_GPL(mean_and_variance_get_stddev); /** * mean_and_variance_weighted_update() - exponentially weighted variant of mean_and_variance_update() * @s: mean and variance number of samples and their sums * @x: new value to include in the &mean_and_variance_weighted * @initted: caller must track whether this is the first use or not * @weight: ewma weight * * see linked pdf: function derived from equations 140-143 where alpha = 2^w. * values are stored bitshifted for performance and added precision. */ void mean_and_variance_weighted_update(struct mean_and_variance_weighted *s, s64 x, bool initted, u8 weight) { // previous weighted variance. u8 w = weight; u64 var_w0 = s->variance; // new value weighted. s64 x_w = x << w; s64 diff_w = x_w - s->mean; s64 diff = fast_divpow2(diff_w, w); // new mean weighted. s64 u_w1 = s->mean + diff; if (!initted) { s->mean = x_w; s->variance = 0; } else { s->mean = u_w1; s->variance = ((var_w0 << w) - var_w0 + ((diff_w * (x_w - u_w1)) >> w)) >> w; } } EXPORT_SYMBOL_GPL(mean_and_variance_weighted_update); /** * mean_and_variance_weighted_get_mean() - get mean from @s * @s: mean and variance number of samples and their sums * @weight: ewma weight */ s64 mean_and_variance_weighted_get_mean(struct mean_and_variance_weighted s, u8 weight) { return fast_divpow2(s.mean, weight); } EXPORT_SYMBOL_GPL(mean_and_variance_weighted_get_mean); /** * mean_and_variance_weighted_get_variance() -- get variance from @s * @s: mean and variance number of samples and their sums * @weight: ewma weight */ u64 mean_and_variance_weighted_get_variance(struct mean_and_variance_weighted s, u8 weight) { // always positive don't need fast divpow2 return s.variance >> weight; } EXPORT_SYMBOL_GPL(mean_and_variance_weighted_get_variance); /** * mean_and_variance_weighted_get_stddev() - get standard deviation from @s * @s: mean and variance number of samples and their sums * @weight: ewma weight */ u32 mean_and_variance_weighted_get_stddev(struct mean_and_variance_weighted s, u8 weight) { return int_sqrt64(mean_and_variance_weighted_get_variance(s, weight)); } EXPORT_SYMBOL_GPL(mean_and_variance_weighted_get_stddev); MODULE_AUTHOR("Daniel B. Hill"); MODULE_LICENSE("GPL");
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1