Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Chris Mason | 2497 | 40.22% | 74 | 34.91% |
Qu Wenruo | 1062 | 17.10% | 12 | 5.66% |
Filipe David Borba Manana | 824 | 13.27% | 11 | 5.19% |
Josef Whiter | 399 | 6.43% | 16 | 7.55% |
Zheng Yan | 329 | 5.30% | 6 | 2.83% |
Christoph Hellwig | 196 | 3.16% | 14 | 6.60% |
Miao Xie | 179 | 2.88% | 4 | 1.89% |
Josef Bacik | 92 | 1.48% | 8 | 3.77% |
Liu Bo | 84 | 1.35% | 2 | 0.94% |
Mark Fasheh | 81 | 1.30% | 2 | 0.94% |
David Sterba | 79 | 1.27% | 16 | 7.55% |
Jeff Mahoney | 77 | 1.24% | 7 | 3.30% |
Johannes Thumshirn | 57 | 0.92% | 4 | 1.89% |
Arne Jansen | 42 | 0.68% | 1 | 0.47% |
Nikolay Borisov | 39 | 0.63% | 6 | 2.83% |
Chandan Rajendra | 36 | 0.58% | 1 | 0.47% |
Tsutomu Itoh | 27 | 0.43% | 3 | 1.42% |
Li Dongyang | 18 | 0.29% | 1 | 0.47% |
Omar Sandoval | 15 | 0.24% | 4 | 1.89% |
ethanwu | 12 | 0.19% | 1 | 0.47% |
Li Zefan | 9 | 0.14% | 2 | 0.94% |
Stefan Behrens | 8 | 0.13% | 1 | 0.47% |
Kent Overstreet | 8 | 0.13% | 1 | 0.47% |
Naohiro Aota | 6 | 0.10% | 1 | 0.47% |
Eric Biggers | 5 | 0.08% | 1 | 0.47% |
Boris Burkov | 5 | 0.08% | 1 | 0.47% |
Seraphime Kirkovski | 5 | 0.08% | 1 | 0.47% |
Satoru Takeuchi | 4 | 0.06% | 1 | 0.47% |
Anand Jain | 4 | 0.06% | 2 | 0.94% |
Linus Torvalds (pre-git) | 2 | 0.03% | 1 | 0.47% |
Frank Holton | 2 | 0.03% | 1 | 0.47% |
Zhi Yong Wu | 1 | 0.02% | 1 | 0.47% |
Eric Sandeen | 1 | 0.02% | 1 | 0.47% |
Kirill A. Shutemov | 1 | 0.02% | 1 | 0.47% |
Marcos Paulo de Souza | 1 | 0.02% | 1 | 0.47% |
Yoshinori Sano | 1 | 0.02% | 1 | 0.47% |
Linus Torvalds | 1 | 0.02% | 1 | 0.47% |
Total | 6209 | 212 |
// SPDX-License-Identifier: GPL-2.0 /* * Copyright (C) 2007 Oracle. All rights reserved. */ #include <linux/bio.h> #include <linux/slab.h> #include <linux/pagemap.h> #include <linux/highmem.h> #include <linux/sched/mm.h> #include <crypto/hash.h> #include "messages.h" #include "ctree.h" #include "disk-io.h" #include "transaction.h" #include "bio.h" #include "compression.h" #include "fs.h" #include "accessors.h" #include "file-item.h" #define __MAX_CSUM_ITEMS(r, size) ((unsigned long)(((BTRFS_LEAF_DATA_SIZE(r) - \ sizeof(struct btrfs_item) * 2) / \ size) - 1)) #define MAX_CSUM_ITEMS(r, size) (min_t(u32, __MAX_CSUM_ITEMS(r, size), \ PAGE_SIZE)) /* * Set inode's size according to filesystem options. * * @inode: inode we want to update the disk_i_size for * @new_i_size: i_size we want to set to, 0 if we use i_size * * With NO_HOLES set this simply sets the disk_is_size to whatever i_size_read() * returns as it is perfectly fine with a file that has holes without hole file * extent items. * * However without NO_HOLES we need to only return the area that is contiguous * from the 0 offset of the file. Otherwise we could end up adjust i_size up * to an extent that has a gap in between. * * Finally new_i_size should only be set in the case of truncate where we're not * ready to use i_size_read() as the limiter yet. */ void btrfs_inode_safe_disk_i_size_write(struct btrfs_inode *inode, u64 new_i_size) { struct btrfs_fs_info *fs_info = inode->root->fs_info; u64 start, end, i_size; int ret; spin_lock(&inode->lock); i_size = new_i_size ?: i_size_read(&inode->vfs_inode); if (btrfs_fs_incompat(fs_info, NO_HOLES)) { inode->disk_i_size = i_size; goto out_unlock; } ret = find_contiguous_extent_bit(inode->file_extent_tree, 0, &start, &end, EXTENT_DIRTY); if (!ret && start == 0) i_size = min(i_size, end + 1); else i_size = 0; inode->disk_i_size = i_size; out_unlock: spin_unlock(&inode->lock); } /* * Mark range within a file as having a new extent inserted. * * @inode: inode being modified * @start: start file offset of the file extent we've inserted * @len: logical length of the file extent item * * Call when we are inserting a new file extent where there was none before. * Does not need to call this in the case where we're replacing an existing file * extent, however if not sure it's fine to call this multiple times. * * The start and len must match the file extent item, so thus must be sectorsize * aligned. */ int btrfs_inode_set_file_extent_range(struct btrfs_inode *inode, u64 start, u64 len) { if (len == 0) return 0; ASSERT(IS_ALIGNED(start + len, inode->root->fs_info->sectorsize)); if (btrfs_fs_incompat(inode->root->fs_info, NO_HOLES)) return 0; return set_extent_bit(inode->file_extent_tree, start, start + len - 1, EXTENT_DIRTY, NULL); } /* * Mark an inode range as not having a backing extent. * * @inode: inode being modified * @start: start file offset of the file extent we've inserted * @len: logical length of the file extent item * * Called when we drop a file extent, for example when we truncate. Doesn't * need to be called for cases where we're replacing a file extent, like when * we've COWed a file extent. * * The start and len must match the file extent item, so thus must be sectorsize * aligned. */ int btrfs_inode_clear_file_extent_range(struct btrfs_inode *inode, u64 start, u64 len) { if (len == 0) return 0; ASSERT(IS_ALIGNED(start + len, inode->root->fs_info->sectorsize) || len == (u64)-1); if (btrfs_fs_incompat(inode->root->fs_info, NO_HOLES)) return 0; return clear_extent_bit(inode->file_extent_tree, start, start + len - 1, EXTENT_DIRTY, NULL); } static size_t bytes_to_csum_size(const struct btrfs_fs_info *fs_info, u32 bytes) { ASSERT(IS_ALIGNED(bytes, fs_info->sectorsize)); return (bytes >> fs_info->sectorsize_bits) * fs_info->csum_size; } static size_t csum_size_to_bytes(const struct btrfs_fs_info *fs_info, u32 csum_size) { ASSERT(IS_ALIGNED(csum_size, fs_info->csum_size)); return (csum_size / fs_info->csum_size) << fs_info->sectorsize_bits; } static inline u32 max_ordered_sum_bytes(const struct btrfs_fs_info *fs_info) { u32 max_csum_size = round_down(PAGE_SIZE - sizeof(struct btrfs_ordered_sum), fs_info->csum_size); return csum_size_to_bytes(fs_info, max_csum_size); } /* * Calculate the total size needed to allocate for an ordered sum structure * spanning @bytes in the file. */ static int btrfs_ordered_sum_size(struct btrfs_fs_info *fs_info, unsigned long bytes) { return sizeof(struct btrfs_ordered_sum) + bytes_to_csum_size(fs_info, bytes); } int btrfs_insert_hole_extent(struct btrfs_trans_handle *trans, struct btrfs_root *root, u64 objectid, u64 pos, u64 num_bytes) { int ret = 0; struct btrfs_file_extent_item *item; struct btrfs_key file_key; struct btrfs_path *path; struct extent_buffer *leaf; path = btrfs_alloc_path(); if (!path) return -ENOMEM; file_key.objectid = objectid; file_key.offset = pos; file_key.type = BTRFS_EXTENT_DATA_KEY; ret = btrfs_insert_empty_item(trans, root, path, &file_key, sizeof(*item)); if (ret < 0) goto out; leaf = path->nodes[0]; item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_file_extent_item); btrfs_set_file_extent_disk_bytenr(leaf, item, 0); btrfs_set_file_extent_disk_num_bytes(leaf, item, 0); btrfs_set_file_extent_offset(leaf, item, 0); btrfs_set_file_extent_num_bytes(leaf, item, num_bytes); btrfs_set_file_extent_ram_bytes(leaf, item, num_bytes); btrfs_set_file_extent_generation(leaf, item, trans->transid); btrfs_set_file_extent_type(leaf, item, BTRFS_FILE_EXTENT_REG); btrfs_set_file_extent_compression(leaf, item, 0); btrfs_set_file_extent_encryption(leaf, item, 0); btrfs_set_file_extent_other_encoding(leaf, item, 0); btrfs_mark_buffer_dirty(trans, leaf); out: btrfs_free_path(path); return ret; } static struct btrfs_csum_item * btrfs_lookup_csum(struct btrfs_trans_handle *trans, struct btrfs_root *root, struct btrfs_path *path, u64 bytenr, int cow) { struct btrfs_fs_info *fs_info = root->fs_info; int ret; struct btrfs_key file_key; struct btrfs_key found_key; struct btrfs_csum_item *item; struct extent_buffer *leaf; u64 csum_offset = 0; const u32 csum_size = fs_info->csum_size; int csums_in_item; file_key.objectid = BTRFS_EXTENT_CSUM_OBJECTID; file_key.offset = bytenr; file_key.type = BTRFS_EXTENT_CSUM_KEY; ret = btrfs_search_slot(trans, root, &file_key, path, 0, cow); if (ret < 0) goto fail; leaf = path->nodes[0]; if (ret > 0) { ret = 1; if (path->slots[0] == 0) goto fail; path->slots[0]--; btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); if (found_key.type != BTRFS_EXTENT_CSUM_KEY) goto fail; csum_offset = (bytenr - found_key.offset) >> fs_info->sectorsize_bits; csums_in_item = btrfs_item_size(leaf, path->slots[0]); csums_in_item /= csum_size; if (csum_offset == csums_in_item) { ret = -EFBIG; goto fail; } else if (csum_offset > csums_in_item) { goto fail; } } item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_csum_item); item = (struct btrfs_csum_item *)((unsigned char *)item + csum_offset * csum_size); return item; fail: if (ret > 0) ret = -ENOENT; return ERR_PTR(ret); } int btrfs_lookup_file_extent(struct btrfs_trans_handle *trans, struct btrfs_root *root, struct btrfs_path *path, u64 objectid, u64 offset, int mod) { struct btrfs_key file_key; int ins_len = mod < 0 ? -1 : 0; int cow = mod != 0; file_key.objectid = objectid; file_key.offset = offset; file_key.type = BTRFS_EXTENT_DATA_KEY; return btrfs_search_slot(trans, root, &file_key, path, ins_len, cow); } /* * Find checksums for logical bytenr range [disk_bytenr, disk_bytenr + len) and * store the result to @dst. * * Return >0 for the number of sectors we found. * Return 0 for the range [disk_bytenr, disk_bytenr + sectorsize) has no csum * for it. Caller may want to try next sector until one range is hit. * Return <0 for fatal error. */ static int search_csum_tree(struct btrfs_fs_info *fs_info, struct btrfs_path *path, u64 disk_bytenr, u64 len, u8 *dst) { struct btrfs_root *csum_root; struct btrfs_csum_item *item = NULL; struct btrfs_key key; const u32 sectorsize = fs_info->sectorsize; const u32 csum_size = fs_info->csum_size; u32 itemsize; int ret; u64 csum_start; u64 csum_len; ASSERT(IS_ALIGNED(disk_bytenr, sectorsize) && IS_ALIGNED(len, sectorsize)); /* Check if the current csum item covers disk_bytenr */ if (path->nodes[0]) { item = btrfs_item_ptr(path->nodes[0], path->slots[0], struct btrfs_csum_item); btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]); itemsize = btrfs_item_size(path->nodes[0], path->slots[0]); csum_start = key.offset; csum_len = (itemsize / csum_size) * sectorsize; if (in_range(disk_bytenr, csum_start, csum_len)) goto found; } /* Current item doesn't contain the desired range, search again */ btrfs_release_path(path); csum_root = btrfs_csum_root(fs_info, disk_bytenr); item = btrfs_lookup_csum(NULL, csum_root, path, disk_bytenr, 0); if (IS_ERR(item)) { ret = PTR_ERR(item); goto out; } btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]); itemsize = btrfs_item_size(path->nodes[0], path->slots[0]); csum_start = key.offset; csum_len = (itemsize / csum_size) * sectorsize; ASSERT(in_range(disk_bytenr, csum_start, csum_len)); found: ret = (min(csum_start + csum_len, disk_bytenr + len) - disk_bytenr) >> fs_info->sectorsize_bits; read_extent_buffer(path->nodes[0], dst, (unsigned long)item, ret * csum_size); out: if (ret == -ENOENT || ret == -EFBIG) ret = 0; return ret; } /* * Lookup the checksum for the read bio in csum tree. * * Return: BLK_STS_RESOURCE if allocating memory fails, BLK_STS_OK otherwise. */ blk_status_t btrfs_lookup_bio_sums(struct btrfs_bio *bbio) { struct btrfs_inode *inode = bbio->inode; struct btrfs_fs_info *fs_info = inode->root->fs_info; struct bio *bio = &bbio->bio; struct btrfs_path *path; const u32 sectorsize = fs_info->sectorsize; const u32 csum_size = fs_info->csum_size; u32 orig_len = bio->bi_iter.bi_size; u64 orig_disk_bytenr = bio->bi_iter.bi_sector << SECTOR_SHIFT; const unsigned int nblocks = orig_len >> fs_info->sectorsize_bits; blk_status_t ret = BLK_STS_OK; u32 bio_offset = 0; if ((inode->flags & BTRFS_INODE_NODATASUM) || test_bit(BTRFS_FS_STATE_NO_CSUMS, &fs_info->fs_state)) return BLK_STS_OK; /* * This function is only called for read bio. * * This means two things: * - All our csums should only be in csum tree * No ordered extents csums, as ordered extents are only for write * path. * - No need to bother any other info from bvec * Since we're looking up csums, the only important info is the * disk_bytenr and the length, which can be extracted from bi_iter * directly. */ ASSERT(bio_op(bio) == REQ_OP_READ); path = btrfs_alloc_path(); if (!path) return BLK_STS_RESOURCE; if (nblocks * csum_size > BTRFS_BIO_INLINE_CSUM_SIZE) { bbio->csum = kmalloc_array(nblocks, csum_size, GFP_NOFS); if (!bbio->csum) { btrfs_free_path(path); return BLK_STS_RESOURCE; } } else { bbio->csum = bbio->csum_inline; } /* * If requested number of sectors is larger than one leaf can contain, * kick the readahead for csum tree. */ if (nblocks > fs_info->csums_per_leaf) path->reada = READA_FORWARD; /* * the free space stuff is only read when it hasn't been * updated in the current transaction. So, we can safely * read from the commit root and sidestep a nasty deadlock * between reading the free space cache and updating the csum tree. */ if (btrfs_is_free_space_inode(inode)) { path->search_commit_root = 1; path->skip_locking = 1; } while (bio_offset < orig_len) { int count; u64 cur_disk_bytenr = orig_disk_bytenr + bio_offset; u8 *csum_dst = bbio->csum + (bio_offset >> fs_info->sectorsize_bits) * csum_size; count = search_csum_tree(fs_info, path, cur_disk_bytenr, orig_len - bio_offset, csum_dst); if (count < 0) { ret = errno_to_blk_status(count); if (bbio->csum != bbio->csum_inline) kfree(bbio->csum); bbio->csum = NULL; break; } /* * We didn't find a csum for this range. We need to make sure * we complain loudly about this, because we are not NODATASUM. * * However for the DATA_RELOC inode we could potentially be * relocating data extents for a NODATASUM inode, so the inode * itself won't be marked with NODATASUM, but the extent we're * copying is in fact NODATASUM. If we don't find a csum we * assume this is the case. */ if (count == 0) { memset(csum_dst, 0, csum_size); count = 1; if (inode->root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID) { u64 file_offset = bbio->file_offset + bio_offset; set_extent_bit(&inode->io_tree, file_offset, file_offset + sectorsize - 1, EXTENT_NODATASUM, NULL); } else { btrfs_warn_rl(fs_info, "csum hole found for disk bytenr range [%llu, %llu)", cur_disk_bytenr, cur_disk_bytenr + sectorsize); } } bio_offset += count * sectorsize; } btrfs_free_path(path); return ret; } int btrfs_lookup_csums_list(struct btrfs_root *root, u64 start, u64 end, struct list_head *list, int search_commit, bool nowait) { struct btrfs_fs_info *fs_info = root->fs_info; struct btrfs_key key; struct btrfs_path *path; struct extent_buffer *leaf; struct btrfs_ordered_sum *sums; struct btrfs_csum_item *item; LIST_HEAD(tmplist); int ret; ASSERT(IS_ALIGNED(start, fs_info->sectorsize) && IS_ALIGNED(end + 1, fs_info->sectorsize)); path = btrfs_alloc_path(); if (!path) return -ENOMEM; path->nowait = nowait; if (search_commit) { path->skip_locking = 1; path->reada = READA_FORWARD; path->search_commit_root = 1; } key.objectid = BTRFS_EXTENT_CSUM_OBJECTID; key.offset = start; key.type = BTRFS_EXTENT_CSUM_KEY; ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); if (ret < 0) goto fail; if (ret > 0 && path->slots[0] > 0) { leaf = path->nodes[0]; btrfs_item_key_to_cpu(leaf, &key, path->slots[0] - 1); /* * There are two cases we can hit here for the previous csum * item: * * |<- search range ->| * |<- csum item ->| * * Or * |<- search range ->| * |<- csum item ->| * * Check if the previous csum item covers the leading part of * the search range. If so we have to start from previous csum * item. */ if (key.objectid == BTRFS_EXTENT_CSUM_OBJECTID && key.type == BTRFS_EXTENT_CSUM_KEY) { if (bytes_to_csum_size(fs_info, start - key.offset) < btrfs_item_size(leaf, path->slots[0] - 1)) path->slots[0]--; } } while (start <= end) { u64 csum_end; leaf = path->nodes[0]; if (path->slots[0] >= btrfs_header_nritems(leaf)) { ret = btrfs_next_leaf(root, path); if (ret < 0) goto fail; if (ret > 0) break; leaf = path->nodes[0]; } btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); if (key.objectid != BTRFS_EXTENT_CSUM_OBJECTID || key.type != BTRFS_EXTENT_CSUM_KEY || key.offset > end) break; if (key.offset > start) start = key.offset; csum_end = key.offset + csum_size_to_bytes(fs_info, btrfs_item_size(leaf, path->slots[0])); if (csum_end <= start) { path->slots[0]++; continue; } csum_end = min(csum_end, end + 1); item = btrfs_item_ptr(path->nodes[0], path->slots[0], struct btrfs_csum_item); while (start < csum_end) { unsigned long offset; size_t size; size = min_t(size_t, csum_end - start, max_ordered_sum_bytes(fs_info)); sums = kzalloc(btrfs_ordered_sum_size(fs_info, size), GFP_NOFS); if (!sums) { ret = -ENOMEM; goto fail; } sums->logical = start; sums->len = size; offset = bytes_to_csum_size(fs_info, start - key.offset); read_extent_buffer(path->nodes[0], sums->sums, ((unsigned long)item) + offset, bytes_to_csum_size(fs_info, size)); start += size; list_add_tail(&sums->list, &tmplist); } path->slots[0]++; } ret = 0; fail: while (ret < 0 && !list_empty(&tmplist)) { sums = list_entry(tmplist.next, struct btrfs_ordered_sum, list); list_del(&sums->list); kfree(sums); } list_splice_tail(&tmplist, list); btrfs_free_path(path); return ret; } /* * Do the same work as btrfs_lookup_csums_list(), the difference is in how * we return the result. * * This version will set the corresponding bits in @csum_bitmap to represent * that there is a csum found. * Each bit represents a sector. Thus caller should ensure @csum_buf passed * in is large enough to contain all csums. */ int btrfs_lookup_csums_bitmap(struct btrfs_root *root, struct btrfs_path *path, u64 start, u64 end, u8 *csum_buf, unsigned long *csum_bitmap) { struct btrfs_fs_info *fs_info = root->fs_info; struct btrfs_key key; struct extent_buffer *leaf; struct btrfs_csum_item *item; const u64 orig_start = start; bool free_path = false; int ret; ASSERT(IS_ALIGNED(start, fs_info->sectorsize) && IS_ALIGNED(end + 1, fs_info->sectorsize)); if (!path) { path = btrfs_alloc_path(); if (!path) return -ENOMEM; free_path = true; } /* Check if we can reuse the previous path. */ if (path->nodes[0]) { btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]); if (key.objectid == BTRFS_EXTENT_CSUM_OBJECTID && key.type == BTRFS_EXTENT_CSUM_KEY && key.offset <= start) goto search_forward; btrfs_release_path(path); } key.objectid = BTRFS_EXTENT_CSUM_OBJECTID; key.type = BTRFS_EXTENT_CSUM_KEY; key.offset = start; ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); if (ret < 0) goto fail; if (ret > 0 && path->slots[0] > 0) { leaf = path->nodes[0]; btrfs_item_key_to_cpu(leaf, &key, path->slots[0] - 1); /* * There are two cases we can hit here for the previous csum * item: * * |<- search range ->| * |<- csum item ->| * * Or * |<- search range ->| * |<- csum item ->| * * Check if the previous csum item covers the leading part of * the search range. If so we have to start from previous csum * item. */ if (key.objectid == BTRFS_EXTENT_CSUM_OBJECTID && key.type == BTRFS_EXTENT_CSUM_KEY) { if (bytes_to_csum_size(fs_info, start - key.offset) < btrfs_item_size(leaf, path->slots[0] - 1)) path->slots[0]--; } } search_forward: while (start <= end) { u64 csum_end; leaf = path->nodes[0]; if (path->slots[0] >= btrfs_header_nritems(leaf)) { ret = btrfs_next_leaf(root, path); if (ret < 0) goto fail; if (ret > 0) break; leaf = path->nodes[0]; } btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); if (key.objectid != BTRFS_EXTENT_CSUM_OBJECTID || key.type != BTRFS_EXTENT_CSUM_KEY || key.offset > end) break; if (key.offset > start) start = key.offset; csum_end = key.offset + csum_size_to_bytes(fs_info, btrfs_item_size(leaf, path->slots[0])); if (csum_end <= start) { path->slots[0]++; continue; } csum_end = min(csum_end, end + 1); item = btrfs_item_ptr(path->nodes[0], path->slots[0], struct btrfs_csum_item); while (start < csum_end) { unsigned long offset; size_t size; u8 *csum_dest = csum_buf + bytes_to_csum_size(fs_info, start - orig_start); size = min_t(size_t, csum_end - start, end + 1 - start); offset = bytes_to_csum_size(fs_info, start - key.offset); read_extent_buffer(path->nodes[0], csum_dest, ((unsigned long)item) + offset, bytes_to_csum_size(fs_info, size)); bitmap_set(csum_bitmap, (start - orig_start) >> fs_info->sectorsize_bits, size >> fs_info->sectorsize_bits); start += size; } path->slots[0]++; } ret = 0; fail: if (free_path) btrfs_free_path(path); return ret; } /* * Calculate checksums of the data contained inside a bio. */ blk_status_t btrfs_csum_one_bio(struct btrfs_bio *bbio) { struct btrfs_ordered_extent *ordered = bbio->ordered; struct btrfs_inode *inode = bbio->inode; struct btrfs_fs_info *fs_info = inode->root->fs_info; SHASH_DESC_ON_STACK(shash, fs_info->csum_shash); struct bio *bio = &bbio->bio; struct btrfs_ordered_sum *sums; char *data; struct bvec_iter iter; struct bio_vec bvec; int index; unsigned int blockcount; int i; unsigned nofs_flag; nofs_flag = memalloc_nofs_save(); sums = kvzalloc(btrfs_ordered_sum_size(fs_info, bio->bi_iter.bi_size), GFP_KERNEL); memalloc_nofs_restore(nofs_flag); if (!sums) return BLK_STS_RESOURCE; sums->len = bio->bi_iter.bi_size; INIT_LIST_HEAD(&sums->list); sums->logical = bio->bi_iter.bi_sector << SECTOR_SHIFT; index = 0; shash->tfm = fs_info->csum_shash; bio_for_each_segment(bvec, bio, iter) { blockcount = BTRFS_BYTES_TO_BLKS(fs_info, bvec.bv_len + fs_info->sectorsize - 1); for (i = 0; i < blockcount; i++) { data = bvec_kmap_local(&bvec); crypto_shash_digest(shash, data + (i * fs_info->sectorsize), fs_info->sectorsize, sums->sums + index); kunmap_local(data); index += fs_info->csum_size; } } bbio->sums = sums; btrfs_add_ordered_sum(ordered, sums); return 0; } /* * Nodatasum I/O on zoned file systems still requires an btrfs_ordered_sum to * record the updated logical address on Zone Append completion. * Allocate just the structure with an empty sums array here for that case. */ blk_status_t btrfs_alloc_dummy_sum(struct btrfs_bio *bbio) { bbio->sums = kmalloc(sizeof(*bbio->sums), GFP_NOFS); if (!bbio->sums) return BLK_STS_RESOURCE; bbio->sums->len = bbio->bio.bi_iter.bi_size; bbio->sums->logical = bbio->bio.bi_iter.bi_sector << SECTOR_SHIFT; btrfs_add_ordered_sum(bbio->ordered, bbio->sums); return 0; } /* * Remove one checksum overlapping a range. * * This expects the key to describe the csum pointed to by the path, and it * expects the csum to overlap the range [bytenr, len] * * The csum should not be entirely contained in the range and the range should * not be entirely contained in the csum. * * This calls btrfs_truncate_item with the correct args based on the overlap, * and fixes up the key as required. */ static noinline void truncate_one_csum(struct btrfs_trans_handle *trans, struct btrfs_path *path, struct btrfs_key *key, u64 bytenr, u64 len) { struct btrfs_fs_info *fs_info = trans->fs_info; struct extent_buffer *leaf; const u32 csum_size = fs_info->csum_size; u64 csum_end; u64 end_byte = bytenr + len; u32 blocksize_bits = fs_info->sectorsize_bits; leaf = path->nodes[0]; csum_end = btrfs_item_size(leaf, path->slots[0]) / csum_size; csum_end <<= blocksize_bits; csum_end += key->offset; if (key->offset < bytenr && csum_end <= end_byte) { /* * [ bytenr - len ] * [ ] * [csum ] * A simple truncate off the end of the item */ u32 new_size = (bytenr - key->offset) >> blocksize_bits; new_size *= csum_size; btrfs_truncate_item(trans, path, new_size, 1); } else if (key->offset >= bytenr && csum_end > end_byte && end_byte > key->offset) { /* * [ bytenr - len ] * [ ] * [csum ] * we need to truncate from the beginning of the csum */ u32 new_size = (csum_end - end_byte) >> blocksize_bits; new_size *= csum_size; btrfs_truncate_item(trans, path, new_size, 0); key->offset = end_byte; btrfs_set_item_key_safe(trans, path, key); } else { BUG(); } } /* * Delete the csum items from the csum tree for a given range of bytes. */ int btrfs_del_csums(struct btrfs_trans_handle *trans, struct btrfs_root *root, u64 bytenr, u64 len) { struct btrfs_fs_info *fs_info = trans->fs_info; struct btrfs_path *path; struct btrfs_key key; u64 end_byte = bytenr + len; u64 csum_end; struct extent_buffer *leaf; int ret = 0; const u32 csum_size = fs_info->csum_size; u32 blocksize_bits = fs_info->sectorsize_bits; ASSERT(root->root_key.objectid == BTRFS_CSUM_TREE_OBJECTID || root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID); path = btrfs_alloc_path(); if (!path) return -ENOMEM; while (1) { key.objectid = BTRFS_EXTENT_CSUM_OBJECTID; key.offset = end_byte - 1; key.type = BTRFS_EXTENT_CSUM_KEY; ret = btrfs_search_slot(trans, root, &key, path, -1, 1); if (ret > 0) { ret = 0; if (path->slots[0] == 0) break; path->slots[0]--; } else if (ret < 0) { break; } leaf = path->nodes[0]; btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); if (key.objectid != BTRFS_EXTENT_CSUM_OBJECTID || key.type != BTRFS_EXTENT_CSUM_KEY) { break; } if (key.offset >= end_byte) break; csum_end = btrfs_item_size(leaf, path->slots[0]) / csum_size; csum_end <<= blocksize_bits; csum_end += key.offset; /* this csum ends before we start, we're done */ if (csum_end <= bytenr) break; /* delete the entire item, it is inside our range */ if (key.offset >= bytenr && csum_end <= end_byte) { int del_nr = 1; /* * Check how many csum items preceding this one in this * leaf correspond to our range and then delete them all * at once. */ if (key.offset > bytenr && path->slots[0] > 0) { int slot = path->slots[0] - 1; while (slot >= 0) { struct btrfs_key pk; btrfs_item_key_to_cpu(leaf, &pk, slot); if (pk.offset < bytenr || pk.type != BTRFS_EXTENT_CSUM_KEY || pk.objectid != BTRFS_EXTENT_CSUM_OBJECTID) break; path->slots[0] = slot; del_nr++; key.offset = pk.offset; slot--; } } ret = btrfs_del_items(trans, root, path, path->slots[0], del_nr); if (ret) break; if (key.offset == bytenr) break; } else if (key.offset < bytenr && csum_end > end_byte) { unsigned long offset; unsigned long shift_len; unsigned long item_offset; /* * [ bytenr - len ] * [csum ] * * Our bytes are in the middle of the csum, * we need to split this item and insert a new one. * * But we can't drop the path because the * csum could change, get removed, extended etc. * * The trick here is the max size of a csum item leaves * enough room in the tree block for a single * item header. So, we split the item in place, * adding a new header pointing to the existing * bytes. Then we loop around again and we have * a nicely formed csum item that we can neatly * truncate. */ offset = (bytenr - key.offset) >> blocksize_bits; offset *= csum_size; shift_len = (len >> blocksize_bits) * csum_size; item_offset = btrfs_item_ptr_offset(leaf, path->slots[0]); memzero_extent_buffer(leaf, item_offset + offset, shift_len); key.offset = bytenr; /* * btrfs_split_item returns -EAGAIN when the * item changed size or key */ ret = btrfs_split_item(trans, root, path, &key, offset); if (ret && ret != -EAGAIN) { btrfs_abort_transaction(trans, ret); break; } ret = 0; key.offset = end_byte - 1; } else { truncate_one_csum(trans, path, &key, bytenr, len); if (key.offset < bytenr) break; } btrfs_release_path(path); } btrfs_free_path(path); return ret; } static int find_next_csum_offset(struct btrfs_root *root, struct btrfs_path *path, u64 *next_offset) { const u32 nritems = btrfs_header_nritems(path->nodes[0]); struct btrfs_key found_key; int slot = path->slots[0] + 1; int ret; if (nritems == 0 || slot >= nritems) { ret = btrfs_next_leaf(root, path); if (ret < 0) { return ret; } else if (ret > 0) { *next_offset = (u64)-1; return 0; } slot = path->slots[0]; } btrfs_item_key_to_cpu(path->nodes[0], &found_key, slot); if (found_key.objectid != BTRFS_EXTENT_CSUM_OBJECTID || found_key.type != BTRFS_EXTENT_CSUM_KEY) *next_offset = (u64)-1; else *next_offset = found_key.offset; return 0; } int btrfs_csum_file_blocks(struct btrfs_trans_handle *trans, struct btrfs_root *root, struct btrfs_ordered_sum *sums) { struct btrfs_fs_info *fs_info = root->fs_info; struct btrfs_key file_key; struct btrfs_key found_key; struct btrfs_path *path; struct btrfs_csum_item *item; struct btrfs_csum_item *item_end; struct extent_buffer *leaf = NULL; u64 next_offset; u64 total_bytes = 0; u64 csum_offset; u64 bytenr; u32 ins_size; int index = 0; int found_next; int ret; const u32 csum_size = fs_info->csum_size; path = btrfs_alloc_path(); if (!path) return -ENOMEM; again: next_offset = (u64)-1; found_next = 0; bytenr = sums->logical + total_bytes; file_key.objectid = BTRFS_EXTENT_CSUM_OBJECTID; file_key.offset = bytenr; file_key.type = BTRFS_EXTENT_CSUM_KEY; item = btrfs_lookup_csum(trans, root, path, bytenr, 1); if (!IS_ERR(item)) { ret = 0; leaf = path->nodes[0]; item_end = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_csum_item); item_end = (struct btrfs_csum_item *)((char *)item_end + btrfs_item_size(leaf, path->slots[0])); goto found; } ret = PTR_ERR(item); if (ret != -EFBIG && ret != -ENOENT) goto out; if (ret == -EFBIG) { u32 item_size; /* we found one, but it isn't big enough yet */ leaf = path->nodes[0]; item_size = btrfs_item_size(leaf, path->slots[0]); if ((item_size / csum_size) >= MAX_CSUM_ITEMS(fs_info, csum_size)) { /* already at max size, make a new one */ goto insert; } } else { /* We didn't find a csum item, insert one. */ ret = find_next_csum_offset(root, path, &next_offset); if (ret < 0) goto out; found_next = 1; goto insert; } /* * At this point, we know the tree has a checksum item that ends at an * offset matching the start of the checksum range we want to insert. * We try to extend that item as much as possible and then add as many * checksums to it as they fit. * * First check if the leaf has enough free space for at least one * checksum. If it has go directly to the item extension code, otherwise * release the path and do a search for insertion before the extension. */ if (btrfs_leaf_free_space(leaf) >= csum_size) { btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); csum_offset = (bytenr - found_key.offset) >> fs_info->sectorsize_bits; goto extend_csum; } btrfs_release_path(path); path->search_for_extension = 1; ret = btrfs_search_slot(trans, root, &file_key, path, csum_size, 1); path->search_for_extension = 0; if (ret < 0) goto out; if (ret > 0) { if (path->slots[0] == 0) goto insert; path->slots[0]--; } leaf = path->nodes[0]; btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); csum_offset = (bytenr - found_key.offset) >> fs_info->sectorsize_bits; if (found_key.type != BTRFS_EXTENT_CSUM_KEY || found_key.objectid != BTRFS_EXTENT_CSUM_OBJECTID || csum_offset >= MAX_CSUM_ITEMS(fs_info, csum_size)) { goto insert; } extend_csum: if (csum_offset == btrfs_item_size(leaf, path->slots[0]) / csum_size) { int extend_nr; u64 tmp; u32 diff; tmp = sums->len - total_bytes; tmp >>= fs_info->sectorsize_bits; WARN_ON(tmp < 1); extend_nr = max_t(int, 1, tmp); /* * A log tree can already have checksum items with a subset of * the checksums we are trying to log. This can happen after * doing a sequence of partial writes into prealloc extents and * fsyncs in between, with a full fsync logging a larger subrange * of an extent for which a previous fast fsync logged a smaller * subrange. And this happens in particular due to merging file * extent items when we complete an ordered extent for a range * covered by a prealloc extent - this is done at * btrfs_mark_extent_written(). * * So if we try to extend the previous checksum item, which has * a range that ends at the start of the range we want to insert, * make sure we don't extend beyond the start offset of the next * checksum item. If we are at the last item in the leaf, then * forget the optimization of extending and add a new checksum * item - it is not worth the complexity of releasing the path, * getting the first key for the next leaf, repeat the btree * search, etc, because log trees are temporary anyway and it * would only save a few bytes of leaf space. */ if (root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID) { if (path->slots[0] + 1 >= btrfs_header_nritems(path->nodes[0])) { ret = find_next_csum_offset(root, path, &next_offset); if (ret < 0) goto out; found_next = 1; goto insert; } ret = find_next_csum_offset(root, path, &next_offset); if (ret < 0) goto out; tmp = (next_offset - bytenr) >> fs_info->sectorsize_bits; if (tmp <= INT_MAX) extend_nr = min_t(int, extend_nr, tmp); } diff = (csum_offset + extend_nr) * csum_size; diff = min(diff, MAX_CSUM_ITEMS(fs_info, csum_size) * csum_size); diff = diff - btrfs_item_size(leaf, path->slots[0]); diff = min_t(u32, btrfs_leaf_free_space(leaf), diff); diff /= csum_size; diff *= csum_size; btrfs_extend_item(trans, path, diff); ret = 0; goto csum; } insert: btrfs_release_path(path); csum_offset = 0; if (found_next) { u64 tmp; tmp = sums->len - total_bytes; tmp >>= fs_info->sectorsize_bits; tmp = min(tmp, (next_offset - file_key.offset) >> fs_info->sectorsize_bits); tmp = max_t(u64, 1, tmp); tmp = min_t(u64, tmp, MAX_CSUM_ITEMS(fs_info, csum_size)); ins_size = csum_size * tmp; } else { ins_size = csum_size; } ret = btrfs_insert_empty_item(trans, root, path, &file_key, ins_size); if (ret < 0) goto out; leaf = path->nodes[0]; csum: item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_csum_item); item_end = (struct btrfs_csum_item *)((unsigned char *)item + btrfs_item_size(leaf, path->slots[0])); item = (struct btrfs_csum_item *)((unsigned char *)item + csum_offset * csum_size); found: ins_size = (u32)(sums->len - total_bytes) >> fs_info->sectorsize_bits; ins_size *= csum_size; ins_size = min_t(u32, (unsigned long)item_end - (unsigned long)item, ins_size); write_extent_buffer(leaf, sums->sums + index, (unsigned long)item, ins_size); index += ins_size; ins_size /= csum_size; total_bytes += ins_size * fs_info->sectorsize; btrfs_mark_buffer_dirty(trans, path->nodes[0]); if (total_bytes < sums->len) { btrfs_release_path(path); cond_resched(); goto again; } out: btrfs_free_path(path); return ret; } void btrfs_extent_item_to_extent_map(struct btrfs_inode *inode, const struct btrfs_path *path, struct btrfs_file_extent_item *fi, struct extent_map *em) { struct btrfs_fs_info *fs_info = inode->root->fs_info; struct btrfs_root *root = inode->root; struct extent_buffer *leaf = path->nodes[0]; const int slot = path->slots[0]; struct btrfs_key key; u64 extent_start, extent_end; u64 bytenr; u8 type = btrfs_file_extent_type(leaf, fi); int compress_type = btrfs_file_extent_compression(leaf, fi); btrfs_item_key_to_cpu(leaf, &key, slot); extent_start = key.offset; extent_end = btrfs_file_extent_end(path); em->ram_bytes = btrfs_file_extent_ram_bytes(leaf, fi); em->generation = btrfs_file_extent_generation(leaf, fi); if (type == BTRFS_FILE_EXTENT_REG || type == BTRFS_FILE_EXTENT_PREALLOC) { em->start = extent_start; em->len = extent_end - extent_start; em->orig_start = extent_start - btrfs_file_extent_offset(leaf, fi); em->orig_block_len = btrfs_file_extent_disk_num_bytes(leaf, fi); bytenr = btrfs_file_extent_disk_bytenr(leaf, fi); if (bytenr == 0) { em->block_start = EXTENT_MAP_HOLE; return; } if (compress_type != BTRFS_COMPRESS_NONE) { extent_map_set_compression(em, compress_type); em->block_start = bytenr; em->block_len = em->orig_block_len; } else { bytenr += btrfs_file_extent_offset(leaf, fi); em->block_start = bytenr; em->block_len = em->len; if (type == BTRFS_FILE_EXTENT_PREALLOC) em->flags |= EXTENT_FLAG_PREALLOC; } } else if (type == BTRFS_FILE_EXTENT_INLINE) { em->block_start = EXTENT_MAP_INLINE; em->start = extent_start; em->len = extent_end - extent_start; /* * Initialize orig_start and block_len with the same values * as in inode.c:btrfs_get_extent(). */ em->orig_start = EXTENT_MAP_HOLE; em->block_len = (u64)-1; extent_map_set_compression(em, compress_type); } else { btrfs_err(fs_info, "unknown file extent item type %d, inode %llu, offset %llu, " "root %llu", type, btrfs_ino(inode), extent_start, root->root_key.objectid); } } /* * Returns the end offset (non inclusive) of the file extent item the given path * points to. If it points to an inline extent, the returned offset is rounded * up to the sector size. */ u64 btrfs_file_extent_end(const struct btrfs_path *path) { const struct extent_buffer *leaf = path->nodes[0]; const int slot = path->slots[0]; struct btrfs_file_extent_item *fi; struct btrfs_key key; u64 end; btrfs_item_key_to_cpu(leaf, &key, slot); ASSERT(key.type == BTRFS_EXTENT_DATA_KEY); fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item); if (btrfs_file_extent_type(leaf, fi) == BTRFS_FILE_EXTENT_INLINE) { end = btrfs_file_extent_ram_bytes(leaf, fi); end = ALIGN(key.offset + end, leaf->fs_info->sectorsize); } else { end = key.offset + btrfs_file_extent_num_bytes(leaf, fi); } return end; }
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1