Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Filipe David Borba Manana | 3515 | 75.53% | 12 | 14.29% |
Boris Burkov | 489 | 10.51% | 2 | 2.38% |
Jan Schmidt | 202 | 4.34% | 7 | 8.33% |
Qu Wenruo | 153 | 3.29% | 9 | 10.71% |
Chris Mason | 149 | 3.20% | 26 | 30.95% |
Zheng Yan | 40 | 0.86% | 2 | 2.38% |
Arne Jansen | 23 | 0.49% | 4 | 4.76% |
David Sterba | 17 | 0.37% | 3 | 3.57% |
Josef Whiter | 15 | 0.32% | 5 | 5.95% |
Josef Bacik | 13 | 0.28% | 3 | 3.57% |
Jeff Mahoney | 11 | 0.24% | 2 | 2.38% |
Christoph Hellwig | 9 | 0.19% | 2 | 2.38% |
Liu Bo | 5 | 0.11% | 1 | 1.19% |
Mitch Harder | 5 | 0.11% | 1 | 1.19% |
Mark Fasheh | 2 | 0.04% | 1 | 1.19% |
Alexander Block | 2 | 0.04% | 1 | 1.19% |
ethanwu | 2 | 0.04% | 1 | 1.19% |
Filipe Brandenburger | 1 | 0.02% | 1 | 1.19% |
Chandan Rajendra | 1 | 0.02% | 1 | 1.19% |
Total | 4654 | 84 |
// SPDX-License-Identifier: GPL-2.0 #include "messages.h" #include "tree-mod-log.h" #include "disk-io.h" #include "fs.h" #include "accessors.h" #include "tree-checker.h" struct tree_mod_root { u64 logical; u8 level; }; struct tree_mod_elem { struct rb_node node; u64 logical; u64 seq; enum btrfs_mod_log_op op; /* * This is used for BTRFS_MOD_LOG_KEY_* and BTRFS_MOD_LOG_MOVE_KEYS * operations. */ int slot; /* This is used for BTRFS_MOD_LOG_KEY* and BTRFS_MOD_LOG_ROOT_REPLACE. */ u64 generation; /* Those are used for op == BTRFS_MOD_LOG_KEY_{REPLACE,REMOVE}. */ struct btrfs_disk_key key; u64 blockptr; /* This is used for op == BTRFS_MOD_LOG_MOVE_KEYS. */ struct { int dst_slot; int nr_items; } move; /* This is used for op == BTRFS_MOD_LOG_ROOT_REPLACE. */ struct tree_mod_root old_root; }; /* * Pull a new tree mod seq number for our operation. */ static u64 btrfs_inc_tree_mod_seq(struct btrfs_fs_info *fs_info) { return atomic64_inc_return(&fs_info->tree_mod_seq); } /* * This adds a new blocker to the tree mod log's blocker list if the @elem * passed does not already have a sequence number set. So when a caller expects * to record tree modifications, it should ensure to set elem->seq to zero * before calling btrfs_get_tree_mod_seq. * Returns a fresh, unused tree log modification sequence number, even if no new * blocker was added. */ u64 btrfs_get_tree_mod_seq(struct btrfs_fs_info *fs_info, struct btrfs_seq_list *elem) { write_lock(&fs_info->tree_mod_log_lock); if (!elem->seq) { elem->seq = btrfs_inc_tree_mod_seq(fs_info); list_add_tail(&elem->list, &fs_info->tree_mod_seq_list); set_bit(BTRFS_FS_TREE_MOD_LOG_USERS, &fs_info->flags); } write_unlock(&fs_info->tree_mod_log_lock); return elem->seq; } void btrfs_put_tree_mod_seq(struct btrfs_fs_info *fs_info, struct btrfs_seq_list *elem) { struct rb_root *tm_root; struct rb_node *node; struct rb_node *next; struct tree_mod_elem *tm; u64 min_seq = BTRFS_SEQ_LAST; u64 seq_putting = elem->seq; if (!seq_putting) return; write_lock(&fs_info->tree_mod_log_lock); list_del(&elem->list); elem->seq = 0; if (list_empty(&fs_info->tree_mod_seq_list)) { clear_bit(BTRFS_FS_TREE_MOD_LOG_USERS, &fs_info->flags); } else { struct btrfs_seq_list *first; first = list_first_entry(&fs_info->tree_mod_seq_list, struct btrfs_seq_list, list); if (seq_putting > first->seq) { /* * Blocker with lower sequence number exists, we cannot * remove anything from the log. */ write_unlock(&fs_info->tree_mod_log_lock); return; } min_seq = first->seq; } /* * Anything that's lower than the lowest existing (read: blocked) * sequence number can be removed from the tree. */ tm_root = &fs_info->tree_mod_log; for (node = rb_first(tm_root); node; node = next) { next = rb_next(node); tm = rb_entry(node, struct tree_mod_elem, node); if (tm->seq >= min_seq) continue; rb_erase(node, tm_root); kfree(tm); } write_unlock(&fs_info->tree_mod_log_lock); } /* * Key order of the log: * node/leaf start address -> sequence * * The 'start address' is the logical address of the *new* root node for root * replace operations, or the logical address of the affected block for all * other operations. */ static noinline int tree_mod_log_insert(struct btrfs_fs_info *fs_info, struct tree_mod_elem *tm) { struct rb_root *tm_root; struct rb_node **new; struct rb_node *parent = NULL; struct tree_mod_elem *cur; lockdep_assert_held_write(&fs_info->tree_mod_log_lock); tm->seq = btrfs_inc_tree_mod_seq(fs_info); tm_root = &fs_info->tree_mod_log; new = &tm_root->rb_node; while (*new) { cur = rb_entry(*new, struct tree_mod_elem, node); parent = *new; if (cur->logical < tm->logical) new = &((*new)->rb_left); else if (cur->logical > tm->logical) new = &((*new)->rb_right); else if (cur->seq < tm->seq) new = &((*new)->rb_left); else if (cur->seq > tm->seq) new = &((*new)->rb_right); else return -EEXIST; } rb_link_node(&tm->node, parent, new); rb_insert_color(&tm->node, tm_root); return 0; } /* * Determines if logging can be omitted. Returns true if it can. Otherwise, it * returns false with the tree_mod_log_lock acquired. The caller must hold * this until all tree mod log insertions are recorded in the rb tree and then * write unlock fs_info::tree_mod_log_lock. */ static bool tree_mod_dont_log(struct btrfs_fs_info *fs_info, struct extent_buffer *eb) { if (!test_bit(BTRFS_FS_TREE_MOD_LOG_USERS, &fs_info->flags)) return true; if (eb && btrfs_header_level(eb) == 0) return true; write_lock(&fs_info->tree_mod_log_lock); if (list_empty(&(fs_info)->tree_mod_seq_list)) { write_unlock(&fs_info->tree_mod_log_lock); return true; } return false; } /* Similar to tree_mod_dont_log, but doesn't acquire any locks. */ static bool tree_mod_need_log(const struct btrfs_fs_info *fs_info, struct extent_buffer *eb) { if (!test_bit(BTRFS_FS_TREE_MOD_LOG_USERS, &fs_info->flags)) return false; if (eb && btrfs_header_level(eb) == 0) return false; return true; } static struct tree_mod_elem *alloc_tree_mod_elem(struct extent_buffer *eb, int slot, enum btrfs_mod_log_op op) { struct tree_mod_elem *tm; tm = kzalloc(sizeof(*tm), GFP_NOFS); if (!tm) return NULL; tm->logical = eb->start; if (op != BTRFS_MOD_LOG_KEY_ADD) { btrfs_node_key(eb, &tm->key, slot); tm->blockptr = btrfs_node_blockptr(eb, slot); } tm->op = op; tm->slot = slot; tm->generation = btrfs_node_ptr_generation(eb, slot); RB_CLEAR_NODE(&tm->node); return tm; } int btrfs_tree_mod_log_insert_key(struct extent_buffer *eb, int slot, enum btrfs_mod_log_op op) { struct tree_mod_elem *tm; int ret = 0; if (!tree_mod_need_log(eb->fs_info, eb)) return 0; tm = alloc_tree_mod_elem(eb, slot, op); if (!tm) ret = -ENOMEM; if (tree_mod_dont_log(eb->fs_info, eb)) { kfree(tm); /* * Don't error if we failed to allocate memory because we don't * need to log. */ return 0; } else if (ret != 0) { /* * We previously failed to allocate memory and we need to log, * so we have to fail. */ goto out_unlock; } ret = tree_mod_log_insert(eb->fs_info, tm); out_unlock: write_unlock(&eb->fs_info->tree_mod_log_lock); if (ret) kfree(tm); return ret; } static struct tree_mod_elem *tree_mod_log_alloc_move(struct extent_buffer *eb, int dst_slot, int src_slot, int nr_items) { struct tree_mod_elem *tm; tm = kzalloc(sizeof(*tm), GFP_NOFS); if (!tm) return ERR_PTR(-ENOMEM); tm->logical = eb->start; tm->slot = src_slot; tm->move.dst_slot = dst_slot; tm->move.nr_items = nr_items; tm->op = BTRFS_MOD_LOG_MOVE_KEYS; RB_CLEAR_NODE(&tm->node); return tm; } int btrfs_tree_mod_log_insert_move(struct extent_buffer *eb, int dst_slot, int src_slot, int nr_items) { struct tree_mod_elem *tm = NULL; struct tree_mod_elem **tm_list = NULL; int ret = 0; int i; bool locked = false; if (!tree_mod_need_log(eb->fs_info, eb)) return 0; tm_list = kcalloc(nr_items, sizeof(struct tree_mod_elem *), GFP_NOFS); if (!tm_list) { ret = -ENOMEM; goto lock; } tm = tree_mod_log_alloc_move(eb, dst_slot, src_slot, nr_items); if (IS_ERR(tm)) { ret = PTR_ERR(tm); tm = NULL; goto lock; } for (i = 0; i + dst_slot < src_slot && i < nr_items; i++) { tm_list[i] = alloc_tree_mod_elem(eb, i + dst_slot, BTRFS_MOD_LOG_KEY_REMOVE_WHILE_MOVING); if (!tm_list[i]) { ret = -ENOMEM; goto lock; } } lock: if (tree_mod_dont_log(eb->fs_info, eb)) { /* * Don't error if we failed to allocate memory because we don't * need to log. */ ret = 0; goto free_tms; } locked = true; /* * We previously failed to allocate memory and we need to log, so we * have to fail. */ if (ret != 0) goto free_tms; /* * When we override something during the move, we log these removals. * This can only happen when we move towards the beginning of the * buffer, i.e. dst_slot < src_slot. */ for (i = 0; i + dst_slot < src_slot && i < nr_items; i++) { ret = tree_mod_log_insert(eb->fs_info, tm_list[i]); if (ret) goto free_tms; } ret = tree_mod_log_insert(eb->fs_info, tm); if (ret) goto free_tms; write_unlock(&eb->fs_info->tree_mod_log_lock); kfree(tm_list); return 0; free_tms: if (tm_list) { for (i = 0; i < nr_items; i++) { if (tm_list[i] && !RB_EMPTY_NODE(&tm_list[i]->node)) rb_erase(&tm_list[i]->node, &eb->fs_info->tree_mod_log); kfree(tm_list[i]); } } if (locked) write_unlock(&eb->fs_info->tree_mod_log_lock); kfree(tm_list); kfree(tm); return ret; } static int tree_mod_log_free_eb(struct btrfs_fs_info *fs_info, struct tree_mod_elem **tm_list, int nritems) { int i, j; int ret; for (i = nritems - 1; i >= 0; i--) { ret = tree_mod_log_insert(fs_info, tm_list[i]); if (ret) { for (j = nritems - 1; j > i; j--) rb_erase(&tm_list[j]->node, &fs_info->tree_mod_log); return ret; } } return 0; } int btrfs_tree_mod_log_insert_root(struct extent_buffer *old_root, struct extent_buffer *new_root, bool log_removal) { struct btrfs_fs_info *fs_info = old_root->fs_info; struct tree_mod_elem *tm = NULL; struct tree_mod_elem **tm_list = NULL; int nritems = 0; int ret = 0; int i; if (!tree_mod_need_log(fs_info, NULL)) return 0; if (log_removal && btrfs_header_level(old_root) > 0) { nritems = btrfs_header_nritems(old_root); tm_list = kcalloc(nritems, sizeof(struct tree_mod_elem *), GFP_NOFS); if (!tm_list) { ret = -ENOMEM; goto lock; } for (i = 0; i < nritems; i++) { tm_list[i] = alloc_tree_mod_elem(old_root, i, BTRFS_MOD_LOG_KEY_REMOVE_WHILE_FREEING); if (!tm_list[i]) { ret = -ENOMEM; goto lock; } } } tm = kzalloc(sizeof(*tm), GFP_NOFS); if (!tm) { ret = -ENOMEM; goto lock; } tm->logical = new_root->start; tm->old_root.logical = old_root->start; tm->old_root.level = btrfs_header_level(old_root); tm->generation = btrfs_header_generation(old_root); tm->op = BTRFS_MOD_LOG_ROOT_REPLACE; lock: if (tree_mod_dont_log(fs_info, NULL)) { /* * Don't error if we failed to allocate memory because we don't * need to log. */ ret = 0; goto free_tms; } else if (ret != 0) { /* * We previously failed to allocate memory and we need to log, * so we have to fail. */ goto out_unlock; } if (tm_list) ret = tree_mod_log_free_eb(fs_info, tm_list, nritems); if (!ret) ret = tree_mod_log_insert(fs_info, tm); out_unlock: write_unlock(&fs_info->tree_mod_log_lock); if (ret) goto free_tms; kfree(tm_list); return ret; free_tms: if (tm_list) { for (i = 0; i < nritems; i++) kfree(tm_list[i]); kfree(tm_list); } kfree(tm); return ret; } static struct tree_mod_elem *__tree_mod_log_search(struct btrfs_fs_info *fs_info, u64 start, u64 min_seq, bool smallest) { struct rb_root *tm_root; struct rb_node *node; struct tree_mod_elem *cur = NULL; struct tree_mod_elem *found = NULL; read_lock(&fs_info->tree_mod_log_lock); tm_root = &fs_info->tree_mod_log; node = tm_root->rb_node; while (node) { cur = rb_entry(node, struct tree_mod_elem, node); if (cur->logical < start) { node = node->rb_left; } else if (cur->logical > start) { node = node->rb_right; } else if (cur->seq < min_seq) { node = node->rb_left; } else if (!smallest) { /* We want the node with the highest seq */ if (found) BUG_ON(found->seq > cur->seq); found = cur; node = node->rb_left; } else if (cur->seq > min_seq) { /* We want the node with the smallest seq */ if (found) BUG_ON(found->seq < cur->seq); found = cur; node = node->rb_right; } else { found = cur; break; } } read_unlock(&fs_info->tree_mod_log_lock); return found; } /* * This returns the element from the log with the smallest time sequence * value that's in the log (the oldest log item). Any element with a time * sequence lower than min_seq will be ignored. */ static struct tree_mod_elem *tree_mod_log_search_oldest(struct btrfs_fs_info *fs_info, u64 start, u64 min_seq) { return __tree_mod_log_search(fs_info, start, min_seq, true); } /* * This returns the element from the log with the largest time sequence * value that's in the log (the most recent log item). Any element with * a time sequence lower than min_seq will be ignored. */ static struct tree_mod_elem *tree_mod_log_search(struct btrfs_fs_info *fs_info, u64 start, u64 min_seq) { return __tree_mod_log_search(fs_info, start, min_seq, false); } int btrfs_tree_mod_log_eb_copy(struct extent_buffer *dst, struct extent_buffer *src, unsigned long dst_offset, unsigned long src_offset, int nr_items) { struct btrfs_fs_info *fs_info = dst->fs_info; int ret = 0; struct tree_mod_elem **tm_list = NULL; struct tree_mod_elem **tm_list_add = NULL; struct tree_mod_elem **tm_list_rem = NULL; int i; bool locked = false; struct tree_mod_elem *dst_move_tm = NULL; struct tree_mod_elem *src_move_tm = NULL; u32 dst_move_nr_items = btrfs_header_nritems(dst) - dst_offset; u32 src_move_nr_items = btrfs_header_nritems(src) - (src_offset + nr_items); if (!tree_mod_need_log(fs_info, NULL)) return 0; if (btrfs_header_level(dst) == 0 && btrfs_header_level(src) == 0) return 0; tm_list = kcalloc(nr_items * 2, sizeof(struct tree_mod_elem *), GFP_NOFS); if (!tm_list) { ret = -ENOMEM; goto lock; } if (dst_move_nr_items) { dst_move_tm = tree_mod_log_alloc_move(dst, dst_offset + nr_items, dst_offset, dst_move_nr_items); if (IS_ERR(dst_move_tm)) { ret = PTR_ERR(dst_move_tm); dst_move_tm = NULL; goto lock; } } if (src_move_nr_items) { src_move_tm = tree_mod_log_alloc_move(src, src_offset, src_offset + nr_items, src_move_nr_items); if (IS_ERR(src_move_tm)) { ret = PTR_ERR(src_move_tm); src_move_tm = NULL; goto lock; } } tm_list_add = tm_list; tm_list_rem = tm_list + nr_items; for (i = 0; i < nr_items; i++) { tm_list_rem[i] = alloc_tree_mod_elem(src, i + src_offset, BTRFS_MOD_LOG_KEY_REMOVE); if (!tm_list_rem[i]) { ret = -ENOMEM; goto lock; } tm_list_add[i] = alloc_tree_mod_elem(dst, i + dst_offset, BTRFS_MOD_LOG_KEY_ADD); if (!tm_list_add[i]) { ret = -ENOMEM; goto lock; } } lock: if (tree_mod_dont_log(fs_info, NULL)) { /* * Don't error if we failed to allocate memory because we don't * need to log. */ ret = 0; goto free_tms; } locked = true; /* * We previously failed to allocate memory and we need to log, so we * have to fail. */ if (ret != 0) goto free_tms; if (dst_move_tm) { ret = tree_mod_log_insert(fs_info, dst_move_tm); if (ret) goto free_tms; } for (i = 0; i < nr_items; i++) { ret = tree_mod_log_insert(fs_info, tm_list_rem[i]); if (ret) goto free_tms; ret = tree_mod_log_insert(fs_info, tm_list_add[i]); if (ret) goto free_tms; } if (src_move_tm) { ret = tree_mod_log_insert(fs_info, src_move_tm); if (ret) goto free_tms; } write_unlock(&fs_info->tree_mod_log_lock); kfree(tm_list); return 0; free_tms: if (dst_move_tm && !RB_EMPTY_NODE(&dst_move_tm->node)) rb_erase(&dst_move_tm->node, &fs_info->tree_mod_log); kfree(dst_move_tm); if (src_move_tm && !RB_EMPTY_NODE(&src_move_tm->node)) rb_erase(&src_move_tm->node, &fs_info->tree_mod_log); kfree(src_move_tm); if (tm_list) { for (i = 0; i < nr_items * 2; i++) { if (tm_list[i] && !RB_EMPTY_NODE(&tm_list[i]->node)) rb_erase(&tm_list[i]->node, &fs_info->tree_mod_log); kfree(tm_list[i]); } } if (locked) write_unlock(&fs_info->tree_mod_log_lock); kfree(tm_list); return ret; } int btrfs_tree_mod_log_free_eb(struct extent_buffer *eb) { struct tree_mod_elem **tm_list = NULL; int nritems = 0; int i; int ret = 0; if (!tree_mod_need_log(eb->fs_info, eb)) return 0; nritems = btrfs_header_nritems(eb); tm_list = kcalloc(nritems, sizeof(struct tree_mod_elem *), GFP_NOFS); if (!tm_list) { ret = -ENOMEM; goto lock; } for (i = 0; i < nritems; i++) { tm_list[i] = alloc_tree_mod_elem(eb, i, BTRFS_MOD_LOG_KEY_REMOVE_WHILE_FREEING); if (!tm_list[i]) { ret = -ENOMEM; goto lock; } } lock: if (tree_mod_dont_log(eb->fs_info, eb)) { /* * Don't error if we failed to allocate memory because we don't * need to log. */ ret = 0; goto free_tms; } else if (ret != 0) { /* * We previously failed to allocate memory and we need to log, * so we have to fail. */ goto out_unlock; } ret = tree_mod_log_free_eb(eb->fs_info, tm_list, nritems); out_unlock: write_unlock(&eb->fs_info->tree_mod_log_lock); if (ret) goto free_tms; kfree(tm_list); return 0; free_tms: if (tm_list) { for (i = 0; i < nritems; i++) kfree(tm_list[i]); kfree(tm_list); } return ret; } /* * Returns the logical address of the oldest predecessor of the given root. * Entries older than time_seq are ignored. */ static struct tree_mod_elem *tree_mod_log_oldest_root(struct extent_buffer *eb_root, u64 time_seq) { struct tree_mod_elem *tm; struct tree_mod_elem *found = NULL; u64 root_logical = eb_root->start; bool looped = false; if (!time_seq) return NULL; /* * The very last operation that's logged for a root is the replacement * operation (if it is replaced at all). This has the logical address * of the *new* root, making it the very first operation that's logged * for this root. */ while (1) { tm = tree_mod_log_search_oldest(eb_root->fs_info, root_logical, time_seq); if (!looped && !tm) return NULL; /* * If there are no tree operation for the oldest root, we simply * return it. This should only happen if that (old) root is at * level 0. */ if (!tm) break; /* * If there's an operation that's not a root replacement, we * found the oldest version of our root. Normally, we'll find a * BTRFS_MOD_LOG_KEY_REMOVE_WHILE_FREEING operation here. */ if (tm->op != BTRFS_MOD_LOG_ROOT_REPLACE) break; found = tm; root_logical = tm->old_root.logical; looped = true; } /* If there's no old root to return, return what we found instead */ if (!found) found = tm; return found; } /* * tm is a pointer to the first operation to rewind within eb. Then, all * previous operations will be rewound (until we reach something older than * time_seq). */ static void tree_mod_log_rewind(struct btrfs_fs_info *fs_info, struct extent_buffer *eb, u64 time_seq, struct tree_mod_elem *first_tm) { u32 n; struct rb_node *next; struct tree_mod_elem *tm = first_tm; unsigned long o_dst; unsigned long o_src; unsigned long p_size = sizeof(struct btrfs_key_ptr); /* * max_slot tracks the maximum valid slot of the rewind eb at every * step of the rewind. This is in contrast with 'n' which eventually * matches the number of items, but can be wrong during moves or if * removes overlap on already valid slots (which is probably separately * a bug). We do this to validate the offsets of memmoves for rewinding * moves and detect invalid memmoves. * * Since a rewind eb can start empty, max_slot is a signed integer with * a special meaning for -1, which is that no slot is valid to move out * of. Any other negative value is invalid. */ int max_slot; int move_src_end_slot; int move_dst_end_slot; n = btrfs_header_nritems(eb); max_slot = n - 1; read_lock(&fs_info->tree_mod_log_lock); while (tm && tm->seq >= time_seq) { ASSERT(max_slot >= -1); /* * All the operations are recorded with the operator used for * the modification. As we're going backwards, we do the * opposite of each operation here. */ switch (tm->op) { case BTRFS_MOD_LOG_KEY_REMOVE_WHILE_FREEING: BUG_ON(tm->slot < n); fallthrough; case BTRFS_MOD_LOG_KEY_REMOVE_WHILE_MOVING: case BTRFS_MOD_LOG_KEY_REMOVE: btrfs_set_node_key(eb, &tm->key, tm->slot); btrfs_set_node_blockptr(eb, tm->slot, tm->blockptr); btrfs_set_node_ptr_generation(eb, tm->slot, tm->generation); n++; if (tm->slot > max_slot) max_slot = tm->slot; break; case BTRFS_MOD_LOG_KEY_REPLACE: BUG_ON(tm->slot >= n); btrfs_set_node_key(eb, &tm->key, tm->slot); btrfs_set_node_blockptr(eb, tm->slot, tm->blockptr); btrfs_set_node_ptr_generation(eb, tm->slot, tm->generation); break; case BTRFS_MOD_LOG_KEY_ADD: /* * It is possible we could have already removed keys * behind the known max slot, so this will be an * overestimate. In practice, the copy operation * inserts them in increasing order, and overestimating * just means we miss some warnings, so it's OK. It * isn't worth carefully tracking the full array of * valid slots to check against when moving. */ if (tm->slot == max_slot) max_slot--; /* if a move operation is needed it's in the log */ n--; break; case BTRFS_MOD_LOG_MOVE_KEYS: ASSERT(tm->move.nr_items > 0); move_src_end_slot = tm->move.dst_slot + tm->move.nr_items - 1; move_dst_end_slot = tm->slot + tm->move.nr_items - 1; o_dst = btrfs_node_key_ptr_offset(eb, tm->slot); o_src = btrfs_node_key_ptr_offset(eb, tm->move.dst_slot); if (WARN_ON(move_src_end_slot > max_slot || tm->move.nr_items <= 0)) { btrfs_warn(fs_info, "move from invalid tree mod log slot eb %llu slot %d dst_slot %d nr_items %d seq %llu n %u max_slot %d", eb->start, tm->slot, tm->move.dst_slot, tm->move.nr_items, tm->seq, n, max_slot); } memmove_extent_buffer(eb, o_dst, o_src, tm->move.nr_items * p_size); max_slot = move_dst_end_slot; break; case BTRFS_MOD_LOG_ROOT_REPLACE: /* * This operation is special. For roots, this must be * handled explicitly before rewinding. * For non-roots, this operation may exist if the node * was a root: root A -> child B; then A gets empty and * B is promoted to the new root. In the mod log, we'll * have a root-replace operation for B, a tree block * that is no root. We simply ignore that operation. */ break; } next = rb_next(&tm->node); if (!next) break; tm = rb_entry(next, struct tree_mod_elem, node); if (tm->logical != first_tm->logical) break; } read_unlock(&fs_info->tree_mod_log_lock); btrfs_set_header_nritems(eb, n); } /* * Called with eb read locked. If the buffer cannot be rewound, the same buffer * is returned. If rewind operations happen, a fresh buffer is returned. The * returned buffer is always read-locked. If the returned buffer is not the * input buffer, the lock on the input buffer is released and the input buffer * is freed (its refcount is decremented). */ struct extent_buffer *btrfs_tree_mod_log_rewind(struct btrfs_fs_info *fs_info, struct btrfs_path *path, struct extent_buffer *eb, u64 time_seq) { struct extent_buffer *eb_rewin; struct tree_mod_elem *tm; if (!time_seq) return eb; if (btrfs_header_level(eb) == 0) return eb; tm = tree_mod_log_search(fs_info, eb->start, time_seq); if (!tm) return eb; if (tm->op == BTRFS_MOD_LOG_KEY_REMOVE_WHILE_FREEING) { BUG_ON(tm->slot != 0); eb_rewin = alloc_dummy_extent_buffer(fs_info, eb->start); if (!eb_rewin) { btrfs_tree_read_unlock(eb); free_extent_buffer(eb); return NULL; } btrfs_set_header_bytenr(eb_rewin, eb->start); btrfs_set_header_backref_rev(eb_rewin, btrfs_header_backref_rev(eb)); btrfs_set_header_owner(eb_rewin, btrfs_header_owner(eb)); btrfs_set_header_level(eb_rewin, btrfs_header_level(eb)); } else { eb_rewin = btrfs_clone_extent_buffer(eb); if (!eb_rewin) { btrfs_tree_read_unlock(eb); free_extent_buffer(eb); return NULL; } } btrfs_tree_read_unlock(eb); free_extent_buffer(eb); btrfs_set_buffer_lockdep_class(btrfs_header_owner(eb_rewin), eb_rewin, btrfs_header_level(eb_rewin)); btrfs_tree_read_lock(eb_rewin); tree_mod_log_rewind(fs_info, eb_rewin, time_seq, tm); WARN_ON(btrfs_header_nritems(eb_rewin) > BTRFS_NODEPTRS_PER_BLOCK(fs_info)); return eb_rewin; } /* * Rewind the state of @root's root node to the given @time_seq value. * If there are no changes, the current root->root_node is returned. If anything * changed in between, there's a fresh buffer allocated on which the rewind * operations are done. In any case, the returned buffer is read locked. * Returns NULL on error (with no locks held). */ struct extent_buffer *btrfs_get_old_root(struct btrfs_root *root, u64 time_seq) { struct btrfs_fs_info *fs_info = root->fs_info; struct tree_mod_elem *tm; struct extent_buffer *eb = NULL; struct extent_buffer *eb_root; u64 eb_root_owner = 0; struct extent_buffer *old; struct tree_mod_root *old_root = NULL; u64 old_generation = 0; u64 logical; int level; eb_root = btrfs_read_lock_root_node(root); tm = tree_mod_log_oldest_root(eb_root, time_seq); if (!tm) return eb_root; if (tm->op == BTRFS_MOD_LOG_ROOT_REPLACE) { old_root = &tm->old_root; old_generation = tm->generation; logical = old_root->logical; level = old_root->level; } else { logical = eb_root->start; level = btrfs_header_level(eb_root); } tm = tree_mod_log_search(fs_info, logical, time_seq); if (old_root && tm && tm->op != BTRFS_MOD_LOG_KEY_REMOVE_WHILE_FREEING) { struct btrfs_tree_parent_check check = { 0 }; btrfs_tree_read_unlock(eb_root); free_extent_buffer(eb_root); check.level = level; check.owner_root = root->root_key.objectid; old = read_tree_block(fs_info, logical, &check); if (WARN_ON(IS_ERR(old) || !extent_buffer_uptodate(old))) { if (!IS_ERR(old)) free_extent_buffer(old); btrfs_warn(fs_info, "failed to read tree block %llu from get_old_root", logical); } else { struct tree_mod_elem *tm2; btrfs_tree_read_lock(old); eb = btrfs_clone_extent_buffer(old); /* * After the lookup for the most recent tree mod operation * above and before we locked and cloned the extent buffer * 'old', a new tree mod log operation may have been added. * So lookup for a more recent one to make sure the number * of mod log operations we replay is consistent with the * number of items we have in the cloned extent buffer, * otherwise we can hit a BUG_ON when rewinding the extent * buffer. */ tm2 = tree_mod_log_search(fs_info, logical, time_seq); btrfs_tree_read_unlock(old); free_extent_buffer(old); ASSERT(tm2); ASSERT(tm2 == tm || tm2->seq > tm->seq); if (!tm2 || tm2->seq < tm->seq) { free_extent_buffer(eb); return NULL; } tm = tm2; } } else if (old_root) { eb_root_owner = btrfs_header_owner(eb_root); btrfs_tree_read_unlock(eb_root); free_extent_buffer(eb_root); eb = alloc_dummy_extent_buffer(fs_info, logical); } else { eb = btrfs_clone_extent_buffer(eb_root); btrfs_tree_read_unlock(eb_root); free_extent_buffer(eb_root); } if (!eb) return NULL; if (old_root) { btrfs_set_header_bytenr(eb, eb->start); btrfs_set_header_backref_rev(eb, BTRFS_MIXED_BACKREF_REV); btrfs_set_header_owner(eb, eb_root_owner); btrfs_set_header_level(eb, old_root->level); btrfs_set_header_generation(eb, old_generation); } btrfs_set_buffer_lockdep_class(btrfs_header_owner(eb), eb, btrfs_header_level(eb)); btrfs_tree_read_lock(eb); if (tm) tree_mod_log_rewind(fs_info, eb, time_seq, tm); else WARN_ON(btrfs_header_level(eb) != 0); WARN_ON(btrfs_header_nritems(eb) > BTRFS_NODEPTRS_PER_BLOCK(fs_info)); return eb; } int btrfs_old_root_level(struct btrfs_root *root, u64 time_seq) { struct tree_mod_elem *tm; int level; struct extent_buffer *eb_root = btrfs_root_node(root); tm = tree_mod_log_oldest_root(eb_root, time_seq); if (tm && tm->op == BTRFS_MOD_LOG_ROOT_REPLACE) level = tm->old_root.level; else level = btrfs_header_level(eb_root); free_extent_buffer(eb_root); return level; } /* * Return the lowest sequence number in the tree modification log. * * Return the sequence number of the oldest tree modification log user, which * corresponds to the lowest sequence number of all existing users. If there are * no users it returns 0. */ u64 btrfs_tree_mod_log_lowest_seq(struct btrfs_fs_info *fs_info) { u64 ret = 0; read_lock(&fs_info->tree_mod_log_lock); if (!list_empty(&fs_info->tree_mod_seq_list)) { struct btrfs_seq_list *elem; elem = list_first_entry(&fs_info->tree_mod_seq_list, struct btrfs_seq_list, list); ret = elem->seq; } read_unlock(&fs_info->tree_mod_log_lock); return ret; }
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1