Contributors: 80
Author Tokens Token Proportion Commits Commit Proportion
Jaegeuk Kim 9571 44.73% 305 33.33%
Chao Yu 7903 36.94% 359 39.23%
Daeho Jeong 740 3.46% 27 2.95%
DongOh Shin 425 1.99% 1 0.11%
Eric Biggers 305 1.43% 16 1.75%
Tim Murray 263 1.23% 1 0.11%
Damien Le Moal 200 0.93% 6 0.66%
Gu Zheng 198 0.93% 17 1.86%
Yangtao Li 132 0.62% 17 1.86%
Sheng Yong 126 0.59% 8 0.87%
Sahitya Tummala 121 0.57% 6 0.66%
Huajun Li 118 0.55% 3 0.33%
Daniel Rosenberg 114 0.53% 6 0.66%
Namjae Jeon 107 0.50% 9 0.98%
Changman Lee 92 0.43% 6 0.66%
Keith Mok 67 0.31% 1 0.11%
Hyeoncheol Lee 65 0.30% 2 0.22%
Yunlong Song 57 0.27% 2 0.22%
Arnd Bergmann 47 0.22% 4 0.44%
Shuoran Liu 41 0.19% 2 0.22%
Bo Wu 40 0.19% 1 0.11%
Yunlei He 37 0.17% 6 0.66%
Fengnan Chang 35 0.16% 6 0.66%
Matthew Wilcox 35 0.16% 6 0.66%
Christoph Hellwig 35 0.16% 11 1.20%
Qiuyang Sun 33 0.15% 2 0.22%
Shin'ichiro Kawasaki 32 0.15% 3 0.33%
Bart Van Assche 31 0.14% 3 0.33%
Kinglong Mee 29 0.14% 3 0.33%
Jeff Layton 26 0.12% 2 0.22%
Tomohiro Kusumi 26 0.12% 2 0.22%
Miklos Szeredi 25 0.12% 1 0.11%
Al Viro 25 0.12% 2 0.22%
Junling Zheng 22 0.10% 3 0.33%
Neil Brown 20 0.09% 1 0.11%
Konstantin Vyshetsky 20 0.09% 1 0.11%
Fan Li 19 0.09% 4 0.44%
Wanpeng Li 19 0.09% 1 0.11%
Christian Brauner 16 0.07% 6 0.66%
Yufen Yu 16 0.07% 4 0.44%
Aravind Ramesh 14 0.07% 1 0.11%
David Howells 13 0.06% 2 0.22%
Gustavo A. R. Silva 13 0.06% 2 0.22%
Chengguang Xu 13 0.06% 1 0.11%
Hou Pengyang 12 0.06% 3 0.33%
Ye Bin 12 0.06% 1 0.11%
Hridya Valsaraju 11 0.05% 1 0.11%
Greg Kroah-Hartman 9 0.04% 2 0.22%
Jan Kara 7 0.03% 3 0.33%
Omar Sandoval 4 0.02% 1 0.11%
Zhikang Zhang 4 0.02% 1 0.11%
Michael Christie 4 0.02% 1 0.11%
qixiaoyu1 4 0.02% 1 0.11%
Sayali Lokhande 3 0.01% 1 0.11%
Joe Perches 3 0.01% 1 0.11%
Sunmin Jeong 3 0.01% 1 0.11%
Daejun Park 3 0.01% 1 0.11%
Herbert Xu 3 0.01% 1 0.11%
Ju Hyung Park 2 0.01% 1 0.11%
Geert Uytterhoeven 2 0.01% 1 0.11%
Zhiguo Niu 2 0.01% 2 0.22%
Chandan Rajendra 2 0.01% 2 0.22%
Shawn Lin 2 0.01% 1 0.11%
David S. Miller 2 0.01% 1 0.11%
David Chinner 2 0.01% 1 0.11%
Julia Lawall 1 0.00% 1 0.11%
qiulaibin 1 0.00% 1 0.11%
Peter Zijlstra 1 0.00% 1 0.11%
Yue haibing 1 0.00% 1 0.11%
Masanari Iida 1 0.00% 1 0.11%
Chao Liu 1 0.00% 1 0.11%
Hsiang Kao 1 0.00% 1 0.11%
Kirill A. Shutemov 1 0.00% 1 0.11%
Jia Yang 1 0.00% 1 0.11%
Yonggil Song 1 0.00% 1 0.11%
Nishad Kamdar 1 0.00% 1 0.11%
Hyeong-Jun Kim 1 0.00% 1 0.11%
Yuwei Guan 1 0.00% 1 0.11%
Alexey Dobriyan 1 0.00% 1 0.11%
Qilong Zhang 1 0.00% 1 0.11%
Total 21397 915


/* SPDX-License-Identifier: GPL-2.0 */
/*
 * fs/f2fs/f2fs.h
 *
 * Copyright (c) 2012 Samsung Electronics Co., Ltd.
 *             http://www.samsung.com/
 */
#ifndef _LINUX_F2FS_H
#define _LINUX_F2FS_H

#include <linux/uio.h>
#include <linux/types.h>
#include <linux/page-flags.h>
#include <linux/buffer_head.h>
#include <linux/slab.h>
#include <linux/crc32.h>
#include <linux/magic.h>
#include <linux/kobject.h>
#include <linux/sched.h>
#include <linux/cred.h>
#include <linux/sched/mm.h>
#include <linux/vmalloc.h>
#include <linux/bio.h>
#include <linux/blkdev.h>
#include <linux/quotaops.h>
#include <linux/part_stat.h>
#include <linux/rw_hint.h>
#include <crypto/hash.h>

#include <linux/fscrypt.h>
#include <linux/fsverity.h>

struct pagevec;

#ifdef CONFIG_F2FS_CHECK_FS
#define f2fs_bug_on(sbi, condition)	BUG_ON(condition)
#else
#define f2fs_bug_on(sbi, condition)					\
	do {								\
		if (WARN_ON(condition))					\
			set_sbi_flag(sbi, SBI_NEED_FSCK);		\
	} while (0)
#endif

enum {
	FAULT_KMALLOC,
	FAULT_KVMALLOC,
	FAULT_PAGE_ALLOC,
	FAULT_PAGE_GET,
	FAULT_ALLOC_BIO,	/* it's obsolete due to bio_alloc() will never fail */
	FAULT_ALLOC_NID,
	FAULT_ORPHAN,
	FAULT_BLOCK,
	FAULT_DIR_DEPTH,
	FAULT_EVICT_INODE,
	FAULT_TRUNCATE,
	FAULT_READ_IO,
	FAULT_CHECKPOINT,
	FAULT_DISCARD,
	FAULT_WRITE_IO,
	FAULT_SLAB_ALLOC,
	FAULT_DQUOT_INIT,
	FAULT_LOCK_OP,
	FAULT_BLKADDR_VALIDITY,
	FAULT_BLKADDR_CONSISTENCE,
	FAULT_NO_SEGMENT,
	FAULT_MAX,
};

#ifdef CONFIG_F2FS_FAULT_INJECTION
#define F2FS_ALL_FAULT_TYPE		(GENMASK(FAULT_MAX - 1, 0))

struct f2fs_fault_info {
	atomic_t inject_ops;
	unsigned int inject_rate;
	unsigned int inject_type;
};

extern const char *f2fs_fault_name[FAULT_MAX];
#define IS_FAULT_SET(fi, type) ((fi)->inject_type & BIT(type))

/* maximum retry count for injected failure */
#define DEFAULT_FAILURE_RETRY_COUNT		8
#else
#define DEFAULT_FAILURE_RETRY_COUNT		1
#endif

/*
 * For mount options
 */
#define F2FS_MOUNT_DISABLE_ROLL_FORWARD	0x00000001
#define F2FS_MOUNT_DISCARD		0x00000002
#define F2FS_MOUNT_NOHEAP		0x00000004
#define F2FS_MOUNT_XATTR_USER		0x00000008
#define F2FS_MOUNT_POSIX_ACL		0x00000010
#define F2FS_MOUNT_DISABLE_EXT_IDENTIFY	0x00000020
#define F2FS_MOUNT_INLINE_XATTR		0x00000040
#define F2FS_MOUNT_INLINE_DATA		0x00000080
#define F2FS_MOUNT_INLINE_DENTRY	0x00000100
#define F2FS_MOUNT_FLUSH_MERGE		0x00000200
#define F2FS_MOUNT_NOBARRIER		0x00000400
#define F2FS_MOUNT_FASTBOOT		0x00000800
#define F2FS_MOUNT_READ_EXTENT_CACHE	0x00001000
#define F2FS_MOUNT_DATA_FLUSH		0x00002000
#define F2FS_MOUNT_FAULT_INJECTION	0x00004000
#define F2FS_MOUNT_USRQUOTA		0x00008000
#define F2FS_MOUNT_GRPQUOTA		0x00010000
#define F2FS_MOUNT_PRJQUOTA		0x00020000
#define F2FS_MOUNT_QUOTA		0x00040000
#define F2FS_MOUNT_INLINE_XATTR_SIZE	0x00080000
#define F2FS_MOUNT_RESERVE_ROOT		0x00100000
#define F2FS_MOUNT_DISABLE_CHECKPOINT	0x00200000
#define F2FS_MOUNT_NORECOVERY		0x00400000
#define F2FS_MOUNT_ATGC			0x00800000
#define F2FS_MOUNT_MERGE_CHECKPOINT	0x01000000
#define	F2FS_MOUNT_GC_MERGE		0x02000000
#define F2FS_MOUNT_COMPRESS_CACHE	0x04000000
#define F2FS_MOUNT_AGE_EXTENT_CACHE	0x08000000

#define F2FS_OPTION(sbi)	((sbi)->mount_opt)
#define clear_opt(sbi, option)	(F2FS_OPTION(sbi).opt &= ~F2FS_MOUNT_##option)
#define set_opt(sbi, option)	(F2FS_OPTION(sbi).opt |= F2FS_MOUNT_##option)
#define test_opt(sbi, option)	(F2FS_OPTION(sbi).opt & F2FS_MOUNT_##option)

#define ver_after(a, b)	(typecheck(unsigned long long, a) &&		\
		typecheck(unsigned long long, b) &&			\
		((long long)((a) - (b)) > 0))

typedef u32 block_t;	/*
			 * should not change u32, since it is the on-disk block
			 * address format, __le32.
			 */
typedef u32 nid_t;

#define COMPRESS_EXT_NUM		16

/*
 * An implementation of an rwsem that is explicitly unfair to readers. This
 * prevents priority inversion when a low-priority reader acquires the read lock
 * while sleeping on the write lock but the write lock is needed by
 * higher-priority clients.
 */

struct f2fs_rwsem {
        struct rw_semaphore internal_rwsem;
#ifdef CONFIG_F2FS_UNFAIR_RWSEM
        wait_queue_head_t read_waiters;
#endif
};

struct f2fs_mount_info {
	unsigned int opt;
	block_t root_reserved_blocks;	/* root reserved blocks */
	kuid_t s_resuid;		/* reserved blocks for uid */
	kgid_t s_resgid;		/* reserved blocks for gid */
	int active_logs;		/* # of active logs */
	int inline_xattr_size;		/* inline xattr size */
#ifdef CONFIG_F2FS_FAULT_INJECTION
	struct f2fs_fault_info fault_info;	/* For fault injection */
#endif
#ifdef CONFIG_QUOTA
	/* Names of quota files with journalled quota */
	char *s_qf_names[MAXQUOTAS];
	int s_jquota_fmt;			/* Format of quota to use */
#endif
	/* For which write hints are passed down to block layer */
	int alloc_mode;			/* segment allocation policy */
	int fsync_mode;			/* fsync policy */
	int fs_mode;			/* fs mode: LFS or ADAPTIVE */
	int bggc_mode;			/* bggc mode: off, on or sync */
	int memory_mode;		/* memory mode */
	int errors;			/* errors parameter */
	int discard_unit;		/*
					 * discard command's offset/size should
					 * be aligned to this unit: block,
					 * segment or section
					 */
	struct fscrypt_dummy_policy dummy_enc_policy; /* test dummy encryption */
	block_t unusable_cap_perc;	/* percentage for cap */
	block_t unusable_cap;		/* Amount of space allowed to be
					 * unusable when disabling checkpoint
					 */

	/* For compression */
	unsigned char compress_algorithm;	/* algorithm type */
	unsigned char compress_log_size;	/* cluster log size */
	unsigned char compress_level;		/* compress level */
	bool compress_chksum;			/* compressed data chksum */
	unsigned char compress_ext_cnt;		/* extension count */
	unsigned char nocompress_ext_cnt;		/* nocompress extension count */
	int compress_mode;			/* compression mode */
	unsigned char extensions[COMPRESS_EXT_NUM][F2FS_EXTENSION_LEN];	/* extensions */
	unsigned char noextensions[COMPRESS_EXT_NUM][F2FS_EXTENSION_LEN]; /* extensions */
};

#define F2FS_FEATURE_ENCRYPT			0x00000001
#define F2FS_FEATURE_BLKZONED			0x00000002
#define F2FS_FEATURE_ATOMIC_WRITE		0x00000004
#define F2FS_FEATURE_EXTRA_ATTR			0x00000008
#define F2FS_FEATURE_PRJQUOTA			0x00000010
#define F2FS_FEATURE_INODE_CHKSUM		0x00000020
#define F2FS_FEATURE_FLEXIBLE_INLINE_XATTR	0x00000040
#define F2FS_FEATURE_QUOTA_INO			0x00000080
#define F2FS_FEATURE_INODE_CRTIME		0x00000100
#define F2FS_FEATURE_LOST_FOUND			0x00000200
#define F2FS_FEATURE_VERITY			0x00000400
#define F2FS_FEATURE_SB_CHKSUM			0x00000800
#define F2FS_FEATURE_CASEFOLD			0x00001000
#define F2FS_FEATURE_COMPRESSION		0x00002000
#define F2FS_FEATURE_RO				0x00004000

#define __F2FS_HAS_FEATURE(raw_super, mask)				\
	((raw_super->feature & cpu_to_le32(mask)) != 0)
#define F2FS_HAS_FEATURE(sbi, mask)	__F2FS_HAS_FEATURE(sbi->raw_super, mask)

/*
 * Default values for user and/or group using reserved blocks
 */
#define	F2FS_DEF_RESUID		0
#define	F2FS_DEF_RESGID		0

/*
 * For checkpoint manager
 */
enum {
	NAT_BITMAP,
	SIT_BITMAP
};

#define	CP_UMOUNT	0x00000001
#define	CP_FASTBOOT	0x00000002
#define	CP_SYNC		0x00000004
#define	CP_RECOVERY	0x00000008
#define	CP_DISCARD	0x00000010
#define CP_TRIMMED	0x00000020
#define CP_PAUSE	0x00000040
#define CP_RESIZE 	0x00000080

#define DEF_MAX_DISCARD_REQUEST		8	/* issue 8 discards per round */
#define DEF_MIN_DISCARD_ISSUE_TIME	50	/* 50 ms, if exists */
#define DEF_MID_DISCARD_ISSUE_TIME	500	/* 500 ms, if device busy */
#define DEF_MAX_DISCARD_ISSUE_TIME	60000	/* 60 s, if no candidates */
#define DEF_DISCARD_URGENT_UTIL		80	/* do more discard over 80% */
#define DEF_CP_INTERVAL			60	/* 60 secs */
#define DEF_IDLE_INTERVAL		5	/* 5 secs */
#define DEF_DISABLE_INTERVAL		5	/* 5 secs */
#define DEF_DISABLE_QUICK_INTERVAL	1	/* 1 secs */
#define DEF_UMOUNT_DISCARD_TIMEOUT	5	/* 5 secs */

struct cp_control {
	int reason;
	__u64 trim_start;
	__u64 trim_end;
	__u64 trim_minlen;
};

/*
 * indicate meta/data type
 */
enum {
	META_CP,
	META_NAT,
	META_SIT,
	META_SSA,
	META_MAX,
	META_POR,
	DATA_GENERIC,		/* check range only */
	DATA_GENERIC_ENHANCE,	/* strong check on range and segment bitmap */
	DATA_GENERIC_ENHANCE_READ,	/*
					 * strong check on range and segment
					 * bitmap but no warning due to race
					 * condition of read on truncated area
					 * by extent_cache
					 */
	DATA_GENERIC_ENHANCE_UPDATE,	/*
					 * strong check on range and segment
					 * bitmap for update case
					 */
	META_GENERIC,
};

/* for the list of ino */
enum {
	ORPHAN_INO,		/* for orphan ino list */
	APPEND_INO,		/* for append ino list */
	UPDATE_INO,		/* for update ino list */
	TRANS_DIR_INO,		/* for transactions dir ino list */
	FLUSH_INO,		/* for multiple device flushing */
	MAX_INO_ENTRY,		/* max. list */
};

struct ino_entry {
	struct list_head list;		/* list head */
	nid_t ino;			/* inode number */
	unsigned int dirty_device;	/* dirty device bitmap */
};

/* for the list of inodes to be GCed */
struct inode_entry {
	struct list_head list;	/* list head */
	struct inode *inode;	/* vfs inode pointer */
};

struct fsync_node_entry {
	struct list_head list;	/* list head */
	struct page *page;	/* warm node page pointer */
	unsigned int seq_id;	/* sequence id */
};

struct ckpt_req {
	struct completion wait;		/* completion for checkpoint done */
	struct llist_node llnode;	/* llist_node to be linked in wait queue */
	int ret;			/* return code of checkpoint */
	ktime_t queue_time;		/* request queued time */
};

struct ckpt_req_control {
	struct task_struct *f2fs_issue_ckpt;	/* checkpoint task */
	int ckpt_thread_ioprio;			/* checkpoint merge thread ioprio */
	wait_queue_head_t ckpt_wait_queue;	/* waiting queue for wake-up */
	atomic_t issued_ckpt;		/* # of actually issued ckpts */
	atomic_t total_ckpt;		/* # of total ckpts */
	atomic_t queued_ckpt;		/* # of queued ckpts */
	struct llist_head issue_list;	/* list for command issue */
	spinlock_t stat_lock;		/* lock for below checkpoint time stats */
	unsigned int cur_time;		/* cur wait time in msec for currently issued checkpoint */
	unsigned int peak_time;		/* peak wait time in msec until now */
};

/* for the bitmap indicate blocks to be discarded */
struct discard_entry {
	struct list_head list;	/* list head */
	block_t start_blkaddr;	/* start blockaddr of current segment */
	unsigned char discard_map[SIT_VBLOCK_MAP_SIZE];	/* segment discard bitmap */
};

/* minimum discard granularity, unit: block count */
#define MIN_DISCARD_GRANULARITY		1
/* default discard granularity of inner discard thread, unit: block count */
#define DEFAULT_DISCARD_GRANULARITY		16
/* default maximum discard granularity of ordered discard, unit: block count */
#define DEFAULT_MAX_ORDERED_DISCARD_GRANULARITY	16

/* max discard pend list number */
#define MAX_PLIST_NUM		512
#define plist_idx(blk_num)	((blk_num) >= MAX_PLIST_NUM ?		\
					(MAX_PLIST_NUM - 1) : ((blk_num) - 1))

enum {
	D_PREP,			/* initial */
	D_PARTIAL,		/* partially submitted */
	D_SUBMIT,		/* all submitted */
	D_DONE,			/* finished */
};

struct discard_info {
	block_t lstart;			/* logical start address */
	block_t len;			/* length */
	block_t start;			/* actual start address in dev */
};

struct discard_cmd {
	struct rb_node rb_node;		/* rb node located in rb-tree */
	struct discard_info di;		/* discard info */
	struct list_head list;		/* command list */
	struct completion wait;		/* compleation */
	struct block_device *bdev;	/* bdev */
	unsigned short ref;		/* reference count */
	unsigned char state;		/* state */
	unsigned char queued;		/* queued discard */
	int error;			/* bio error */
	spinlock_t lock;		/* for state/bio_ref updating */
	unsigned short bio_ref;		/* bio reference count */
};

enum {
	DPOLICY_BG,
	DPOLICY_FORCE,
	DPOLICY_FSTRIM,
	DPOLICY_UMOUNT,
	MAX_DPOLICY,
};

enum {
	DPOLICY_IO_AWARE_DISABLE,	/* force to not be aware of IO */
	DPOLICY_IO_AWARE_ENABLE,	/* force to be aware of IO */
	DPOLICY_IO_AWARE_MAX,
};

struct discard_policy {
	int type;			/* type of discard */
	unsigned int min_interval;	/* used for candidates exist */
	unsigned int mid_interval;	/* used for device busy */
	unsigned int max_interval;	/* used for candidates not exist */
	unsigned int max_requests;	/* # of discards issued per round */
	unsigned int io_aware_gran;	/* minimum granularity discard not be aware of I/O */
	bool io_aware;			/* issue discard in idle time */
	bool sync;			/* submit discard with REQ_SYNC flag */
	bool ordered;			/* issue discard by lba order */
	bool timeout;			/* discard timeout for put_super */
	unsigned int granularity;	/* discard granularity */
};

struct discard_cmd_control {
	struct task_struct *f2fs_issue_discard;	/* discard thread */
	struct list_head entry_list;		/* 4KB discard entry list */
	struct list_head pend_list[MAX_PLIST_NUM];/* store pending entries */
	struct list_head wait_list;		/* store on-flushing entries */
	struct list_head fstrim_list;		/* in-flight discard from fstrim */
	wait_queue_head_t discard_wait_queue;	/* waiting queue for wake-up */
	struct mutex cmd_lock;
	unsigned int nr_discards;		/* # of discards in the list */
	unsigned int max_discards;		/* max. discards to be issued */
	unsigned int max_discard_request;	/* max. discard request per round */
	unsigned int min_discard_issue_time;	/* min. interval between discard issue */
	unsigned int mid_discard_issue_time;	/* mid. interval between discard issue */
	unsigned int max_discard_issue_time;	/* max. interval between discard issue */
	unsigned int discard_io_aware_gran; /* minimum discard granularity not be aware of I/O */
	unsigned int discard_urgent_util;	/* utilization which issue discard proactively */
	unsigned int discard_granularity;	/* discard granularity */
	unsigned int max_ordered_discard;	/* maximum discard granularity issued by lba order */
	unsigned int discard_io_aware;		/* io_aware policy */
	unsigned int undiscard_blks;		/* # of undiscard blocks */
	unsigned int next_pos;			/* next discard position */
	atomic_t issued_discard;		/* # of issued discard */
	atomic_t queued_discard;		/* # of queued discard */
	atomic_t discard_cmd_cnt;		/* # of cached cmd count */
	struct rb_root_cached root;		/* root of discard rb-tree */
	bool rbtree_check;			/* config for consistence check */
	bool discard_wake;			/* to wake up discard thread */
};

/* for the list of fsync inodes, used only during recovery */
struct fsync_inode_entry {
	struct list_head list;	/* list head */
	struct inode *inode;	/* vfs inode pointer */
	block_t blkaddr;	/* block address locating the last fsync */
	block_t last_dentry;	/* block address locating the last dentry */
};

#define nats_in_cursum(jnl)		(le16_to_cpu((jnl)->n_nats))
#define sits_in_cursum(jnl)		(le16_to_cpu((jnl)->n_sits))

#define nat_in_journal(jnl, i)		((jnl)->nat_j.entries[i].ne)
#define nid_in_journal(jnl, i)		((jnl)->nat_j.entries[i].nid)
#define sit_in_journal(jnl, i)		((jnl)->sit_j.entries[i].se)
#define segno_in_journal(jnl, i)	((jnl)->sit_j.entries[i].segno)

#define MAX_NAT_JENTRIES(jnl)	(NAT_JOURNAL_ENTRIES - nats_in_cursum(jnl))
#define MAX_SIT_JENTRIES(jnl)	(SIT_JOURNAL_ENTRIES - sits_in_cursum(jnl))

static inline int update_nats_in_cursum(struct f2fs_journal *journal, int i)
{
	int before = nats_in_cursum(journal);

	journal->n_nats = cpu_to_le16(before + i);
	return before;
}

static inline int update_sits_in_cursum(struct f2fs_journal *journal, int i)
{
	int before = sits_in_cursum(journal);

	journal->n_sits = cpu_to_le16(before + i);
	return before;
}

static inline bool __has_cursum_space(struct f2fs_journal *journal,
							int size, int type)
{
	if (type == NAT_JOURNAL)
		return size <= MAX_NAT_JENTRIES(journal);
	return size <= MAX_SIT_JENTRIES(journal);
}

/* for inline stuff */
#define DEF_INLINE_RESERVED_SIZE	1
static inline int get_extra_isize(struct inode *inode);
static inline int get_inline_xattr_addrs(struct inode *inode);
#define MAX_INLINE_DATA(inode)	(sizeof(__le32) *			\
				(CUR_ADDRS_PER_INODE(inode) -		\
				get_inline_xattr_addrs(inode) -	\
				DEF_INLINE_RESERVED_SIZE))

/* for inline dir */
#define NR_INLINE_DENTRY(inode)	(MAX_INLINE_DATA(inode) * BITS_PER_BYTE / \
				((SIZE_OF_DIR_ENTRY + F2FS_SLOT_LEN) * \
				BITS_PER_BYTE + 1))
#define INLINE_DENTRY_BITMAP_SIZE(inode) \
	DIV_ROUND_UP(NR_INLINE_DENTRY(inode), BITS_PER_BYTE)
#define INLINE_RESERVED_SIZE(inode)	(MAX_INLINE_DATA(inode) - \
				((SIZE_OF_DIR_ENTRY + F2FS_SLOT_LEN) * \
				NR_INLINE_DENTRY(inode) + \
				INLINE_DENTRY_BITMAP_SIZE(inode)))

/*
 * For INODE and NODE manager
 */
/* for directory operations */

struct f2fs_filename {
	/*
	 * The filename the user specified.  This is NULL for some
	 * filesystem-internal operations, e.g. converting an inline directory
	 * to a non-inline one, or roll-forward recovering an encrypted dentry.
	 */
	const struct qstr *usr_fname;

	/*
	 * The on-disk filename.  For encrypted directories, this is encrypted.
	 * This may be NULL for lookups in an encrypted dir without the key.
	 */
	struct fscrypt_str disk_name;

	/* The dirhash of this filename */
	f2fs_hash_t hash;

#ifdef CONFIG_FS_ENCRYPTION
	/*
	 * For lookups in encrypted directories: either the buffer backing
	 * disk_name, or a buffer that holds the decoded no-key name.
	 */
	struct fscrypt_str crypto_buf;
#endif
#if IS_ENABLED(CONFIG_UNICODE)
	/*
	 * For casefolded directories: the casefolded name, but it's left NULL
	 * if the original name is not valid Unicode, if the original name is
	 * "." or "..", if the directory is both casefolded and encrypted and
	 * its encryption key is unavailable, or if the filesystem is doing an
	 * internal operation where usr_fname is also NULL.  In all these cases
	 * we fall back to treating the name as an opaque byte sequence.
	 */
	struct fscrypt_str cf_name;
#endif
};

struct f2fs_dentry_ptr {
	struct inode *inode;
	void *bitmap;
	struct f2fs_dir_entry *dentry;
	__u8 (*filename)[F2FS_SLOT_LEN];
	int max;
	int nr_bitmap;
};

static inline void make_dentry_ptr_block(struct inode *inode,
		struct f2fs_dentry_ptr *d, struct f2fs_dentry_block *t)
{
	d->inode = inode;
	d->max = NR_DENTRY_IN_BLOCK;
	d->nr_bitmap = SIZE_OF_DENTRY_BITMAP;
	d->bitmap = t->dentry_bitmap;
	d->dentry = t->dentry;
	d->filename = t->filename;
}

static inline void make_dentry_ptr_inline(struct inode *inode,
					struct f2fs_dentry_ptr *d, void *t)
{
	int entry_cnt = NR_INLINE_DENTRY(inode);
	int bitmap_size = INLINE_DENTRY_BITMAP_SIZE(inode);
	int reserved_size = INLINE_RESERVED_SIZE(inode);

	d->inode = inode;
	d->max = entry_cnt;
	d->nr_bitmap = bitmap_size;
	d->bitmap = t;
	d->dentry = t + bitmap_size + reserved_size;
	d->filename = t + bitmap_size + reserved_size +
					SIZE_OF_DIR_ENTRY * entry_cnt;
}

/*
 * XATTR_NODE_OFFSET stores xattrs to one node block per file keeping -1
 * as its node offset to distinguish from index node blocks.
 * But some bits are used to mark the node block.
 */
#define XATTR_NODE_OFFSET	((((unsigned int)-1) << OFFSET_BIT_SHIFT) \
				>> OFFSET_BIT_SHIFT)
enum {
	ALLOC_NODE,			/* allocate a new node page if needed */
	LOOKUP_NODE,			/* look up a node without readahead */
	LOOKUP_NODE_RA,			/*
					 * look up a node with readahead called
					 * by get_data_block.
					 */
};

#define DEFAULT_RETRY_IO_COUNT	8	/* maximum retry read IO or flush count */

/* congestion wait timeout value, default: 20ms */
#define	DEFAULT_IO_TIMEOUT	(msecs_to_jiffies(20))

/* maximum retry quota flush count */
#define DEFAULT_RETRY_QUOTA_FLUSH_COUNT		8

/* maximum retry of EIO'ed page */
#define MAX_RETRY_PAGE_EIO			100

#define F2FS_LINK_MAX	0xffffffff	/* maximum link count per file */

#define MAX_DIR_RA_PAGES	4	/* maximum ra pages of dir */

/* dirty segments threshold for triggering CP */
#define DEFAULT_DIRTY_THRESHOLD		4

#define RECOVERY_MAX_RA_BLOCKS		BIO_MAX_VECS
#define RECOVERY_MIN_RA_BLOCKS		1

#define F2FS_ONSTACK_PAGES	16	/* nr of onstack pages */

/* for in-memory extent cache entry */
#define F2FS_MIN_EXTENT_LEN	64	/* minimum extent length */

/* number of extent info in extent cache we try to shrink */
#define READ_EXTENT_CACHE_SHRINK_NUMBER	128

/* number of age extent info in extent cache we try to shrink */
#define AGE_EXTENT_CACHE_SHRINK_NUMBER	128
#define LAST_AGE_WEIGHT			30
#define SAME_AGE_REGION			1024

/*
 * Define data block with age less than 1GB as hot data
 * define data block with age less than 10GB but more than 1GB as warm data
 */
#define DEF_HOT_DATA_AGE_THRESHOLD	262144
#define DEF_WARM_DATA_AGE_THRESHOLD	2621440

/* extent cache type */
enum extent_type {
	EX_READ,
	EX_BLOCK_AGE,
	NR_EXTENT_CACHES,
};

struct extent_info {
	unsigned int fofs;		/* start offset in a file */
	unsigned int len;		/* length of the extent */
	union {
		/* read extent_cache */
		struct {
			/* start block address of the extent */
			block_t blk;
#ifdef CONFIG_F2FS_FS_COMPRESSION
			/* physical extent length of compressed blocks */
			unsigned int c_len;
#endif
		};
		/* block age extent_cache */
		struct {
			/* block age of the extent */
			unsigned long long age;
			/* last total blocks allocated */
			unsigned long long last_blocks;
		};
	};
};

struct extent_node {
	struct rb_node rb_node;		/* rb node located in rb-tree */
	struct extent_info ei;		/* extent info */
	struct list_head list;		/* node in global extent list of sbi */
	struct extent_tree *et;		/* extent tree pointer */
};

struct extent_tree {
	nid_t ino;			/* inode number */
	enum extent_type type;		/* keep the extent tree type */
	struct rb_root_cached root;	/* root of extent info rb-tree */
	struct extent_node *cached_en;	/* recently accessed extent node */
	struct list_head list;		/* to be used by sbi->zombie_list */
	rwlock_t lock;			/* protect extent info rb-tree */
	atomic_t node_cnt;		/* # of extent node in rb-tree*/
	bool largest_updated;		/* largest extent updated */
	struct extent_info largest;	/* largest cached extent for EX_READ */
};

struct extent_tree_info {
	struct radix_tree_root extent_tree_root;/* cache extent cache entries */
	struct mutex extent_tree_lock;	/* locking extent radix tree */
	struct list_head extent_list;		/* lru list for shrinker */
	spinlock_t extent_lock;			/* locking extent lru list */
	atomic_t total_ext_tree;		/* extent tree count */
	struct list_head zombie_list;		/* extent zombie tree list */
	atomic_t total_zombie_tree;		/* extent zombie tree count */
	atomic_t total_ext_node;		/* extent info count */
};

/*
 * State of block returned by f2fs_map_blocks.
 */
#define F2FS_MAP_NEW		(1U << 0)
#define F2FS_MAP_MAPPED		(1U << 1)
#define F2FS_MAP_DELALLOC	(1U << 2)
#define F2FS_MAP_FLAGS		(F2FS_MAP_NEW | F2FS_MAP_MAPPED |\
				F2FS_MAP_DELALLOC)

struct f2fs_map_blocks {
	struct block_device *m_bdev;	/* for multi-device dio */
	block_t m_pblk;
	block_t m_lblk;
	unsigned int m_len;
	unsigned int m_flags;
	pgoff_t *m_next_pgofs;		/* point next possible non-hole pgofs */
	pgoff_t *m_next_extent;		/* point to next possible extent */
	int m_seg_type;
	bool m_may_create;		/* indicate it is from write path */
	bool m_multidev_dio;		/* indicate it allows multi-device dio */
};

/* for flag in get_data_block */
enum {
	F2FS_GET_BLOCK_DEFAULT,
	F2FS_GET_BLOCK_FIEMAP,
	F2FS_GET_BLOCK_BMAP,
	F2FS_GET_BLOCK_DIO,
	F2FS_GET_BLOCK_PRE_DIO,
	F2FS_GET_BLOCK_PRE_AIO,
	F2FS_GET_BLOCK_PRECACHE,
};

/*
 * i_advise uses FADVISE_XXX_BIT. We can add additional hints later.
 */
#define FADVISE_COLD_BIT	0x01
#define FADVISE_LOST_PINO_BIT	0x02
#define FADVISE_ENCRYPT_BIT	0x04
#define FADVISE_ENC_NAME_BIT	0x08
#define FADVISE_KEEP_SIZE_BIT	0x10
#define FADVISE_HOT_BIT		0x20
#define FADVISE_VERITY_BIT	0x40
#define FADVISE_TRUNC_BIT	0x80

#define FADVISE_MODIFIABLE_BITS	(FADVISE_COLD_BIT | FADVISE_HOT_BIT)

#define file_is_cold(inode)	is_file(inode, FADVISE_COLD_BIT)
#define file_set_cold(inode)	set_file(inode, FADVISE_COLD_BIT)
#define file_clear_cold(inode)	clear_file(inode, FADVISE_COLD_BIT)

#define file_wrong_pino(inode)	is_file(inode, FADVISE_LOST_PINO_BIT)
#define file_lost_pino(inode)	set_file(inode, FADVISE_LOST_PINO_BIT)
#define file_got_pino(inode)	clear_file(inode, FADVISE_LOST_PINO_BIT)

#define file_is_encrypt(inode)	is_file(inode, FADVISE_ENCRYPT_BIT)
#define file_set_encrypt(inode)	set_file(inode, FADVISE_ENCRYPT_BIT)

#define file_enc_name(inode)	is_file(inode, FADVISE_ENC_NAME_BIT)
#define file_set_enc_name(inode) set_file(inode, FADVISE_ENC_NAME_BIT)

#define file_keep_isize(inode)	is_file(inode, FADVISE_KEEP_SIZE_BIT)
#define file_set_keep_isize(inode) set_file(inode, FADVISE_KEEP_SIZE_BIT)

#define file_is_hot(inode)	is_file(inode, FADVISE_HOT_BIT)
#define file_set_hot(inode)	set_file(inode, FADVISE_HOT_BIT)
#define file_clear_hot(inode)	clear_file(inode, FADVISE_HOT_BIT)

#define file_is_verity(inode)	is_file(inode, FADVISE_VERITY_BIT)
#define file_set_verity(inode)	set_file(inode, FADVISE_VERITY_BIT)

#define file_should_truncate(inode)	is_file(inode, FADVISE_TRUNC_BIT)
#define file_need_truncate(inode)	set_file(inode, FADVISE_TRUNC_BIT)
#define file_dont_truncate(inode)	clear_file(inode, FADVISE_TRUNC_BIT)

#define DEF_DIR_LEVEL		0

enum {
	GC_FAILURE_PIN,
	MAX_GC_FAILURE
};

/* used for f2fs_inode_info->flags */
enum {
	FI_NEW_INODE,		/* indicate newly allocated inode */
	FI_DIRTY_INODE,		/* indicate inode is dirty or not */
	FI_AUTO_RECOVER,	/* indicate inode is recoverable */
	FI_DIRTY_DIR,		/* indicate directory has dirty pages */
	FI_INC_LINK,		/* need to increment i_nlink */
	FI_ACL_MODE,		/* indicate acl mode */
	FI_NO_ALLOC,		/* should not allocate any blocks */
	FI_FREE_NID,		/* free allocated nide */
	FI_NO_EXTENT,		/* not to use the extent cache */
	FI_INLINE_XATTR,	/* used for inline xattr */
	FI_INLINE_DATA,		/* used for inline data*/
	FI_INLINE_DENTRY,	/* used for inline dentry */
	FI_APPEND_WRITE,	/* inode has appended data */
	FI_UPDATE_WRITE,	/* inode has in-place-update data */
	FI_NEED_IPU,		/* used for ipu per file */
	FI_ATOMIC_FILE,		/* indicate atomic file */
	FI_DATA_EXIST,		/* indicate data exists */
	FI_INLINE_DOTS,		/* indicate inline dot dentries */
	FI_SKIP_WRITES,		/* should skip data page writeback */
	FI_OPU_WRITE,		/* used for opu per file */
	FI_DIRTY_FILE,		/* indicate regular/symlink has dirty pages */
	FI_PREALLOCATED_ALL,	/* all blocks for write were preallocated */
	FI_HOT_DATA,		/* indicate file is hot */
	FI_EXTRA_ATTR,		/* indicate file has extra attribute */
	FI_PROJ_INHERIT,	/* indicate file inherits projectid */
	FI_PIN_FILE,		/* indicate file should not be gced */
	FI_VERITY_IN_PROGRESS,	/* building fs-verity Merkle tree */
	FI_COMPRESSED_FILE,	/* indicate file's data can be compressed */
	FI_COMPRESS_CORRUPT,	/* indicate compressed cluster is corrupted */
	FI_MMAP_FILE,		/* indicate file was mmapped */
	FI_ENABLE_COMPRESS,	/* enable compression in "user" compression mode */
	FI_COMPRESS_RELEASED,	/* compressed blocks were released */
	FI_ALIGNED_WRITE,	/* enable aligned write */
	FI_COW_FILE,		/* indicate COW file */
	FI_ATOMIC_COMMITTED,	/* indicate atomic commit completed except disk sync */
	FI_ATOMIC_REPLACE,	/* indicate atomic replace */
	FI_MAX,			/* max flag, never be used */
};

struct f2fs_inode_info {
	struct inode vfs_inode;		/* serve a vfs inode */
	unsigned long i_flags;		/* keep an inode flags for ioctl */
	unsigned char i_advise;		/* use to give file attribute hints */
	unsigned char i_dir_level;	/* use for dentry level for large dir */
	unsigned int i_current_depth;	/* only for directory depth */
	/* for gc failure statistic */
	unsigned int i_gc_failures[MAX_GC_FAILURE];
	unsigned int i_pino;		/* parent inode number */
	umode_t i_acl_mode;		/* keep file acl mode temporarily */

	/* Use below internally in f2fs*/
	unsigned long flags[BITS_TO_LONGS(FI_MAX)];	/* use to pass per-file flags */
	struct f2fs_rwsem i_sem;	/* protect fi info */
	atomic_t dirty_pages;		/* # of dirty pages */
	f2fs_hash_t chash;		/* hash value of given file name */
	unsigned int clevel;		/* maximum level of given file name */
	struct task_struct *task;	/* lookup and create consistency */
	struct task_struct *cp_task;	/* separate cp/wb IO stats*/
	struct task_struct *wb_task;	/* indicate inode is in context of writeback */
	nid_t i_xattr_nid;		/* node id that contains xattrs */
	loff_t	last_disk_size;		/* lastly written file size */
	spinlock_t i_size_lock;		/* protect last_disk_size */

#ifdef CONFIG_QUOTA
	struct dquot __rcu *i_dquot[MAXQUOTAS];

	/* quota space reservation, managed internally by quota code */
	qsize_t i_reserved_quota;
#endif
	struct list_head dirty_list;	/* dirty list for dirs and files */
	struct list_head gdirty_list;	/* linked in global dirty list */
	struct task_struct *atomic_write_task;	/* store atomic write task */
	struct extent_tree *extent_tree[NR_EXTENT_CACHES];
					/* cached extent_tree entry */
	struct inode *cow_inode;	/* copy-on-write inode for atomic write */

	/* avoid racing between foreground op and gc */
	struct f2fs_rwsem i_gc_rwsem[2];
	struct f2fs_rwsem i_xattr_sem; /* avoid racing between reading and changing EAs */

	int i_extra_isize;		/* size of extra space located in i_addr */
	kprojid_t i_projid;		/* id for project quota */
	int i_inline_xattr_size;	/* inline xattr size */
	struct timespec64 i_crtime;	/* inode creation time */
	struct timespec64 i_disk_time[3];/* inode disk times */

	/* for file compress */
	atomic_t i_compr_blocks;		/* # of compressed blocks */
	unsigned char i_compress_algorithm;	/* algorithm type */
	unsigned char i_log_cluster_size;	/* log of cluster size */
	unsigned char i_compress_level;		/* compress level (lz4hc,zstd) */
	unsigned char i_compress_flag;		/* compress flag */
	unsigned int i_cluster_size;		/* cluster size */

	unsigned int atomic_write_cnt;
	loff_t original_i_size;		/* original i_size before atomic write */
};

static inline void get_read_extent_info(struct extent_info *ext,
					struct f2fs_extent *i_ext)
{
	ext->fofs = le32_to_cpu(i_ext->fofs);
	ext->blk = le32_to_cpu(i_ext->blk);
	ext->len = le32_to_cpu(i_ext->len);
}

static inline void set_raw_read_extent(struct extent_info *ext,
					struct f2fs_extent *i_ext)
{
	i_ext->fofs = cpu_to_le32(ext->fofs);
	i_ext->blk = cpu_to_le32(ext->blk);
	i_ext->len = cpu_to_le32(ext->len);
}

static inline bool __is_discard_mergeable(struct discard_info *back,
			struct discard_info *front, unsigned int max_len)
{
	return (back->lstart + back->len == front->lstart) &&
		(back->len + front->len <= max_len);
}

static inline bool __is_discard_back_mergeable(struct discard_info *cur,
			struct discard_info *back, unsigned int max_len)
{
	return __is_discard_mergeable(back, cur, max_len);
}

static inline bool __is_discard_front_mergeable(struct discard_info *cur,
			struct discard_info *front, unsigned int max_len)
{
	return __is_discard_mergeable(cur, front, max_len);
}

/*
 * For free nid management
 */
enum nid_state {
	FREE_NID,		/* newly added to free nid list */
	PREALLOC_NID,		/* it is preallocated */
	MAX_NID_STATE,
};

enum nat_state {
	TOTAL_NAT,
	DIRTY_NAT,
	RECLAIMABLE_NAT,
	MAX_NAT_STATE,
};

struct f2fs_nm_info {
	block_t nat_blkaddr;		/* base disk address of NAT */
	nid_t max_nid;			/* maximum possible node ids */
	nid_t available_nids;		/* # of available node ids */
	nid_t next_scan_nid;		/* the next nid to be scanned */
	nid_t max_rf_node_blocks;	/* max # of nodes for recovery */
	unsigned int ram_thresh;	/* control the memory footprint */
	unsigned int ra_nid_pages;	/* # of nid pages to be readaheaded */
	unsigned int dirty_nats_ratio;	/* control dirty nats ratio threshold */

	/* NAT cache management */
	struct radix_tree_root nat_root;/* root of the nat entry cache */
	struct radix_tree_root nat_set_root;/* root of the nat set cache */
	struct f2fs_rwsem nat_tree_lock;	/* protect nat entry tree */
	struct list_head nat_entries;	/* cached nat entry list (clean) */
	spinlock_t nat_list_lock;	/* protect clean nat entry list */
	unsigned int nat_cnt[MAX_NAT_STATE]; /* the # of cached nat entries */
	unsigned int nat_blocks;	/* # of nat blocks */

	/* free node ids management */
	struct radix_tree_root free_nid_root;/* root of the free_nid cache */
	struct list_head free_nid_list;		/* list for free nids excluding preallocated nids */
	unsigned int nid_cnt[MAX_NID_STATE];	/* the number of free node id */
	spinlock_t nid_list_lock;	/* protect nid lists ops */
	struct mutex build_lock;	/* lock for build free nids */
	unsigned char **free_nid_bitmap;
	unsigned char *nat_block_bitmap;
	unsigned short *free_nid_count;	/* free nid count of NAT block */

	/* for checkpoint */
	char *nat_bitmap;		/* NAT bitmap pointer */

	unsigned int nat_bits_blocks;	/* # of nat bits blocks */
	unsigned char *nat_bits;	/* NAT bits blocks */
	unsigned char *full_nat_bits;	/* full NAT pages */
	unsigned char *empty_nat_bits;	/* empty NAT pages */
#ifdef CONFIG_F2FS_CHECK_FS
	char *nat_bitmap_mir;		/* NAT bitmap mirror */
#endif
	int bitmap_size;		/* bitmap size */
};

/*
 * this structure is used as one of function parameters.
 * all the information are dedicated to a given direct node block determined
 * by the data offset in a file.
 */
struct dnode_of_data {
	struct inode *inode;		/* vfs inode pointer */
	struct page *inode_page;	/* its inode page, NULL is possible */
	struct page *node_page;		/* cached direct node page */
	nid_t nid;			/* node id of the direct node block */
	unsigned int ofs_in_node;	/* data offset in the node page */
	bool inode_page_locked;		/* inode page is locked or not */
	bool node_changed;		/* is node block changed */
	char cur_level;			/* level of hole node page */
	char max_level;			/* level of current page located */
	block_t	data_blkaddr;		/* block address of the node block */
};

static inline void set_new_dnode(struct dnode_of_data *dn, struct inode *inode,
		struct page *ipage, struct page *npage, nid_t nid)
{
	memset(dn, 0, sizeof(*dn));
	dn->inode = inode;
	dn->inode_page = ipage;
	dn->node_page = npage;
	dn->nid = nid;
}

/*
 * For SIT manager
 *
 * By default, there are 6 active log areas across the whole main area.
 * When considering hot and cold data separation to reduce cleaning overhead,
 * we split 3 for data logs and 3 for node logs as hot, warm, and cold types,
 * respectively.
 * In the current design, you should not change the numbers intentionally.
 * Instead, as a mount option such as active_logs=x, you can use 2, 4, and 6
 * logs individually according to the underlying devices. (default: 6)
 * Just in case, on-disk layout covers maximum 16 logs that consist of 8 for
 * data and 8 for node logs.
 */
#define	NR_CURSEG_DATA_TYPE	(3)
#define NR_CURSEG_NODE_TYPE	(3)
#define NR_CURSEG_INMEM_TYPE	(2)
#define NR_CURSEG_RO_TYPE	(2)
#define NR_CURSEG_PERSIST_TYPE	(NR_CURSEG_DATA_TYPE + NR_CURSEG_NODE_TYPE)
#define NR_CURSEG_TYPE		(NR_CURSEG_INMEM_TYPE + NR_CURSEG_PERSIST_TYPE)

enum {
	CURSEG_HOT_DATA	= 0,	/* directory entry blocks */
	CURSEG_WARM_DATA,	/* data blocks */
	CURSEG_COLD_DATA,	/* multimedia or GCed data blocks */
	CURSEG_HOT_NODE,	/* direct node blocks of directory files */
	CURSEG_WARM_NODE,	/* direct node blocks of normal files */
	CURSEG_COLD_NODE,	/* indirect node blocks */
	NR_PERSISTENT_LOG,	/* number of persistent log */
	CURSEG_COLD_DATA_PINNED = NR_PERSISTENT_LOG,
				/* pinned file that needs consecutive block address */
	CURSEG_ALL_DATA_ATGC,	/* SSR alloctor in hot/warm/cold data area */
	NO_CHECK_TYPE,		/* number of persistent & inmem log */
};

struct flush_cmd {
	struct completion wait;
	struct llist_node llnode;
	nid_t ino;
	int ret;
};

struct flush_cmd_control {
	struct task_struct *f2fs_issue_flush;	/* flush thread */
	wait_queue_head_t flush_wait_queue;	/* waiting queue for wake-up */
	atomic_t issued_flush;			/* # of issued flushes */
	atomic_t queued_flush;			/* # of queued flushes */
	struct llist_head issue_list;		/* list for command issue */
	struct llist_node *dispatch_list;	/* list for command dispatch */
};

struct f2fs_sm_info {
	struct sit_info *sit_info;		/* whole segment information */
	struct free_segmap_info *free_info;	/* free segment information */
	struct dirty_seglist_info *dirty_info;	/* dirty segment information */
	struct curseg_info *curseg_array;	/* active segment information */

	struct f2fs_rwsem curseg_lock;	/* for preventing curseg change */

	block_t seg0_blkaddr;		/* block address of 0'th segment */
	block_t main_blkaddr;		/* start block address of main area */
	block_t ssa_blkaddr;		/* start block address of SSA area */

	unsigned int segment_count;	/* total # of segments */
	unsigned int main_segments;	/* # of segments in main area */
	unsigned int reserved_segments;	/* # of reserved segments */
	unsigned int additional_reserved_segments;/* reserved segs for IO align feature */
	unsigned int ovp_segments;	/* # of overprovision segments */

	/* a threshold to reclaim prefree segments */
	unsigned int rec_prefree_segments;

	struct list_head sit_entry_set;	/* sit entry set list */

	unsigned int ipu_policy;	/* in-place-update policy */
	unsigned int min_ipu_util;	/* in-place-update threshold */
	unsigned int min_fsync_blocks;	/* threshold for fsync */
	unsigned int min_seq_blocks;	/* threshold for sequential blocks */
	unsigned int min_hot_blocks;	/* threshold for hot block allocation */
	unsigned int min_ssr_sections;	/* threshold to trigger SSR allocation */

	/* for flush command control */
	struct flush_cmd_control *fcc_info;

	/* for discard command control */
	struct discard_cmd_control *dcc_info;
};

/*
 * For superblock
 */
/*
 * COUNT_TYPE for monitoring
 *
 * f2fs monitors the number of several block types such as on-writeback,
 * dirty dentry blocks, dirty node blocks, and dirty meta blocks.
 */
#define WB_DATA_TYPE(p, f)			\
	(f || f2fs_is_cp_guaranteed(p) ? F2FS_WB_CP_DATA : F2FS_WB_DATA)
enum count_type {
	F2FS_DIRTY_DENTS,
	F2FS_DIRTY_DATA,
	F2FS_DIRTY_QDATA,
	F2FS_DIRTY_NODES,
	F2FS_DIRTY_META,
	F2FS_DIRTY_IMETA,
	F2FS_WB_CP_DATA,
	F2FS_WB_DATA,
	F2FS_RD_DATA,
	F2FS_RD_NODE,
	F2FS_RD_META,
	F2FS_DIO_WRITE,
	F2FS_DIO_READ,
	NR_COUNT_TYPE,
};

/*
 * The below are the page types of bios used in submit_bio().
 * The available types are:
 * DATA			User data pages. It operates as async mode.
 * NODE			Node pages. It operates as async mode.
 * META			FS metadata pages such as SIT, NAT, CP.
 * NR_PAGE_TYPE		The number of page types.
 * META_FLUSH		Make sure the previous pages are written
 *			with waiting the bio's completion
 * ...			Only can be used with META.
 */
#define PAGE_TYPE_OF_BIO(type)	((type) > META ? META : (type))
#define PAGE_TYPE_ON_MAIN(type)	((type) == DATA || (type) == NODE)
enum page_type {
	DATA = 0,
	NODE = 1,	/* should not change this */
	META,
	NR_PAGE_TYPE,
	META_FLUSH,
	IPU,		/* the below types are used by tracepoints only. */
	OPU,
};

enum temp_type {
	HOT = 0,	/* must be zero for meta bio */
	WARM,
	COLD,
	NR_TEMP_TYPE,
};

enum need_lock_type {
	LOCK_REQ = 0,
	LOCK_DONE,
	LOCK_RETRY,
};

enum cp_reason_type {
	CP_NO_NEEDED,
	CP_NON_REGULAR,
	CP_COMPRESSED,
	CP_HARDLINK,
	CP_SB_NEED_CP,
	CP_WRONG_PINO,
	CP_NO_SPC_ROLL,
	CP_NODE_NEED_CP,
	CP_FASTBOOT_MODE,
	CP_SPEC_LOG_NUM,
	CP_RECOVER_DIR,
};

enum iostat_type {
	/* WRITE IO */
	APP_DIRECT_IO,			/* app direct write IOs */
	APP_BUFFERED_IO,		/* app buffered write IOs */
	APP_WRITE_IO,			/* app write IOs */
	APP_MAPPED_IO,			/* app mapped IOs */
	APP_BUFFERED_CDATA_IO,		/* app buffered write IOs on compressed file */
	APP_MAPPED_CDATA_IO,		/* app mapped write IOs on compressed file */
	FS_DATA_IO,			/* data IOs from kworker/fsync/reclaimer */
	FS_CDATA_IO,			/* data IOs from kworker/fsync/reclaimer on compressed file */
	FS_NODE_IO,			/* node IOs from kworker/fsync/reclaimer */
	FS_META_IO,			/* meta IOs from kworker/reclaimer */
	FS_GC_DATA_IO,			/* data IOs from forground gc */
	FS_GC_NODE_IO,			/* node IOs from forground gc */
	FS_CP_DATA_IO,			/* data IOs from checkpoint */
	FS_CP_NODE_IO,			/* node IOs from checkpoint */
	FS_CP_META_IO,			/* meta IOs from checkpoint */

	/* READ IO */
	APP_DIRECT_READ_IO,		/* app direct read IOs */
	APP_BUFFERED_READ_IO,		/* app buffered read IOs */
	APP_READ_IO,			/* app read IOs */
	APP_MAPPED_READ_IO,		/* app mapped read IOs */
	APP_BUFFERED_CDATA_READ_IO,	/* app buffered read IOs on compressed file  */
	APP_MAPPED_CDATA_READ_IO,	/* app mapped read IOs on compressed file  */
	FS_DATA_READ_IO,		/* data read IOs */
	FS_GDATA_READ_IO,		/* data read IOs from background gc */
	FS_CDATA_READ_IO,		/* compressed data read IOs */
	FS_NODE_READ_IO,		/* node read IOs */
	FS_META_READ_IO,		/* meta read IOs */

	/* other */
	FS_DISCARD_IO,			/* discard */
	FS_FLUSH_IO,			/* flush */
	FS_ZONE_RESET_IO,		/* zone reset */
	NR_IO_TYPE,
};

struct f2fs_io_info {
	struct f2fs_sb_info *sbi;	/* f2fs_sb_info pointer */
	nid_t ino;		/* inode number */
	enum page_type type;	/* contains DATA/NODE/META/META_FLUSH */
	enum temp_type temp;	/* contains HOT/WARM/COLD */
	enum req_op op;		/* contains REQ_OP_ */
	blk_opf_t op_flags;	/* req_flag_bits */
	block_t new_blkaddr;	/* new block address to be written */
	block_t old_blkaddr;	/* old block address before Cow */
	struct page *page;	/* page to be written */
	struct page *encrypted_page;	/* encrypted page */
	struct page *compressed_page;	/* compressed page */
	struct list_head list;		/* serialize IOs */
	unsigned int compr_blocks;	/* # of compressed block addresses */
	unsigned int need_lock:8;	/* indicate we need to lock cp_rwsem */
	unsigned int version:8;		/* version of the node */
	unsigned int submitted:1;	/* indicate IO submission */
	unsigned int in_list:1;		/* indicate fio is in io_list */
	unsigned int is_por:1;		/* indicate IO is from recovery or not */
	unsigned int encrypted:1;	/* indicate file is encrypted */
	unsigned int post_read:1;	/* require post read */
	enum iostat_type io_type;	/* io type */
	struct writeback_control *io_wbc; /* writeback control */
	struct bio **bio;		/* bio for ipu */
	sector_t *last_block;		/* last block number in bio */
};

struct bio_entry {
	struct bio *bio;
	struct list_head list;
};

#define is_read_io(rw) ((rw) == READ)
struct f2fs_bio_info {
	struct f2fs_sb_info *sbi;	/* f2fs superblock */
	struct bio *bio;		/* bios to merge */
	sector_t last_block_in_bio;	/* last block number */
	struct f2fs_io_info fio;	/* store buffered io info. */
#ifdef CONFIG_BLK_DEV_ZONED
	struct completion zone_wait;	/* condition value for the previous open zone to close */
	struct bio *zone_pending_bio;	/* pending bio for the previous zone */
	void *bi_private;		/* previous bi_private for pending bio */
#endif
	struct f2fs_rwsem io_rwsem;	/* blocking op for bio */
	spinlock_t io_lock;		/* serialize DATA/NODE IOs */
	struct list_head io_list;	/* track fios */
	struct list_head bio_list;	/* bio entry list head */
	struct f2fs_rwsem bio_list_lock;	/* lock to protect bio entry list */
};

#define FDEV(i)				(sbi->devs[i])
#define RDEV(i)				(raw_super->devs[i])
struct f2fs_dev_info {
	struct file *bdev_file;
	struct block_device *bdev;
	char path[MAX_PATH_LEN];
	unsigned int total_segments;
	block_t start_blk;
	block_t end_blk;
#ifdef CONFIG_BLK_DEV_ZONED
	unsigned int nr_blkz;		/* Total number of zones */
	unsigned long *blkz_seq;	/* Bitmap indicating sequential zones */
#endif
};

enum inode_type {
	DIR_INODE,			/* for dirty dir inode */
	FILE_INODE,			/* for dirty regular/symlink inode */
	DIRTY_META,			/* for all dirtied inode metadata */
	NR_INODE_TYPE,
};

/* for inner inode cache management */
struct inode_management {
	struct radix_tree_root ino_root;	/* ino entry array */
	spinlock_t ino_lock;			/* for ino entry lock */
	struct list_head ino_list;		/* inode list head */
	unsigned long ino_num;			/* number of entries */
};

/* for GC_AT */
struct atgc_management {
	bool atgc_enabled;			/* ATGC is enabled or not */
	struct rb_root_cached root;		/* root of victim rb-tree */
	struct list_head victim_list;		/* linked with all victim entries */
	unsigned int victim_count;		/* victim count in rb-tree */
	unsigned int candidate_ratio;		/* candidate ratio */
	unsigned int max_candidate_count;	/* max candidate count */
	unsigned int age_weight;		/* age weight, vblock_weight = 100 - age_weight */
	unsigned long long age_threshold;	/* age threshold */
};

struct f2fs_gc_control {
	unsigned int victim_segno;	/* target victim segment number */
	int init_gc_type;		/* FG_GC or BG_GC */
	bool no_bg_gc;			/* check the space and stop bg_gc */
	bool should_migrate_blocks;	/* should migrate blocks */
	bool err_gc_skipped;		/* return EAGAIN if GC skipped */
	unsigned int nr_free_secs;	/* # of free sections to do GC */
};

/*
 * For s_flag in struct f2fs_sb_info
 * Modification on enum should be synchronized with s_flag array
 */
enum {
	SBI_IS_DIRTY,				/* dirty flag for checkpoint */
	SBI_IS_CLOSE,				/* specify unmounting */
	SBI_NEED_FSCK,				/* need fsck.f2fs to fix */
	SBI_POR_DOING,				/* recovery is doing or not */
	SBI_NEED_SB_WRITE,			/* need to recover superblock */
	SBI_NEED_CP,				/* need to checkpoint */
	SBI_IS_SHUTDOWN,			/* shutdown by ioctl */
	SBI_IS_RECOVERED,			/* recovered orphan/data */
	SBI_CP_DISABLED,			/* CP was disabled last mount */
	SBI_CP_DISABLED_QUICK,			/* CP was disabled quickly */
	SBI_QUOTA_NEED_FLUSH,			/* need to flush quota info in CP */
	SBI_QUOTA_SKIP_FLUSH,			/* skip flushing quota in current CP */
	SBI_QUOTA_NEED_REPAIR,			/* quota file may be corrupted */
	SBI_IS_RESIZEFS,			/* resizefs is in process */
	SBI_IS_FREEZING,			/* freezefs is in process */
	SBI_IS_WRITABLE,			/* remove ro mountoption transiently */
	MAX_SBI_FLAG,
};

enum {
	CP_TIME,
	REQ_TIME,
	DISCARD_TIME,
	GC_TIME,
	DISABLE_TIME,
	UMOUNT_DISCARD_TIMEOUT,
	MAX_TIME,
};

/* Note that you need to keep synchronization with this gc_mode_names array */
enum {
	GC_NORMAL,
	GC_IDLE_CB,
	GC_IDLE_GREEDY,
	GC_IDLE_AT,
	GC_URGENT_HIGH,
	GC_URGENT_LOW,
	GC_URGENT_MID,
	MAX_GC_MODE,
};

enum {
	BGGC_MODE_ON,		/* background gc is on */
	BGGC_MODE_OFF,		/* background gc is off */
	BGGC_MODE_SYNC,		/*
				 * background gc is on, migrating blocks
				 * like foreground gc
				 */
};

enum {
	FS_MODE_ADAPTIVE,		/* use both lfs/ssr allocation */
	FS_MODE_LFS,			/* use lfs allocation only */
	FS_MODE_FRAGMENT_SEG,		/* segment fragmentation mode */
	FS_MODE_FRAGMENT_BLK,		/* block fragmentation mode */
};

enum {
	ALLOC_MODE_DEFAULT,	/* stay default */
	ALLOC_MODE_REUSE,	/* reuse segments as much as possible */
};

enum fsync_mode {
	FSYNC_MODE_POSIX,	/* fsync follows posix semantics */
	FSYNC_MODE_STRICT,	/* fsync behaves in line with ext4 */
	FSYNC_MODE_NOBARRIER,	/* fsync behaves nobarrier based on posix */
};

enum {
	COMPR_MODE_FS,		/*
				 * automatically compress compression
				 * enabled files
				 */
	COMPR_MODE_USER,	/*
				 * automatical compression is disabled.
				 * user can control the file compression
				 * using ioctls
				 */
};

enum {
	DISCARD_UNIT_BLOCK,	/* basic discard unit is block */
	DISCARD_UNIT_SEGMENT,	/* basic discard unit is segment */
	DISCARD_UNIT_SECTION,	/* basic discard unit is section */
};

enum {
	MEMORY_MODE_NORMAL,	/* memory mode for normal devices */
	MEMORY_MODE_LOW,	/* memory mode for low memry devices */
};

enum errors_option {
	MOUNT_ERRORS_READONLY,	/* remount fs ro on errors */
	MOUNT_ERRORS_CONTINUE,	/* continue on errors */
	MOUNT_ERRORS_PANIC,	/* panic on errors */
};

enum {
	BACKGROUND,
	FOREGROUND,
	MAX_CALL_TYPE,
	TOTAL_CALL = FOREGROUND,
};

static inline int f2fs_test_bit(unsigned int nr, char *addr);
static inline void f2fs_set_bit(unsigned int nr, char *addr);
static inline void f2fs_clear_bit(unsigned int nr, char *addr);

/*
 * Layout of f2fs page.private:
 *
 * Layout A: lowest bit should be 1
 * | bit0 = 1 | bit1 | bit2 | ... | bit MAX | private data .... |
 * bit 0	PAGE_PRIVATE_NOT_POINTER
 * bit 1	PAGE_PRIVATE_ONGOING_MIGRATION
 * bit 2	PAGE_PRIVATE_INLINE_INODE
 * bit 3	PAGE_PRIVATE_REF_RESOURCE
 * bit 4-	f2fs private data
 *
 * Layout B: lowest bit should be 0
 * page.private is a wrapped pointer.
 */
enum {
	PAGE_PRIVATE_NOT_POINTER,		/* private contains non-pointer data */
	PAGE_PRIVATE_ONGOING_MIGRATION,		/* data page which is on-going migrating */
	PAGE_PRIVATE_INLINE_INODE,		/* inode page contains inline data */
	PAGE_PRIVATE_REF_RESOURCE,		/* dirty page has referenced resources */
	PAGE_PRIVATE_MAX
};

/* For compression */
enum compress_algorithm_type {
	COMPRESS_LZO,
	COMPRESS_LZ4,
	COMPRESS_ZSTD,
	COMPRESS_LZORLE,
	COMPRESS_MAX,
};

enum compress_flag {
	COMPRESS_CHKSUM,
	COMPRESS_MAX_FLAG,
};

#define	COMPRESS_WATERMARK			20
#define	COMPRESS_PERCENT			20

#define COMPRESS_DATA_RESERVED_SIZE		4
struct compress_data {
	__le32 clen;			/* compressed data size */
	__le32 chksum;			/* compressed data chksum */
	__le32 reserved[COMPRESS_DATA_RESERVED_SIZE];	/* reserved */
	u8 cdata[];			/* compressed data */
};

#define COMPRESS_HEADER_SIZE	(sizeof(struct compress_data))

#define F2FS_COMPRESSED_PAGE_MAGIC	0xF5F2C000

#define F2FS_ZSTD_DEFAULT_CLEVEL	1

#define	COMPRESS_LEVEL_OFFSET	8

/* compress context */
struct compress_ctx {
	struct inode *inode;		/* inode the context belong to */
	pgoff_t cluster_idx;		/* cluster index number */
	unsigned int cluster_size;	/* page count in cluster */
	unsigned int log_cluster_size;	/* log of cluster size */
	struct page **rpages;		/* pages store raw data in cluster */
	unsigned int nr_rpages;		/* total page number in rpages */
	struct page **cpages;		/* pages store compressed data in cluster */
	unsigned int nr_cpages;		/* total page number in cpages */
	unsigned int valid_nr_cpages;	/* valid page number in cpages */
	void *rbuf;			/* virtual mapped address on rpages */
	struct compress_data *cbuf;	/* virtual mapped address on cpages */
	size_t rlen;			/* valid data length in rbuf */
	size_t clen;			/* valid data length in cbuf */
	void *private;			/* payload buffer for specified compression algorithm */
	void *private2;			/* extra payload buffer */
};

/* compress context for write IO path */
struct compress_io_ctx {
	u32 magic;			/* magic number to indicate page is compressed */
	struct inode *inode;		/* inode the context belong to */
	struct page **rpages;		/* pages store raw data in cluster */
	unsigned int nr_rpages;		/* total page number in rpages */
	atomic_t pending_pages;		/* in-flight compressed page count */
};

/* Context for decompressing one cluster on the read IO path */
struct decompress_io_ctx {
	u32 magic;			/* magic number to indicate page is compressed */
	struct inode *inode;		/* inode the context belong to */
	pgoff_t cluster_idx;		/* cluster index number */
	unsigned int cluster_size;	/* page count in cluster */
	unsigned int log_cluster_size;	/* log of cluster size */
	struct page **rpages;		/* pages store raw data in cluster */
	unsigned int nr_rpages;		/* total page number in rpages */
	struct page **cpages;		/* pages store compressed data in cluster */
	unsigned int nr_cpages;		/* total page number in cpages */
	struct page **tpages;		/* temp pages to pad holes in cluster */
	void *rbuf;			/* virtual mapped address on rpages */
	struct compress_data *cbuf;	/* virtual mapped address on cpages */
	size_t rlen;			/* valid data length in rbuf */
	size_t clen;			/* valid data length in cbuf */

	/*
	 * The number of compressed pages remaining to be read in this cluster.
	 * This is initially nr_cpages.  It is decremented by 1 each time a page
	 * has been read (or failed to be read).  When it reaches 0, the cluster
	 * is decompressed (or an error is reported).
	 *
	 * If an error occurs before all the pages have been submitted for I/O,
	 * then this will never reach 0.  In this case the I/O submitter is
	 * responsible for calling f2fs_decompress_end_io() instead.
	 */
	atomic_t remaining_pages;

	/*
	 * Number of references to this decompress_io_ctx.
	 *
	 * One reference is held for I/O completion.  This reference is dropped
	 * after the pagecache pages are updated and unlocked -- either after
	 * decompression (and verity if enabled), or after an error.
	 *
	 * In addition, each compressed page holds a reference while it is in a
	 * bio.  These references are necessary prevent compressed pages from
	 * being freed while they are still in a bio.
	 */
	refcount_t refcnt;

	bool failed;			/* IO error occurred before decompression? */
	bool need_verity;		/* need fs-verity verification after decompression? */
	void *private;			/* payload buffer for specified decompression algorithm */
	void *private2;			/* extra payload buffer */
	struct work_struct verity_work;	/* work to verify the decompressed pages */
	struct work_struct free_work;	/* work for late free this structure itself */
};

#define NULL_CLUSTER			((unsigned int)(~0))
#define MIN_COMPRESS_LOG_SIZE		2
#define MAX_COMPRESS_LOG_SIZE		8
#define MAX_COMPRESS_WINDOW_SIZE(log_size)	((PAGE_SIZE) << (log_size))

struct f2fs_sb_info {
	struct super_block *sb;			/* pointer to VFS super block */
	struct proc_dir_entry *s_proc;		/* proc entry */
	struct f2fs_super_block *raw_super;	/* raw super block pointer */
	struct f2fs_rwsem sb_lock;		/* lock for raw super block */
	int valid_super_block;			/* valid super block no */
	unsigned long s_flag;				/* flags for sbi */
	struct mutex writepages;		/* mutex for writepages() */

#ifdef CONFIG_BLK_DEV_ZONED
	unsigned int blocks_per_blkz;		/* F2FS blocks per zone */
#endif

	/* for node-related operations */
	struct f2fs_nm_info *nm_info;		/* node manager */
	struct inode *node_inode;		/* cache node blocks */

	/* for segment-related operations */
	struct f2fs_sm_info *sm_info;		/* segment manager */

	/* for bio operations */
	struct f2fs_bio_info *write_io[NR_PAGE_TYPE];	/* for write bios */
	/* keep migration IO order for LFS mode */
	struct f2fs_rwsem io_order_lock;
	pgoff_t page_eio_ofs[NR_PAGE_TYPE];	/* EIO page offset */
	int page_eio_cnt[NR_PAGE_TYPE];		/* EIO count */

	/* for checkpoint */
	struct f2fs_checkpoint *ckpt;		/* raw checkpoint pointer */
	int cur_cp_pack;			/* remain current cp pack */
	spinlock_t cp_lock;			/* for flag in ckpt */
	struct inode *meta_inode;		/* cache meta blocks */
	struct f2fs_rwsem cp_global_sem;	/* checkpoint procedure lock */
	struct f2fs_rwsem cp_rwsem;		/* blocking FS operations */
	struct f2fs_rwsem node_write;		/* locking node writes */
	struct f2fs_rwsem node_change;	/* locking node change */
	wait_queue_head_t cp_wait;
	unsigned long last_time[MAX_TIME];	/* to store time in jiffies */
	long interval_time[MAX_TIME];		/* to store thresholds */
	struct ckpt_req_control cprc_info;	/* for checkpoint request control */

	struct inode_management im[MAX_INO_ENTRY];	/* manage inode cache */

	spinlock_t fsync_node_lock;		/* for node entry lock */
	struct list_head fsync_node_list;	/* node list head */
	unsigned int fsync_seg_id;		/* sequence id */
	unsigned int fsync_node_num;		/* number of node entries */

	/* for orphan inode, use 0'th array */
	unsigned int max_orphans;		/* max orphan inodes */

	/* for inode management */
	struct list_head inode_list[NR_INODE_TYPE];	/* dirty inode list */
	spinlock_t inode_lock[NR_INODE_TYPE];	/* for dirty inode list lock */
	struct mutex flush_lock;		/* for flush exclusion */

	/* for extent tree cache */
	struct extent_tree_info extent_tree[NR_EXTENT_CACHES];
	atomic64_t allocated_data_blocks;	/* for block age extent_cache */

	/* The threshold used for hot and warm data seperation*/
	unsigned int hot_data_age_threshold;
	unsigned int warm_data_age_threshold;
	unsigned int last_age_weight;

	/* basic filesystem units */
	unsigned int log_sectors_per_block;	/* log2 sectors per block */
	unsigned int log_blocksize;		/* log2 block size */
	unsigned int blocksize;			/* block size */
	unsigned int root_ino_num;		/* root inode number*/
	unsigned int node_ino_num;		/* node inode number*/
	unsigned int meta_ino_num;		/* meta inode number*/
	unsigned int log_blocks_per_seg;	/* log2 blocks per segment */
	unsigned int blocks_per_seg;		/* blocks per segment */
	unsigned int unusable_blocks_per_sec;	/* unusable blocks per section */
	unsigned int segs_per_sec;		/* segments per section */
	unsigned int secs_per_zone;		/* sections per zone */
	unsigned int total_sections;		/* total section count */
	unsigned int total_node_count;		/* total node block count */
	unsigned int total_valid_node_count;	/* valid node block count */
	int dir_level;				/* directory level */
	bool readdir_ra;			/* readahead inode in readdir */
	u64 max_io_bytes;			/* max io bytes to merge IOs */

	block_t user_block_count;		/* # of user blocks */
	block_t total_valid_block_count;	/* # of valid blocks */
	block_t discard_blks;			/* discard command candidats */
	block_t last_valid_block_count;		/* for recovery */
	block_t reserved_blocks;		/* configurable reserved blocks */
	block_t current_reserved_blocks;	/* current reserved blocks */

	/* Additional tracking for no checkpoint mode */
	block_t unusable_block_count;		/* # of blocks saved by last cp */

	unsigned int nquota_files;		/* # of quota sysfile */
	struct f2fs_rwsem quota_sem;		/* blocking cp for flags */

	/* # of pages, see count_type */
	atomic_t nr_pages[NR_COUNT_TYPE];
	/* # of allocated blocks */
	struct percpu_counter alloc_valid_block_count;
	/* # of node block writes as roll forward recovery */
	struct percpu_counter rf_node_block_count;

	/* writeback control */
	atomic_t wb_sync_req[META];	/* count # of WB_SYNC threads */

	/* valid inode count */
	struct percpu_counter total_valid_inode_count;

	struct f2fs_mount_info mount_opt;	/* mount options */

	/* for cleaning operations */
	struct f2fs_rwsem gc_lock;		/*
						 * semaphore for GC, avoid
						 * race between GC and GC or CP
						 */
	struct f2fs_gc_kthread	*gc_thread;	/* GC thread */
	struct atgc_management am;		/* atgc management */
	unsigned int cur_victim_sec;		/* current victim section num */
	unsigned int gc_mode;			/* current GC state */
	unsigned int next_victim_seg[2];	/* next segment in victim section */
	spinlock_t gc_remaining_trials_lock;
	/* remaining trial count for GC_URGENT_* and GC_IDLE_* */
	unsigned int gc_remaining_trials;

	/* for skip statistic */
	unsigned long long skipped_gc_rwsem;		/* FG_GC only */

	/* threshold for gc trials on pinned files */
	u64 gc_pin_file_threshold;
	struct f2fs_rwsem pin_sem;

	/* maximum # of trials to find a victim segment for SSR and GC */
	unsigned int max_victim_search;
	/* migration granularity of garbage collection, unit: segment */
	unsigned int migration_granularity;

	/*
	 * for stat information.
	 * one is for the LFS mode, and the other is for the SSR mode.
	 */
#ifdef CONFIG_F2FS_STAT_FS
	struct f2fs_stat_info *stat_info;	/* FS status information */
	atomic_t meta_count[META_MAX];		/* # of meta blocks */
	unsigned int segment_count[2];		/* # of allocated segments */
	unsigned int block_count[2];		/* # of allocated blocks */
	atomic_t inplace_count;		/* # of inplace update */
	/* # of lookup extent cache */
	atomic64_t total_hit_ext[NR_EXTENT_CACHES];
	/* # of hit rbtree extent node */
	atomic64_t read_hit_rbtree[NR_EXTENT_CACHES];
	/* # of hit cached extent node */
	atomic64_t read_hit_cached[NR_EXTENT_CACHES];
	/* # of hit largest extent node in read extent cache */
	atomic64_t read_hit_largest;
	atomic_t inline_xattr;			/* # of inline_xattr inodes */
	atomic_t inline_inode;			/* # of inline_data inodes */
	atomic_t inline_dir;			/* # of inline_dentry inodes */
	atomic_t compr_inode;			/* # of compressed inodes */
	atomic64_t compr_blocks;		/* # of compressed blocks */
	atomic_t swapfile_inode;		/* # of swapfile inodes */
	atomic_t atomic_files;			/* # of opened atomic file */
	atomic_t max_aw_cnt;			/* max # of atomic writes */
	unsigned int io_skip_bggc;		/* skip background gc for in-flight IO */
	unsigned int other_skip_bggc;		/* skip background gc for other reasons */
	unsigned int ndirty_inode[NR_INODE_TYPE];	/* # of dirty inodes */
	atomic_t cp_call_count[MAX_CALL_TYPE];	/* # of cp call */
#endif
	spinlock_t stat_lock;			/* lock for stat operations */

	/* to attach REQ_META|REQ_FUA flags */
	unsigned int data_io_flag;
	unsigned int node_io_flag;

	/* For sysfs support */
	struct kobject s_kobj;			/* /sys/fs/f2fs/<devname> */
	struct completion s_kobj_unregister;

	struct kobject s_stat_kobj;		/* /sys/fs/f2fs/<devname>/stat */
	struct completion s_stat_kobj_unregister;

	struct kobject s_feature_list_kobj;		/* /sys/fs/f2fs/<devname>/feature_list */
	struct completion s_feature_list_kobj_unregister;

	/* For shrinker support */
	struct list_head s_list;
	struct mutex umount_mutex;
	unsigned int shrinker_run_no;

	/* For multi devices */
	int s_ndevs;				/* number of devices */
	struct f2fs_dev_info *devs;		/* for device list */
	unsigned int dirty_device;		/* for checkpoint data flush */
	spinlock_t dev_lock;			/* protect dirty_device */
	bool aligned_blksize;			/* all devices has the same logical blksize */

	/* For write statistics */
	u64 sectors_written_start;
	u64 kbytes_written;

	/* Reference to checksum algorithm driver via cryptoapi */
	struct crypto_shash *s_chksum_driver;

	/* Precomputed FS UUID checksum for seeding other checksums */
	__u32 s_chksum_seed;

	struct workqueue_struct *post_read_wq;	/* post read workqueue */

	/*
	 * If we are in irq context, let's update error information into
	 * on-disk superblock in the work.
	 */
	struct work_struct s_error_work;
	unsigned char errors[MAX_F2FS_ERRORS];		/* error flags */
	unsigned char stop_reason[MAX_STOP_REASON];	/* stop reason */
	spinlock_t error_lock;			/* protect errors/stop_reason array */
	bool error_dirty;			/* errors of sb is dirty */

	struct kmem_cache *inline_xattr_slab;	/* inline xattr entry */
	unsigned int inline_xattr_slab_size;	/* default inline xattr slab size */

	/* For reclaimed segs statistics per each GC mode */
	unsigned int gc_segment_mode;		/* GC state for reclaimed segments */
	unsigned int gc_reclaimed_segs[MAX_GC_MODE];	/* Reclaimed segs for each mode */

	unsigned long seq_file_ra_mul;		/* multiplier for ra_pages of seq. files in fadvise */

	int max_fragment_chunk;			/* max chunk size for block fragmentation mode */
	int max_fragment_hole;			/* max hole size for block fragmentation mode */

	/* For atomic write statistics */
	atomic64_t current_atomic_write;
	s64 peak_atomic_write;
	u64 committed_atomic_block;
	u64 revoked_atomic_block;

#ifdef CONFIG_F2FS_FS_COMPRESSION
	struct kmem_cache *page_array_slab;	/* page array entry */
	unsigned int page_array_slab_size;	/* default page array slab size */

	/* For runtime compression statistics */
	u64 compr_written_block;
	u64 compr_saved_block;
	u32 compr_new_inode;

	/* For compressed block cache */
	struct inode *compress_inode;		/* cache compressed blocks */
	unsigned int compress_percent;		/* cache page percentage */
	unsigned int compress_watermark;	/* cache page watermark */
	atomic_t compress_page_hit;		/* cache hit count */
#endif

#ifdef CONFIG_F2FS_IOSTAT
	/* For app/fs IO statistics */
	spinlock_t iostat_lock;
	unsigned long long iostat_count[NR_IO_TYPE];
	unsigned long long iostat_bytes[NR_IO_TYPE];
	unsigned long long prev_iostat_bytes[NR_IO_TYPE];
	bool iostat_enable;
	unsigned long iostat_next_period;
	unsigned int iostat_period_ms;

	/* For io latency related statistics info in one iostat period */
	spinlock_t iostat_lat_lock;
	struct iostat_lat_info *iostat_io_lat;
#endif
};

/* Definitions to access f2fs_sb_info */
#define SEGS_TO_BLKS(sbi, segs)					\
		((segs) << (sbi)->log_blocks_per_seg)
#define BLKS_TO_SEGS(sbi, blks)					\
		((blks) >> (sbi)->log_blocks_per_seg)

#define BLKS_PER_SEG(sbi)	((sbi)->blocks_per_seg)
#define BLKS_PER_SEC(sbi)	(SEGS_TO_BLKS(sbi, (sbi)->segs_per_sec))
#define SEGS_PER_SEC(sbi)	((sbi)->segs_per_sec)

__printf(3, 4)
void f2fs_printk(struct f2fs_sb_info *sbi, bool limit_rate, const char *fmt, ...);

#define f2fs_err(sbi, fmt, ...)						\
	f2fs_printk(sbi, false, KERN_ERR fmt, ##__VA_ARGS__)
#define f2fs_warn(sbi, fmt, ...)					\
	f2fs_printk(sbi, false, KERN_WARNING fmt, ##__VA_ARGS__)
#define f2fs_notice(sbi, fmt, ...)					\
	f2fs_printk(sbi, false, KERN_NOTICE fmt, ##__VA_ARGS__)
#define f2fs_info(sbi, fmt, ...)					\
	f2fs_printk(sbi, false, KERN_INFO fmt, ##__VA_ARGS__)
#define f2fs_debug(sbi, fmt, ...)					\
	f2fs_printk(sbi, false, KERN_DEBUG fmt, ##__VA_ARGS__)

#define f2fs_err_ratelimited(sbi, fmt, ...)				\
	f2fs_printk(sbi, true, KERN_ERR fmt, ##__VA_ARGS__)
#define f2fs_warn_ratelimited(sbi, fmt, ...)				\
	f2fs_printk(sbi, true, KERN_WARNING fmt, ##__VA_ARGS__)
#define f2fs_info_ratelimited(sbi, fmt, ...)				\
	f2fs_printk(sbi, true, KERN_INFO fmt, ##__VA_ARGS__)

#ifdef CONFIG_F2FS_FAULT_INJECTION
#define time_to_inject(sbi, type) __time_to_inject(sbi, type, __func__,	\
									__builtin_return_address(0))
static inline bool __time_to_inject(struct f2fs_sb_info *sbi, int type,
				const char *func, const char *parent_func)
{
	struct f2fs_fault_info *ffi = &F2FS_OPTION(sbi).fault_info;

	if (!ffi->inject_rate)
		return false;

	if (!IS_FAULT_SET(ffi, type))
		return false;

	atomic_inc(&ffi->inject_ops);
	if (atomic_read(&ffi->inject_ops) >= ffi->inject_rate) {
		atomic_set(&ffi->inject_ops, 0);
		f2fs_info_ratelimited(sbi, "inject %s in %s of %pS",
				f2fs_fault_name[type], func, parent_func);
		return true;
	}
	return false;
}
#else
static inline bool time_to_inject(struct f2fs_sb_info *sbi, int type)
{
	return false;
}
#endif

/*
 * Test if the mounted volume is a multi-device volume.
 *   - For a single regular disk volume, sbi->s_ndevs is 0.
 *   - For a single zoned disk volume, sbi->s_ndevs is 1.
 *   - For a multi-device volume, sbi->s_ndevs is always 2 or more.
 */
static inline bool f2fs_is_multi_device(struct f2fs_sb_info *sbi)
{
	return sbi->s_ndevs > 1;
}

static inline void f2fs_update_time(struct f2fs_sb_info *sbi, int type)
{
	unsigned long now = jiffies;

	sbi->last_time[type] = now;

	/* DISCARD_TIME and GC_TIME are based on REQ_TIME */
	if (type == REQ_TIME) {
		sbi->last_time[DISCARD_TIME] = now;
		sbi->last_time[GC_TIME] = now;
	}
}

static inline bool f2fs_time_over(struct f2fs_sb_info *sbi, int type)
{
	unsigned long interval = sbi->interval_time[type] * HZ;

	return time_after(jiffies, sbi->last_time[type] + interval);
}

static inline unsigned int f2fs_time_to_wait(struct f2fs_sb_info *sbi,
						int type)
{
	unsigned long interval = sbi->interval_time[type] * HZ;
	unsigned int wait_ms = 0;
	long delta;

	delta = (sbi->last_time[type] + interval) - jiffies;
	if (delta > 0)
		wait_ms = jiffies_to_msecs(delta);

	return wait_ms;
}

/*
 * Inline functions
 */
static inline u32 __f2fs_crc32(struct f2fs_sb_info *sbi, u32 crc,
			      const void *address, unsigned int length)
{
	struct {
		struct shash_desc shash;
		char ctx[4];
	} desc;
	int err;

	BUG_ON(crypto_shash_descsize(sbi->s_chksum_driver) != sizeof(desc.ctx));

	desc.shash.tfm = sbi->s_chksum_driver;
	*(u32 *)desc.ctx = crc;

	err = crypto_shash_update(&desc.shash, address, length);
	BUG_ON(err);

	return *(u32 *)desc.ctx;
}

static inline u32 f2fs_crc32(struct f2fs_sb_info *sbi, const void *address,
			   unsigned int length)
{
	return __f2fs_crc32(sbi, F2FS_SUPER_MAGIC, address, length);
}

static inline bool f2fs_crc_valid(struct f2fs_sb_info *sbi, __u32 blk_crc,
				  void *buf, size_t buf_size)
{
	return f2fs_crc32(sbi, buf, buf_size) == blk_crc;
}

static inline u32 f2fs_chksum(struct f2fs_sb_info *sbi, u32 crc,
			      const void *address, unsigned int length)
{
	return __f2fs_crc32(sbi, crc, address, length);
}

static inline struct f2fs_inode_info *F2FS_I(struct inode *inode)
{
	return container_of(inode, struct f2fs_inode_info, vfs_inode);
}

static inline struct f2fs_sb_info *F2FS_SB(struct super_block *sb)
{
	return sb->s_fs_info;
}

static inline struct f2fs_sb_info *F2FS_I_SB(struct inode *inode)
{
	return F2FS_SB(inode->i_sb);
}

static inline struct f2fs_sb_info *F2FS_M_SB(struct address_space *mapping)
{
	return F2FS_I_SB(mapping->host);
}

static inline struct f2fs_sb_info *F2FS_P_SB(struct page *page)
{
	return F2FS_M_SB(page_file_mapping(page));
}

static inline struct f2fs_super_block *F2FS_RAW_SUPER(struct f2fs_sb_info *sbi)
{
	return (struct f2fs_super_block *)(sbi->raw_super);
}

static inline struct f2fs_checkpoint *F2FS_CKPT(struct f2fs_sb_info *sbi)
{
	return (struct f2fs_checkpoint *)(sbi->ckpt);
}

static inline struct f2fs_node *F2FS_NODE(struct page *page)
{
	return (struct f2fs_node *)page_address(page);
}

static inline struct f2fs_inode *F2FS_INODE(struct page *page)
{
	return &((struct f2fs_node *)page_address(page))->i;
}

static inline struct f2fs_nm_info *NM_I(struct f2fs_sb_info *sbi)
{
	return (struct f2fs_nm_info *)(sbi->nm_info);
}

static inline struct f2fs_sm_info *SM_I(struct f2fs_sb_info *sbi)
{
	return (struct f2fs_sm_info *)(sbi->sm_info);
}

static inline struct sit_info *SIT_I(struct f2fs_sb_info *sbi)
{
	return (struct sit_info *)(SM_I(sbi)->sit_info);
}

static inline struct free_segmap_info *FREE_I(struct f2fs_sb_info *sbi)
{
	return (struct free_segmap_info *)(SM_I(sbi)->free_info);
}

static inline struct dirty_seglist_info *DIRTY_I(struct f2fs_sb_info *sbi)
{
	return (struct dirty_seglist_info *)(SM_I(sbi)->dirty_info);
}

static inline struct address_space *META_MAPPING(struct f2fs_sb_info *sbi)
{
	return sbi->meta_inode->i_mapping;
}

static inline struct address_space *NODE_MAPPING(struct f2fs_sb_info *sbi)
{
	return sbi->node_inode->i_mapping;
}

static inline bool is_sbi_flag_set(struct f2fs_sb_info *sbi, unsigned int type)
{
	return test_bit(type, &sbi->s_flag);
}

static inline void set_sbi_flag(struct f2fs_sb_info *sbi, unsigned int type)
{
	set_bit(type, &sbi->s_flag);
}

static inline void clear_sbi_flag(struct f2fs_sb_info *sbi, unsigned int type)
{
	clear_bit(type, &sbi->s_flag);
}

static inline unsigned long long cur_cp_version(struct f2fs_checkpoint *cp)
{
	return le64_to_cpu(cp->checkpoint_ver);
}

static inline unsigned long f2fs_qf_ino(struct super_block *sb, int type)
{
	if (type < F2FS_MAX_QUOTAS)
		return le32_to_cpu(F2FS_SB(sb)->raw_super->qf_ino[type]);
	return 0;
}

static inline __u64 cur_cp_crc(struct f2fs_checkpoint *cp)
{
	size_t crc_offset = le32_to_cpu(cp->checksum_offset);
	return le32_to_cpu(*((__le32 *)((unsigned char *)cp + crc_offset)));
}

static inline bool __is_set_ckpt_flags(struct f2fs_checkpoint *cp, unsigned int f)
{
	unsigned int ckpt_flags = le32_to_cpu(cp->ckpt_flags);

	return ckpt_flags & f;
}

static inline bool is_set_ckpt_flags(struct f2fs_sb_info *sbi, unsigned int f)
{
	return __is_set_ckpt_flags(F2FS_CKPT(sbi), f);
}

static inline void __set_ckpt_flags(struct f2fs_checkpoint *cp, unsigned int f)
{
	unsigned int ckpt_flags;

	ckpt_flags = le32_to_cpu(cp->ckpt_flags);
	ckpt_flags |= f;
	cp->ckpt_flags = cpu_to_le32(ckpt_flags);
}

static inline void set_ckpt_flags(struct f2fs_sb_info *sbi, unsigned int f)
{
	unsigned long flags;

	spin_lock_irqsave(&sbi->cp_lock, flags);
	__set_ckpt_flags(F2FS_CKPT(sbi), f);
	spin_unlock_irqrestore(&sbi->cp_lock, flags);
}

static inline void __clear_ckpt_flags(struct f2fs_checkpoint *cp, unsigned int f)
{
	unsigned int ckpt_flags;

	ckpt_flags = le32_to_cpu(cp->ckpt_flags);
	ckpt_flags &= (~f);
	cp->ckpt_flags = cpu_to_le32(ckpt_flags);
}

static inline void clear_ckpt_flags(struct f2fs_sb_info *sbi, unsigned int f)
{
	unsigned long flags;

	spin_lock_irqsave(&sbi->cp_lock, flags);
	__clear_ckpt_flags(F2FS_CKPT(sbi), f);
	spin_unlock_irqrestore(&sbi->cp_lock, flags);
}

#define init_f2fs_rwsem(sem)					\
do {								\
	static struct lock_class_key __key;			\
								\
	__init_f2fs_rwsem((sem), #sem, &__key);			\
} while (0)

static inline void __init_f2fs_rwsem(struct f2fs_rwsem *sem,
		const char *sem_name, struct lock_class_key *key)
{
	__init_rwsem(&sem->internal_rwsem, sem_name, key);
#ifdef CONFIG_F2FS_UNFAIR_RWSEM
	init_waitqueue_head(&sem->read_waiters);
#endif
}

static inline int f2fs_rwsem_is_locked(struct f2fs_rwsem *sem)
{
	return rwsem_is_locked(&sem->internal_rwsem);
}

static inline int f2fs_rwsem_is_contended(struct f2fs_rwsem *sem)
{
	return rwsem_is_contended(&sem->internal_rwsem);
}

static inline void f2fs_down_read(struct f2fs_rwsem *sem)
{
#ifdef CONFIG_F2FS_UNFAIR_RWSEM
	wait_event(sem->read_waiters, down_read_trylock(&sem->internal_rwsem));
#else
	down_read(&sem->internal_rwsem);
#endif
}

static inline int f2fs_down_read_trylock(struct f2fs_rwsem *sem)
{
	return down_read_trylock(&sem->internal_rwsem);
}

static inline void f2fs_up_read(struct f2fs_rwsem *sem)
{
	up_read(&sem->internal_rwsem);
}

static inline void f2fs_down_write(struct f2fs_rwsem *sem)
{
	down_write(&sem->internal_rwsem);
}

#ifdef CONFIG_DEBUG_LOCK_ALLOC
static inline void f2fs_down_read_nested(struct f2fs_rwsem *sem, int subclass)
{
	down_read_nested(&sem->internal_rwsem, subclass);
}

static inline void f2fs_down_write_nested(struct f2fs_rwsem *sem, int subclass)
{
	down_write_nested(&sem->internal_rwsem, subclass);
}
#else
#define f2fs_down_read_nested(sem, subclass) f2fs_down_read(sem)
#define f2fs_down_write_nested(sem, subclass) f2fs_down_write(sem)
#endif

static inline int f2fs_down_write_trylock(struct f2fs_rwsem *sem)
{
	return down_write_trylock(&sem->internal_rwsem);
}

static inline void f2fs_up_write(struct f2fs_rwsem *sem)
{
	up_write(&sem->internal_rwsem);
#ifdef CONFIG_F2FS_UNFAIR_RWSEM
	wake_up_all(&sem->read_waiters);
#endif
}

static inline void f2fs_lock_op(struct f2fs_sb_info *sbi)
{
	f2fs_down_read(&sbi->cp_rwsem);
}

static inline int f2fs_trylock_op(struct f2fs_sb_info *sbi)
{
	if (time_to_inject(sbi, FAULT_LOCK_OP))
		return 0;
	return f2fs_down_read_trylock(&sbi->cp_rwsem);
}

static inline void f2fs_unlock_op(struct f2fs_sb_info *sbi)
{
	f2fs_up_read(&sbi->cp_rwsem);
}

static inline void f2fs_lock_all(struct f2fs_sb_info *sbi)
{
	f2fs_down_write(&sbi->cp_rwsem);
}

static inline void f2fs_unlock_all(struct f2fs_sb_info *sbi)
{
	f2fs_up_write(&sbi->cp_rwsem);
}

static inline int __get_cp_reason(struct f2fs_sb_info *sbi)
{
	int reason = CP_SYNC;

	if (test_opt(sbi, FASTBOOT))
		reason = CP_FASTBOOT;
	if (is_sbi_flag_set(sbi, SBI_IS_CLOSE))
		reason = CP_UMOUNT;
	return reason;
}

static inline bool __remain_node_summaries(int reason)
{
	return (reason & (CP_UMOUNT | CP_FASTBOOT));
}

static inline bool __exist_node_summaries(struct f2fs_sb_info *sbi)
{
	return (is_set_ckpt_flags(sbi, CP_UMOUNT_FLAG) ||
			is_set_ckpt_flags(sbi, CP_FASTBOOT_FLAG));
}

/*
 * Check whether the inode has blocks or not
 */
static inline int F2FS_HAS_BLOCKS(struct inode *inode)
{
	block_t xattr_block = F2FS_I(inode)->i_xattr_nid ? 1 : 0;

	return (inode->i_blocks >> F2FS_LOG_SECTORS_PER_BLOCK) > xattr_block;
}

static inline bool f2fs_has_xattr_block(unsigned int ofs)
{
	return ofs == XATTR_NODE_OFFSET;
}

static inline bool __allow_reserved_blocks(struct f2fs_sb_info *sbi,
					struct inode *inode, bool cap)
{
	if (!inode)
		return true;
	if (!test_opt(sbi, RESERVE_ROOT))
		return false;
	if (IS_NOQUOTA(inode))
		return true;
	if (uid_eq(F2FS_OPTION(sbi).s_resuid, current_fsuid()))
		return true;
	if (!gid_eq(F2FS_OPTION(sbi).s_resgid, GLOBAL_ROOT_GID) &&
					in_group_p(F2FS_OPTION(sbi).s_resgid))
		return true;
	if (cap && capable(CAP_SYS_RESOURCE))
		return true;
	return false;
}

static inline unsigned int get_available_block_count(struct f2fs_sb_info *sbi,
						struct inode *inode, bool cap)
{
	block_t avail_user_block_count;

	avail_user_block_count = sbi->user_block_count -
					sbi->current_reserved_blocks;

	if (!__allow_reserved_blocks(sbi, inode, cap))
		avail_user_block_count -= F2FS_OPTION(sbi).root_reserved_blocks;

	if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED))) {
		if (avail_user_block_count > sbi->unusable_block_count)
			avail_user_block_count -= sbi->unusable_block_count;
		else
			avail_user_block_count = 0;
	}

	return avail_user_block_count;
}

static inline void f2fs_i_blocks_write(struct inode *, block_t, bool, bool);
static inline int inc_valid_block_count(struct f2fs_sb_info *sbi,
				 struct inode *inode, blkcnt_t *count, bool partial)
{
	blkcnt_t diff = 0, release = 0;
	block_t avail_user_block_count;
	int ret;

	ret = dquot_reserve_block(inode, *count);
	if (ret)
		return ret;

	if (time_to_inject(sbi, FAULT_BLOCK)) {
		release = *count;
		goto release_quota;
	}

	/*
	 * let's increase this in prior to actual block count change in order
	 * for f2fs_sync_file to avoid data races when deciding checkpoint.
	 */
	percpu_counter_add(&sbi->alloc_valid_block_count, (*count));

	spin_lock(&sbi->stat_lock);
	sbi->total_valid_block_count += (block_t)(*count);
	avail_user_block_count = get_available_block_count(sbi, inode, true);

	if (unlikely(sbi->total_valid_block_count > avail_user_block_count)) {
		if (!partial) {
			spin_unlock(&sbi->stat_lock);
			goto enospc;
		}

		diff = sbi->total_valid_block_count - avail_user_block_count;
		if (diff > *count)
			diff = *count;
		*count -= diff;
		release = diff;
		sbi->total_valid_block_count -= diff;
		if (!*count) {
			spin_unlock(&sbi->stat_lock);
			goto enospc;
		}
	}
	spin_unlock(&sbi->stat_lock);

	if (unlikely(release)) {
		percpu_counter_sub(&sbi->alloc_valid_block_count, release);
		dquot_release_reservation_block(inode, release);
	}
	f2fs_i_blocks_write(inode, *count, true, true);
	return 0;

enospc:
	percpu_counter_sub(&sbi->alloc_valid_block_count, release);
release_quota:
	dquot_release_reservation_block(inode, release);
	return -ENOSPC;
}

#define PAGE_PRIVATE_GET_FUNC(name, flagname) \
static inline bool page_private_##name(struct page *page) \
{ \
	return PagePrivate(page) && \
		test_bit(PAGE_PRIVATE_NOT_POINTER, &page_private(page)) && \
		test_bit(PAGE_PRIVATE_##flagname, &page_private(page)); \
}

#define PAGE_PRIVATE_SET_FUNC(name, flagname) \
static inline void set_page_private_##name(struct page *page) \
{ \
	if (!PagePrivate(page)) \
		attach_page_private(page, (void *)0); \
	set_bit(PAGE_PRIVATE_NOT_POINTER, &page_private(page)); \
	set_bit(PAGE_PRIVATE_##flagname, &page_private(page)); \
}

#define PAGE_PRIVATE_CLEAR_FUNC(name, flagname) \
static inline void clear_page_private_##name(struct page *page) \
{ \
	clear_bit(PAGE_PRIVATE_##flagname, &page_private(page)); \
	if (page_private(page) == BIT(PAGE_PRIVATE_NOT_POINTER)) \
		detach_page_private(page); \
}

PAGE_PRIVATE_GET_FUNC(nonpointer, NOT_POINTER);
PAGE_PRIVATE_GET_FUNC(inline, INLINE_INODE);
PAGE_PRIVATE_GET_FUNC(gcing, ONGOING_MIGRATION);

PAGE_PRIVATE_SET_FUNC(reference, REF_RESOURCE);
PAGE_PRIVATE_SET_FUNC(inline, INLINE_INODE);
PAGE_PRIVATE_SET_FUNC(gcing, ONGOING_MIGRATION);

PAGE_PRIVATE_CLEAR_FUNC(reference, REF_RESOURCE);
PAGE_PRIVATE_CLEAR_FUNC(inline, INLINE_INODE);
PAGE_PRIVATE_CLEAR_FUNC(gcing, ONGOING_MIGRATION);

static inline unsigned long get_page_private_data(struct page *page)
{
	unsigned long data = page_private(page);

	if (!test_bit(PAGE_PRIVATE_NOT_POINTER, &data))
		return 0;
	return data >> PAGE_PRIVATE_MAX;
}

static inline void set_page_private_data(struct page *page, unsigned long data)
{
	if (!PagePrivate(page))
		attach_page_private(page, (void *)0);
	set_bit(PAGE_PRIVATE_NOT_POINTER, &page_private(page));
	page_private(page) |= data << PAGE_PRIVATE_MAX;
}

static inline void clear_page_private_data(struct page *page)
{
	page_private(page) &= GENMASK(PAGE_PRIVATE_MAX - 1, 0);
	if (page_private(page) == BIT(PAGE_PRIVATE_NOT_POINTER))
		detach_page_private(page);
}

static inline void clear_page_private_all(struct page *page)
{
	clear_page_private_data(page);
	clear_page_private_reference(page);
	clear_page_private_gcing(page);
	clear_page_private_inline(page);

	f2fs_bug_on(F2FS_P_SB(page), page_private(page));
}

static inline void dec_valid_block_count(struct f2fs_sb_info *sbi,
						struct inode *inode,
						block_t count)
{
	blkcnt_t sectors = count << F2FS_LOG_SECTORS_PER_BLOCK;

	spin_lock(&sbi->stat_lock);
	f2fs_bug_on(sbi, sbi->total_valid_block_count < (block_t) count);
	sbi->total_valid_block_count -= (block_t)count;
	if (sbi->reserved_blocks &&
		sbi->current_reserved_blocks < sbi->reserved_blocks)
		sbi->current_reserved_blocks = min(sbi->reserved_blocks,
					sbi->current_reserved_blocks + count);
	spin_unlock(&sbi->stat_lock);
	if (unlikely(inode->i_blocks < sectors)) {
		f2fs_warn(sbi, "Inconsistent i_blocks, ino:%lu, iblocks:%llu, sectors:%llu",
			  inode->i_ino,
			  (unsigned long long)inode->i_blocks,
			  (unsigned long long)sectors);
		set_sbi_flag(sbi, SBI_NEED_FSCK);
		return;
	}
	f2fs_i_blocks_write(inode, count, false, true);
}

static inline void inc_page_count(struct f2fs_sb_info *sbi, int count_type)
{
	atomic_inc(&sbi->nr_pages[count_type]);

	if (count_type == F2FS_DIRTY_DENTS ||
			count_type == F2FS_DIRTY_NODES ||
			count_type == F2FS_DIRTY_META ||
			count_type == F2FS_DIRTY_QDATA ||
			count_type == F2FS_DIRTY_IMETA)
		set_sbi_flag(sbi, SBI_IS_DIRTY);
}

static inline void inode_inc_dirty_pages(struct inode *inode)
{
	atomic_inc(&F2FS_I(inode)->dirty_pages);
	inc_page_count(F2FS_I_SB(inode), S_ISDIR(inode->i_mode) ?
				F2FS_DIRTY_DENTS : F2FS_DIRTY_DATA);
	if (IS_NOQUOTA(inode))
		inc_page_count(F2FS_I_SB(inode), F2FS_DIRTY_QDATA);
}

static inline void dec_page_count(struct f2fs_sb_info *sbi, int count_type)
{
	atomic_dec(&sbi->nr_pages[count_type]);
}

static inline void inode_dec_dirty_pages(struct inode *inode)
{
	if (!S_ISDIR(inode->i_mode) && !S_ISREG(inode->i_mode) &&
			!S_ISLNK(inode->i_mode))
		return;

	atomic_dec(&F2FS_I(inode)->dirty_pages);
	dec_page_count(F2FS_I_SB(inode), S_ISDIR(inode->i_mode) ?
				F2FS_DIRTY_DENTS : F2FS_DIRTY_DATA);
	if (IS_NOQUOTA(inode))
		dec_page_count(F2FS_I_SB(inode), F2FS_DIRTY_QDATA);
}

static inline void inc_atomic_write_cnt(struct inode *inode)
{
	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
	struct f2fs_inode_info *fi = F2FS_I(inode);
	u64 current_write;

	fi->atomic_write_cnt++;
	atomic64_inc(&sbi->current_atomic_write);
	current_write = atomic64_read(&sbi->current_atomic_write);
	if (current_write > sbi->peak_atomic_write)
		sbi->peak_atomic_write = current_write;
}

static inline void release_atomic_write_cnt(struct inode *inode)
{
	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
	struct f2fs_inode_info *fi = F2FS_I(inode);

	atomic64_sub(fi->atomic_write_cnt, &sbi->current_atomic_write);
	fi->atomic_write_cnt = 0;
}

static inline s64 get_pages(struct f2fs_sb_info *sbi, int count_type)
{
	return atomic_read(&sbi->nr_pages[count_type]);
}

static inline int get_dirty_pages(struct inode *inode)
{
	return atomic_read(&F2FS_I(inode)->dirty_pages);
}

static inline int get_blocktype_secs(struct f2fs_sb_info *sbi, int block_type)
{
	return div_u64(get_pages(sbi, block_type) + BLKS_PER_SEC(sbi) - 1,
							BLKS_PER_SEC(sbi));
}

static inline block_t valid_user_blocks(struct f2fs_sb_info *sbi)
{
	return sbi->total_valid_block_count;
}

static inline block_t discard_blocks(struct f2fs_sb_info *sbi)
{
	return sbi->discard_blks;
}

static inline unsigned long __bitmap_size(struct f2fs_sb_info *sbi, int flag)
{
	struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);

	/* return NAT or SIT bitmap */
	if (flag == NAT_BITMAP)
		return le32_to_cpu(ckpt->nat_ver_bitmap_bytesize);
	else if (flag == SIT_BITMAP)
		return le32_to_cpu(ckpt->sit_ver_bitmap_bytesize);

	return 0;
}

static inline block_t __cp_payload(struct f2fs_sb_info *sbi)
{
	return le32_to_cpu(F2FS_RAW_SUPER(sbi)->cp_payload);
}

static inline void *__bitmap_ptr(struct f2fs_sb_info *sbi, int flag)
{
	struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
	void *tmp_ptr = &ckpt->sit_nat_version_bitmap;
	int offset;

	if (is_set_ckpt_flags(sbi, CP_LARGE_NAT_BITMAP_FLAG)) {
		offset = (flag == SIT_BITMAP) ?
			le32_to_cpu(ckpt->nat_ver_bitmap_bytesize) : 0;
		/*
		 * if large_nat_bitmap feature is enabled, leave checksum
		 * protection for all nat/sit bitmaps.
		 */
		return tmp_ptr + offset + sizeof(__le32);
	}

	if (__cp_payload(sbi) > 0) {
		if (flag == NAT_BITMAP)
			return tmp_ptr;
		else
			return (unsigned char *)ckpt + F2FS_BLKSIZE;
	} else {
		offset = (flag == NAT_BITMAP) ?
			le32_to_cpu(ckpt->sit_ver_bitmap_bytesize) : 0;
		return tmp_ptr + offset;
	}
}

static inline block_t __start_cp_addr(struct f2fs_sb_info *sbi)
{
	block_t start_addr = le32_to_cpu(F2FS_RAW_SUPER(sbi)->cp_blkaddr);

	if (sbi->cur_cp_pack == 2)
		start_addr += BLKS_PER_SEG(sbi);
	return start_addr;
}

static inline block_t __start_cp_next_addr(struct f2fs_sb_info *sbi)
{
	block_t start_addr = le32_to_cpu(F2FS_RAW_SUPER(sbi)->cp_blkaddr);

	if (sbi->cur_cp_pack == 1)
		start_addr += BLKS_PER_SEG(sbi);
	return start_addr;
}

static inline void __set_cp_next_pack(struct f2fs_sb_info *sbi)
{
	sbi->cur_cp_pack = (sbi->cur_cp_pack == 1) ? 2 : 1;
}

static inline block_t __start_sum_addr(struct f2fs_sb_info *sbi)
{
	return le32_to_cpu(F2FS_CKPT(sbi)->cp_pack_start_sum);
}

extern void f2fs_mark_inode_dirty_sync(struct inode *inode, bool sync);
static inline int inc_valid_node_count(struct f2fs_sb_info *sbi,
					struct inode *inode, bool is_inode)
{
	block_t	valid_block_count;
	unsigned int valid_node_count;
	unsigned int avail_user_block_count;
	int err;

	if (is_inode) {
		if (inode) {
			err = dquot_alloc_inode(inode);
			if (err)
				return err;
		}
	} else {
		err = dquot_reserve_block(inode, 1);
		if (err)
			return err;
	}

	if (time_to_inject(sbi, FAULT_BLOCK))
		goto enospc;

	spin_lock(&sbi->stat_lock);

	valid_block_count = sbi->total_valid_block_count + 1;
	avail_user_block_count = get_available_block_count(sbi, inode, false);

	if (unlikely(valid_block_count > avail_user_block_count)) {
		spin_unlock(&sbi->stat_lock);
		goto enospc;
	}

	valid_node_count = sbi->total_valid_node_count + 1;
	if (unlikely(valid_node_count > sbi->total_node_count)) {
		spin_unlock(&sbi->stat_lock);
		goto enospc;
	}

	sbi->total_valid_node_count++;
	sbi->total_valid_block_count++;
	spin_unlock(&sbi->stat_lock);

	if (inode) {
		if (is_inode)
			f2fs_mark_inode_dirty_sync(inode, true);
		else
			f2fs_i_blocks_write(inode, 1, true, true);
	}

	percpu_counter_inc(&sbi->alloc_valid_block_count);
	return 0;

enospc:
	if (is_inode) {
		if (inode)
			dquot_free_inode(inode);
	} else {
		dquot_release_reservation_block(inode, 1);
	}
	return -ENOSPC;
}

static inline void dec_valid_node_count(struct f2fs_sb_info *sbi,
					struct inode *inode, bool is_inode)
{
	spin_lock(&sbi->stat_lock);

	if (unlikely(!sbi->total_valid_block_count ||
			!sbi->total_valid_node_count)) {
		f2fs_warn(sbi, "dec_valid_node_count: inconsistent block counts, total_valid_block:%u, total_valid_node:%u",
			  sbi->total_valid_block_count,
			  sbi->total_valid_node_count);
		set_sbi_flag(sbi, SBI_NEED_FSCK);
	} else {
		sbi->total_valid_block_count--;
		sbi->total_valid_node_count--;
	}

	if (sbi->reserved_blocks &&
		sbi->current_reserved_blocks < sbi->reserved_blocks)
		sbi->current_reserved_blocks++;

	spin_unlock(&sbi->stat_lock);

	if (is_inode) {
		dquot_free_inode(inode);
	} else {
		if (unlikely(inode->i_blocks == 0)) {
			f2fs_warn(sbi, "dec_valid_node_count: inconsistent i_blocks, ino:%lu, iblocks:%llu",
				  inode->i_ino,
				  (unsigned long long)inode->i_blocks);
			set_sbi_flag(sbi, SBI_NEED_FSCK);
			return;
		}
		f2fs_i_blocks_write(inode, 1, false, true);
	}
}

static inline unsigned int valid_node_count(struct f2fs_sb_info *sbi)
{
	return sbi->total_valid_node_count;
}

static inline void inc_valid_inode_count(struct f2fs_sb_info *sbi)
{
	percpu_counter_inc(&sbi->total_valid_inode_count);
}

static inline void dec_valid_inode_count(struct f2fs_sb_info *sbi)
{
	percpu_counter_dec(&sbi->total_valid_inode_count);
}

static inline s64 valid_inode_count(struct f2fs_sb_info *sbi)
{
	return percpu_counter_sum_positive(&sbi->total_valid_inode_count);
}

static inline struct page *f2fs_grab_cache_page(struct address_space *mapping,
						pgoff_t index, bool for_write)
{
	struct page *page;
	unsigned int flags;

	if (IS_ENABLED(CONFIG_F2FS_FAULT_INJECTION)) {
		if (!for_write)
			page = find_get_page_flags(mapping, index,
							FGP_LOCK | FGP_ACCESSED);
		else
			page = find_lock_page(mapping, index);
		if (page)
			return page;

		if (time_to_inject(F2FS_M_SB(mapping), FAULT_PAGE_ALLOC))
			return NULL;
	}

	if (!for_write)
		return grab_cache_page(mapping, index);

	flags = memalloc_nofs_save();
	page = grab_cache_page_write_begin(mapping, index);
	memalloc_nofs_restore(flags);

	return page;
}

static inline struct page *f2fs_pagecache_get_page(
				struct address_space *mapping, pgoff_t index,
				fgf_t fgp_flags, gfp_t gfp_mask)
{
	if (time_to_inject(F2FS_M_SB(mapping), FAULT_PAGE_GET))
		return NULL;

	return pagecache_get_page(mapping, index, fgp_flags, gfp_mask);
}

static inline void f2fs_put_page(struct page *page, int unlock)
{
	if (!page)
		return;

	if (unlock) {
		f2fs_bug_on(F2FS_P_SB(page), !PageLocked(page));
		unlock_page(page);
	}
	put_page(page);
}

static inline void f2fs_put_dnode(struct dnode_of_data *dn)
{
	if (dn->node_page)
		f2fs_put_page(dn->node_page, 1);
	if (dn->inode_page && dn->node_page != dn->inode_page)
		f2fs_put_page(dn->inode_page, 0);
	dn->node_page = NULL;
	dn->inode_page = NULL;
}

static inline struct kmem_cache *f2fs_kmem_cache_create(const char *name,
					size_t size)
{
	return kmem_cache_create(name, size, 0, SLAB_RECLAIM_ACCOUNT, NULL);
}

static inline void *f2fs_kmem_cache_alloc_nofail(struct kmem_cache *cachep,
						gfp_t flags)
{
	void *entry;

	entry = kmem_cache_alloc(cachep, flags);
	if (!entry)
		entry = kmem_cache_alloc(cachep, flags | __GFP_NOFAIL);
	return entry;
}

static inline void *f2fs_kmem_cache_alloc(struct kmem_cache *cachep,
			gfp_t flags, bool nofail, struct f2fs_sb_info *sbi)
{
	if (nofail)
		return f2fs_kmem_cache_alloc_nofail(cachep, flags);

	if (time_to_inject(sbi, FAULT_SLAB_ALLOC))
		return NULL;

	return kmem_cache_alloc(cachep, flags);
}

static inline bool is_inflight_io(struct f2fs_sb_info *sbi, int type)
{
	if (get_pages(sbi, F2FS_RD_DATA) || get_pages(sbi, F2FS_RD_NODE) ||
		get_pages(sbi, F2FS_RD_META) || get_pages(sbi, F2FS_WB_DATA) ||
		get_pages(sbi, F2FS_WB_CP_DATA) ||
		get_pages(sbi, F2FS_DIO_READ) ||
		get_pages(sbi, F2FS_DIO_WRITE))
		return true;

	if (type != DISCARD_TIME && SM_I(sbi) && SM_I(sbi)->dcc_info &&
			atomic_read(&SM_I(sbi)->dcc_info->queued_discard))
		return true;

	if (SM_I(sbi) && SM_I(sbi)->fcc_info &&
			atomic_read(&SM_I(sbi)->fcc_info->queued_flush))
		return true;
	return false;
}

static inline bool is_idle(struct f2fs_sb_info *sbi, int type)
{
	if (sbi->gc_mode == GC_URGENT_HIGH)
		return true;

	if (is_inflight_io(sbi, type))
		return false;

	if (sbi->gc_mode == GC_URGENT_MID)
		return true;

	if (sbi->gc_mode == GC_URGENT_LOW &&
			(type == DISCARD_TIME || type == GC_TIME))
		return true;

	return f2fs_time_over(sbi, type);
}

static inline void f2fs_radix_tree_insert(struct radix_tree_root *root,
				unsigned long index, void *item)
{
	while (radix_tree_insert(root, index, item))
		cond_resched();
}

#define RAW_IS_INODE(p)	((p)->footer.nid == (p)->footer.ino)

static inline bool IS_INODE(struct page *page)
{
	struct f2fs_node *p = F2FS_NODE(page);

	return RAW_IS_INODE(p);
}

static inline int offset_in_addr(struct f2fs_inode *i)
{
	return (i->i_inline & F2FS_EXTRA_ATTR) ?
			(le16_to_cpu(i->i_extra_isize) / sizeof(__le32)) : 0;
}

static inline __le32 *blkaddr_in_node(struct f2fs_node *node)
{
	return RAW_IS_INODE(node) ? node->i.i_addr : node->dn.addr;
}

static inline int f2fs_has_extra_attr(struct inode *inode);
static inline block_t data_blkaddr(struct inode *inode,
			struct page *node_page, unsigned int offset)
{
	struct f2fs_node *raw_node;
	__le32 *addr_array;
	int base = 0;
	bool is_inode = IS_INODE(node_page);

	raw_node = F2FS_NODE(node_page);

	if (is_inode) {
		if (!inode)
			/* from GC path only */
			base = offset_in_addr(&raw_node->i);
		else if (f2fs_has_extra_attr(inode))
			base = get_extra_isize(inode);
	}

	addr_array = blkaddr_in_node(raw_node);
	return le32_to_cpu(addr_array[base + offset]);
}

static inline block_t f2fs_data_blkaddr(struct dnode_of_data *dn)
{
	return data_blkaddr(dn->inode, dn->node_page, dn->ofs_in_node);
}

static inline int f2fs_test_bit(unsigned int nr, char *addr)
{
	int mask;

	addr += (nr >> 3);
	mask = BIT(7 - (nr & 0x07));
	return mask & *addr;
}

static inline void f2fs_set_bit(unsigned int nr, char *addr)
{
	int mask;

	addr += (nr >> 3);
	mask = BIT(7 - (nr & 0x07));
	*addr |= mask;
}

static inline void f2fs_clear_bit(unsigned int nr, char *addr)
{
	int mask;

	addr += (nr >> 3);
	mask = BIT(7 - (nr & 0x07));
	*addr &= ~mask;
}

static inline int f2fs_test_and_set_bit(unsigned int nr, char *addr)
{
	int mask;
	int ret;

	addr += (nr >> 3);
	mask = BIT(7 - (nr & 0x07));
	ret = mask & *addr;
	*addr |= mask;
	return ret;
}

static inline int f2fs_test_and_clear_bit(unsigned int nr, char *addr)
{
	int mask;
	int ret;

	addr += (nr >> 3);
	mask = BIT(7 - (nr & 0x07));
	ret = mask & *addr;
	*addr &= ~mask;
	return ret;
}

static inline void f2fs_change_bit(unsigned int nr, char *addr)
{
	int mask;

	addr += (nr >> 3);
	mask = BIT(7 - (nr & 0x07));
	*addr ^= mask;
}

/*
 * On-disk inode flags (f2fs_inode::i_flags)
 */
#define F2FS_COMPR_FL			0x00000004 /* Compress file */
#define F2FS_SYNC_FL			0x00000008 /* Synchronous updates */
#define F2FS_IMMUTABLE_FL		0x00000010 /* Immutable file */
#define F2FS_APPEND_FL			0x00000020 /* writes to file may only append */
#define F2FS_NODUMP_FL			0x00000040 /* do not dump file */
#define F2FS_NOATIME_FL			0x00000080 /* do not update atime */
#define F2FS_NOCOMP_FL			0x00000400 /* Don't compress */
#define F2FS_INDEX_FL			0x00001000 /* hash-indexed directory */
#define F2FS_DIRSYNC_FL			0x00010000 /* dirsync behaviour (directories only) */
#define F2FS_PROJINHERIT_FL		0x20000000 /* Create with parents projid */
#define F2FS_CASEFOLD_FL		0x40000000 /* Casefolded file */

#define F2FS_QUOTA_DEFAULT_FL		(F2FS_NOATIME_FL | F2FS_IMMUTABLE_FL)

/* Flags that should be inherited by new inodes from their parent. */
#define F2FS_FL_INHERITED (F2FS_SYNC_FL | F2FS_NODUMP_FL | F2FS_NOATIME_FL | \
			   F2FS_DIRSYNC_FL | F2FS_PROJINHERIT_FL | \
			   F2FS_CASEFOLD_FL)

/* Flags that are appropriate for regular files (all but dir-specific ones). */
#define F2FS_REG_FLMASK		(~(F2FS_DIRSYNC_FL | F2FS_PROJINHERIT_FL | \
				F2FS_CASEFOLD_FL))

/* Flags that are appropriate for non-directories/regular files. */
#define F2FS_OTHER_FLMASK	(F2FS_NODUMP_FL | F2FS_NOATIME_FL)

static inline __u32 f2fs_mask_flags(umode_t mode, __u32 flags)
{
	if (S_ISDIR(mode))
		return flags;
	else if (S_ISREG(mode))
		return flags & F2FS_REG_FLMASK;
	else
		return flags & F2FS_OTHER_FLMASK;
}

static inline void __mark_inode_dirty_flag(struct inode *inode,
						int flag, bool set)
{
	switch (flag) {
	case FI_INLINE_XATTR:
	case FI_INLINE_DATA:
	case FI_INLINE_DENTRY:
	case FI_NEW_INODE:
		if (set)
			return;
		fallthrough;
	case FI_DATA_EXIST:
	case FI_INLINE_DOTS:
	case FI_PIN_FILE:
	case FI_COMPRESS_RELEASED:
	case FI_ATOMIC_COMMITTED:
		f2fs_mark_inode_dirty_sync(inode, true);
	}
}

static inline void set_inode_flag(struct inode *inode, int flag)
{
	set_bit(flag, F2FS_I(inode)->flags);
	__mark_inode_dirty_flag(inode, flag, true);
}

static inline int is_inode_flag_set(struct inode *inode, int flag)
{
	return test_bit(flag, F2FS_I(inode)->flags);
}

static inline void clear_inode_flag(struct inode *inode, int flag)
{
	clear_bit(flag, F2FS_I(inode)->flags);
	__mark_inode_dirty_flag(inode, flag, false);
}

static inline bool f2fs_verity_in_progress(struct inode *inode)
{
	return IS_ENABLED(CONFIG_FS_VERITY) &&
	       is_inode_flag_set(inode, FI_VERITY_IN_PROGRESS);
}

static inline void set_acl_inode(struct inode *inode, umode_t mode)
{
	F2FS_I(inode)->i_acl_mode = mode;
	set_inode_flag(inode, FI_ACL_MODE);
	f2fs_mark_inode_dirty_sync(inode, false);
}

static inline void f2fs_i_links_write(struct inode *inode, bool inc)
{
	if (inc)
		inc_nlink(inode);
	else
		drop_nlink(inode);
	f2fs_mark_inode_dirty_sync(inode, true);
}

static inline void f2fs_i_blocks_write(struct inode *inode,
					block_t diff, bool add, bool claim)
{
	bool clean = !is_inode_flag_set(inode, FI_DIRTY_INODE);
	bool recover = is_inode_flag_set(inode, FI_AUTO_RECOVER);

	/* add = 1, claim = 1 should be dquot_reserve_block in pair */
	if (add) {
		if (claim)
			dquot_claim_block(inode, diff);
		else
			dquot_alloc_block_nofail(inode, diff);
	} else {
		dquot_free_block(inode, diff);
	}

	f2fs_mark_inode_dirty_sync(inode, true);
	if (clean || recover)
		set_inode_flag(inode, FI_AUTO_RECOVER);
}

static inline bool f2fs_is_atomic_file(struct inode *inode);

static inline void f2fs_i_size_write(struct inode *inode, loff_t i_size)
{
	bool clean = !is_inode_flag_set(inode, FI_DIRTY_INODE);
	bool recover = is_inode_flag_set(inode, FI_AUTO_RECOVER);

	if (i_size_read(inode) == i_size)
		return;

	i_size_write(inode, i_size);

	if (f2fs_is_atomic_file(inode))
		return;

	f2fs_mark_inode_dirty_sync(inode, true);
	if (clean || recover)
		set_inode_flag(inode, FI_AUTO_RECOVER);
}

static inline void f2fs_i_depth_write(struct inode *inode, unsigned int depth)
{
	F2FS_I(inode)->i_current_depth = depth;
	f2fs_mark_inode_dirty_sync(inode, true);
}

static inline void f2fs_i_gc_failures_write(struct inode *inode,
					unsigned int count)
{
	F2FS_I(inode)->i_gc_failures[GC_FAILURE_PIN] = count;
	f2fs_mark_inode_dirty_sync(inode, true);
}

static inline void f2fs_i_xnid_write(struct inode *inode, nid_t xnid)
{
	F2FS_I(inode)->i_xattr_nid = xnid;
	f2fs_mark_inode_dirty_sync(inode, true);
}

static inline void f2fs_i_pino_write(struct inode *inode, nid_t pino)
{
	F2FS_I(inode)->i_pino = pino;
	f2fs_mark_inode_dirty_sync(inode, true);
}

static inline void get_inline_info(struct inode *inode, struct f2fs_inode *ri)
{
	struct f2fs_inode_info *fi = F2FS_I(inode);

	if (ri->i_inline & F2FS_INLINE_XATTR)
		set_bit(FI_INLINE_XATTR, fi->flags);
	if (ri->i_inline & F2FS_INLINE_DATA)
		set_bit(FI_INLINE_DATA, fi->flags);
	if (ri->i_inline & F2FS_INLINE_DENTRY)
		set_bit(FI_INLINE_DENTRY, fi->flags);
	if (ri->i_inline & F2FS_DATA_EXIST)
		set_bit(FI_DATA_EXIST, fi->flags);
	if (ri->i_inline & F2FS_INLINE_DOTS)
		set_bit(FI_INLINE_DOTS, fi->flags);
	if (ri->i_inline & F2FS_EXTRA_ATTR)
		set_bit(FI_EXTRA_ATTR, fi->flags);
	if (ri->i_inline & F2FS_PIN_FILE)
		set_bit(FI_PIN_FILE, fi->flags);
	if (ri->i_inline & F2FS_COMPRESS_RELEASED)
		set_bit(FI_COMPRESS_RELEASED, fi->flags);
}

static inline void set_raw_inline(struct inode *inode, struct f2fs_inode *ri)
{
	ri->i_inline = 0;

	if (is_inode_flag_set(inode, FI_INLINE_XATTR))
		ri->i_inline |= F2FS_INLINE_XATTR;
	if (is_inode_flag_set(inode, FI_INLINE_DATA))
		ri->i_inline |= F2FS_INLINE_DATA;
	if (is_inode_flag_set(inode, FI_INLINE_DENTRY))
		ri->i_inline |= F2FS_INLINE_DENTRY;
	if (is_inode_flag_set(inode, FI_DATA_EXIST))
		ri->i_inline |= F2FS_DATA_EXIST;
	if (is_inode_flag_set(inode, FI_INLINE_DOTS))
		ri->i_inline |= F2FS_INLINE_DOTS;
	if (is_inode_flag_set(inode, FI_EXTRA_ATTR))
		ri->i_inline |= F2FS_EXTRA_ATTR;
	if (is_inode_flag_set(inode, FI_PIN_FILE))
		ri->i_inline |= F2FS_PIN_FILE;
	if (is_inode_flag_set(inode, FI_COMPRESS_RELEASED))
		ri->i_inline |= F2FS_COMPRESS_RELEASED;
}

static inline int f2fs_has_extra_attr(struct inode *inode)
{
	return is_inode_flag_set(inode, FI_EXTRA_ATTR);
}

static inline int f2fs_has_inline_xattr(struct inode *inode)
{
	return is_inode_flag_set(inode, FI_INLINE_XATTR);
}

static inline int f2fs_compressed_file(struct inode *inode)
{
	return S_ISREG(inode->i_mode) &&
		is_inode_flag_set(inode, FI_COMPRESSED_FILE);
}

static inline bool f2fs_need_compress_data(struct inode *inode)
{
	int compress_mode = F2FS_OPTION(F2FS_I_SB(inode)).compress_mode;

	if (!f2fs_compressed_file(inode))
		return false;

	if (compress_mode == COMPR_MODE_FS)
		return true;
	else if (compress_mode == COMPR_MODE_USER &&
			is_inode_flag_set(inode, FI_ENABLE_COMPRESS))
		return true;

	return false;
}

static inline unsigned int addrs_per_inode(struct inode *inode)
{
	unsigned int addrs = CUR_ADDRS_PER_INODE(inode) -
				get_inline_xattr_addrs(inode);

	if (!f2fs_compressed_file(inode))
		return addrs;
	return ALIGN_DOWN(addrs, F2FS_I(inode)->i_cluster_size);
}

static inline unsigned int addrs_per_block(struct inode *inode)
{
	if (!f2fs_compressed_file(inode))
		return DEF_ADDRS_PER_BLOCK;
	return ALIGN_DOWN(DEF_ADDRS_PER_BLOCK, F2FS_I(inode)->i_cluster_size);
}

static inline void *inline_xattr_addr(struct inode *inode, struct page *page)
{
	struct f2fs_inode *ri = F2FS_INODE(page);

	return (void *)&(ri->i_addr[DEF_ADDRS_PER_INODE -
					get_inline_xattr_addrs(inode)]);
}

static inline int inline_xattr_size(struct inode *inode)
{
	if (f2fs_has_inline_xattr(inode))
		return get_inline_xattr_addrs(inode) * sizeof(__le32);
	return 0;
}

/*
 * Notice: check inline_data flag without inode page lock is unsafe.
 * It could change at any time by f2fs_convert_inline_page().
 */
static inline int f2fs_has_inline_data(struct inode *inode)
{
	return is_inode_flag_set(inode, FI_INLINE_DATA);
}

static inline int f2fs_exist_data(struct inode *inode)
{
	return is_inode_flag_set(inode, FI_DATA_EXIST);
}

static inline int f2fs_has_inline_dots(struct inode *inode)
{
	return is_inode_flag_set(inode, FI_INLINE_DOTS);
}

static inline int f2fs_is_mmap_file(struct inode *inode)
{
	return is_inode_flag_set(inode, FI_MMAP_FILE);
}

static inline bool f2fs_is_pinned_file(struct inode *inode)
{
	return is_inode_flag_set(inode, FI_PIN_FILE);
}

static inline bool f2fs_is_atomic_file(struct inode *inode)
{
	return is_inode_flag_set(inode, FI_ATOMIC_FILE);
}

static inline bool f2fs_is_cow_file(struct inode *inode)
{
	return is_inode_flag_set(inode, FI_COW_FILE);
}

static inline __le32 *get_dnode_addr(struct inode *inode,
					struct page *node_page);
static inline void *inline_data_addr(struct inode *inode, struct page *page)
{
	__le32 *addr = get_dnode_addr(inode, page);

	return (void *)(addr + DEF_INLINE_RESERVED_SIZE);
}

static inline int f2fs_has_inline_dentry(struct inode *inode)
{
	return is_inode_flag_set(inode, FI_INLINE_DENTRY);
}

static inline int is_file(struct inode *inode, int type)
{
	return F2FS_I(inode)->i_advise & type;
}

static inline void set_file(struct inode *inode, int type)
{
	if (is_file(inode, type))
		return;
	F2FS_I(inode)->i_advise |= type;
	f2fs_mark_inode_dirty_sync(inode, true);
}

static inline void clear_file(struct inode *inode, int type)
{
	if (!is_file(inode, type))
		return;
	F2FS_I(inode)->i_advise &= ~type;
	f2fs_mark_inode_dirty_sync(inode, true);
}

static inline bool f2fs_is_time_consistent(struct inode *inode)
{
	struct timespec64 ts = inode_get_atime(inode);

	if (!timespec64_equal(F2FS_I(inode)->i_disk_time, &ts))
		return false;
	ts = inode_get_ctime(inode);
	if (!timespec64_equal(F2FS_I(inode)->i_disk_time + 1, &ts))
		return false;
	ts = inode_get_mtime(inode);
	if (!timespec64_equal(F2FS_I(inode)->i_disk_time + 2, &ts))
		return false;
	return true;
}

static inline bool f2fs_skip_inode_update(struct inode *inode, int dsync)
{
	bool ret;

	if (dsync) {
		struct f2fs_sb_info *sbi = F2FS_I_SB(inode);

		spin_lock(&sbi->inode_lock[DIRTY_META]);
		ret = list_empty(&F2FS_I(inode)->gdirty_list);
		spin_unlock(&sbi->inode_lock[DIRTY_META]);
		return ret;
	}
	if (!is_inode_flag_set(inode, FI_AUTO_RECOVER) ||
			file_keep_isize(inode) ||
			i_size_read(inode) & ~PAGE_MASK)
		return false;

	if (!f2fs_is_time_consistent(inode))
		return false;

	spin_lock(&F2FS_I(inode)->i_size_lock);
	ret = F2FS_I(inode)->last_disk_size == i_size_read(inode);
	spin_unlock(&F2FS_I(inode)->i_size_lock);

	return ret;
}

static inline bool f2fs_readonly(struct super_block *sb)
{
	return sb_rdonly(sb);
}

static inline bool f2fs_cp_error(struct f2fs_sb_info *sbi)
{
	return is_set_ckpt_flags(sbi, CP_ERROR_FLAG);
}

static inline void *f2fs_kmalloc(struct f2fs_sb_info *sbi,
					size_t size, gfp_t flags)
{
	if (time_to_inject(sbi, FAULT_KMALLOC))
		return NULL;

	return kmalloc(size, flags);
}

static inline void *f2fs_getname(struct f2fs_sb_info *sbi)
{
	if (time_to_inject(sbi, FAULT_KMALLOC))
		return NULL;

	return __getname();
}

static inline void f2fs_putname(char *buf)
{
	__putname(buf);
}

static inline void *f2fs_kzalloc(struct f2fs_sb_info *sbi,
					size_t size, gfp_t flags)
{
	return f2fs_kmalloc(sbi, size, flags | __GFP_ZERO);
}

static inline void *f2fs_kvmalloc(struct f2fs_sb_info *sbi,
					size_t size, gfp_t flags)
{
	if (time_to_inject(sbi, FAULT_KVMALLOC))
		return NULL;

	return kvmalloc(size, flags);
}

static inline void *f2fs_kvzalloc(struct f2fs_sb_info *sbi,
					size_t size, gfp_t flags)
{
	return f2fs_kvmalloc(sbi, size, flags | __GFP_ZERO);
}

static inline int get_extra_isize(struct inode *inode)
{
	return F2FS_I(inode)->i_extra_isize / sizeof(__le32);
}

static inline int get_inline_xattr_addrs(struct inode *inode)
{
	return F2FS_I(inode)->i_inline_xattr_size;
}

static inline __le32 *get_dnode_addr(struct inode *inode,
					struct page *node_page)
{
	int base = 0;

	if (IS_INODE(node_page) && f2fs_has_extra_attr(inode))
		base = get_extra_isize(inode);

	return blkaddr_in_node(F2FS_NODE(node_page)) + base;
}

#define f2fs_get_inode_mode(i) \
	((is_inode_flag_set(i, FI_ACL_MODE)) ? \
	 (F2FS_I(i)->i_acl_mode) : ((i)->i_mode))

#define F2FS_MIN_EXTRA_ATTR_SIZE		(sizeof(__le32))

#define F2FS_TOTAL_EXTRA_ATTR_SIZE			\
	(offsetof(struct f2fs_inode, i_extra_end) -	\
	offsetof(struct f2fs_inode, i_extra_isize))	\

#define F2FS_OLD_ATTRIBUTE_SIZE	(offsetof(struct f2fs_inode, i_addr))
#define F2FS_FITS_IN_INODE(f2fs_inode, extra_isize, field)		\
		((offsetof(typeof(*(f2fs_inode)), field) +	\
		sizeof((f2fs_inode)->field))			\
		<= (F2FS_OLD_ATTRIBUTE_SIZE + (extra_isize)))	\

#define __is_large_section(sbi)		(SEGS_PER_SEC(sbi) > 1)

#define __is_meta_io(fio) (PAGE_TYPE_OF_BIO((fio)->type) == META)

bool f2fs_is_valid_blkaddr(struct f2fs_sb_info *sbi,
					block_t blkaddr, int type);
static inline void verify_blkaddr(struct f2fs_sb_info *sbi,
					block_t blkaddr, int type)
{
	if (!f2fs_is_valid_blkaddr(sbi, blkaddr, type))
		f2fs_err(sbi, "invalid blkaddr: %u, type: %d, run fsck to fix.",
			 blkaddr, type);
}

static inline bool __is_valid_data_blkaddr(block_t blkaddr)
{
	if (blkaddr == NEW_ADDR || blkaddr == NULL_ADDR ||
			blkaddr == COMPRESS_ADDR)
		return false;
	return true;
}

/*
 * file.c
 */
int f2fs_sync_file(struct file *file, loff_t start, loff_t end, int datasync);
int f2fs_do_truncate_blocks(struct inode *inode, u64 from, bool lock);
int f2fs_truncate_blocks(struct inode *inode, u64 from, bool lock);
int f2fs_truncate(struct inode *inode);
int f2fs_getattr(struct mnt_idmap *idmap, const struct path *path,
		 struct kstat *stat, u32 request_mask, unsigned int flags);
int f2fs_setattr(struct mnt_idmap *idmap, struct dentry *dentry,
		 struct iattr *attr);
int f2fs_truncate_hole(struct inode *inode, pgoff_t pg_start, pgoff_t pg_end);
void f2fs_truncate_data_blocks_range(struct dnode_of_data *dn, int count);
int f2fs_precache_extents(struct inode *inode);
int f2fs_fileattr_get(struct dentry *dentry, struct fileattr *fa);
int f2fs_fileattr_set(struct mnt_idmap *idmap,
		      struct dentry *dentry, struct fileattr *fa);
long f2fs_ioctl(struct file *filp, unsigned int cmd, unsigned long arg);
long f2fs_compat_ioctl(struct file *file, unsigned int cmd, unsigned long arg);
int f2fs_transfer_project_quota(struct inode *inode, kprojid_t kprojid);
int f2fs_pin_file_control(struct inode *inode, bool inc);

/*
 * inode.c
 */
void f2fs_set_inode_flags(struct inode *inode);
bool f2fs_inode_chksum_verify(struct f2fs_sb_info *sbi, struct page *page);
void f2fs_inode_chksum_set(struct f2fs_sb_info *sbi, struct page *page);
struct inode *f2fs_iget(struct super_block *sb, unsigned long ino);
struct inode *f2fs_iget_retry(struct super_block *sb, unsigned long ino);
int f2fs_try_to_free_nats(struct f2fs_sb_info *sbi, int nr_shrink);
void f2fs_update_inode(struct inode *inode, struct page *node_page);
void f2fs_update_inode_page(struct inode *inode);
int f2fs_write_inode(struct inode *inode, struct writeback_control *wbc);
void f2fs_evict_inode(struct inode *inode);
void f2fs_handle_failed_inode(struct inode *inode);

/*
 * namei.c
 */
int f2fs_update_extension_list(struct f2fs_sb_info *sbi, const char *name,
							bool hot, bool set);
struct dentry *f2fs_get_parent(struct dentry *child);
int f2fs_get_tmpfile(struct mnt_idmap *idmap, struct inode *dir,
		     struct inode **new_inode);

/*
 * dir.c
 */
int f2fs_init_casefolded_name(const struct inode *dir,
			      struct f2fs_filename *fname);
int f2fs_setup_filename(struct inode *dir, const struct qstr *iname,
			int lookup, struct f2fs_filename *fname);
int f2fs_prepare_lookup(struct inode *dir, struct dentry *dentry,
			struct f2fs_filename *fname);
void f2fs_free_filename(struct f2fs_filename *fname);
struct f2fs_dir_entry *f2fs_find_target_dentry(const struct f2fs_dentry_ptr *d,
			const struct f2fs_filename *fname, int *max_slots);
int f2fs_fill_dentries(struct dir_context *ctx, struct f2fs_dentry_ptr *d,
			unsigned int start_pos, struct fscrypt_str *fstr);
void f2fs_do_make_empty_dir(struct inode *inode, struct inode *parent,
			struct f2fs_dentry_ptr *d);
struct page *f2fs_init_inode_metadata(struct inode *inode, struct inode *dir,
			const struct f2fs_filename *fname, struct page *dpage);
void f2fs_update_parent_metadata(struct inode *dir, struct inode *inode,
			unsigned int current_depth);
int f2fs_room_for_filename(const void *bitmap, int slots, int max_slots);
void f2fs_drop_nlink(struct inode *dir, struct inode *inode);
struct f2fs_dir_entry *__f2fs_find_entry(struct inode *dir,
					 const struct f2fs_filename *fname,
					 struct page **res_page);
struct f2fs_dir_entry *f2fs_find_entry(struct inode *dir,
			const struct qstr *child, struct page **res_page);
struct f2fs_dir_entry *f2fs_parent_dir(struct inode *dir, struct page **p);
ino_t f2fs_inode_by_name(struct inode *dir, const struct qstr *qstr,
			struct page **page);
void f2fs_set_link(struct inode *dir, struct f2fs_dir_entry *de,
			struct page *page, struct inode *inode);
bool f2fs_has_enough_room(struct inode *dir, struct page *ipage,
			  const struct f2fs_filename *fname);
void f2fs_update_dentry(nid_t ino, umode_t mode, struct f2fs_dentry_ptr *d,
			const struct fscrypt_str *name, f2fs_hash_t name_hash,
			unsigned int bit_pos);
int f2fs_add_regular_entry(struct inode *dir, const struct f2fs_filename *fname,
			struct inode *inode, nid_t ino, umode_t mode);
int f2fs_add_dentry(struct inode *dir, const struct f2fs_filename *fname,
			struct inode *inode, nid_t ino, umode_t mode);
int f2fs_do_add_link(struct inode *dir, const struct qstr *name,
			struct inode *inode, nid_t ino, umode_t mode);
void f2fs_delete_entry(struct f2fs_dir_entry *dentry, struct page *page,
			struct inode *dir, struct inode *inode);
int f2fs_do_tmpfile(struct inode *inode, struct inode *dir,
					struct f2fs_filename *fname);
bool f2fs_empty_dir(struct inode *dir);

static inline int f2fs_add_link(struct dentry *dentry, struct inode *inode)
{
	if (fscrypt_is_nokey_name(dentry))
		return -ENOKEY;
	return f2fs_do_add_link(d_inode(dentry->d_parent), &dentry->d_name,
				inode, inode->i_ino, inode->i_mode);
}

/*
 * super.c
 */
int f2fs_inode_dirtied(struct inode *inode, bool sync);
void f2fs_inode_synced(struct inode *inode);
int f2fs_dquot_initialize(struct inode *inode);
int f2fs_enable_quota_files(struct f2fs_sb_info *sbi, bool rdonly);
int f2fs_quota_sync(struct super_block *sb, int type);
loff_t max_file_blocks(struct inode *inode);
void f2fs_quota_off_umount(struct super_block *sb);
void f2fs_save_errors(struct f2fs_sb_info *sbi, unsigned char flag);
void f2fs_handle_critical_error(struct f2fs_sb_info *sbi, unsigned char reason,
							bool irq_context);
void f2fs_handle_error(struct f2fs_sb_info *sbi, unsigned char error);
void f2fs_handle_error_async(struct f2fs_sb_info *sbi, unsigned char error);
int f2fs_commit_super(struct f2fs_sb_info *sbi, bool recover);
int f2fs_sync_fs(struct super_block *sb, int sync);
int f2fs_sanity_check_ckpt(struct f2fs_sb_info *sbi);

/*
 * hash.c
 */
void f2fs_hash_filename(const struct inode *dir, struct f2fs_filename *fname);

/*
 * node.c
 */
struct node_info;

int f2fs_check_nid_range(struct f2fs_sb_info *sbi, nid_t nid);
bool f2fs_available_free_memory(struct f2fs_sb_info *sbi, int type);
bool f2fs_in_warm_node_list(struct f2fs_sb_info *sbi, struct page *page);
void f2fs_init_fsync_node_info(struct f2fs_sb_info *sbi);
void f2fs_del_fsync_node_entry(struct f2fs_sb_info *sbi, struct page *page);
void f2fs_reset_fsync_node_info(struct f2fs_sb_info *sbi);
int f2fs_need_dentry_mark(struct f2fs_sb_info *sbi, nid_t nid);
bool f2fs_is_checkpointed_node(struct f2fs_sb_info *sbi, nid_t nid);
bool f2fs_need_inode_block_update(struct f2fs_sb_info *sbi, nid_t ino);
int f2fs_get_node_info(struct f2fs_sb_info *sbi, nid_t nid,
				struct node_info *ni, bool checkpoint_context);
pgoff_t f2fs_get_next_page_offset(struct dnode_of_data *dn, pgoff_t pgofs);
int f2fs_get_dnode_of_data(struct dnode_of_data *dn, pgoff_t index, int mode);
int f2fs_truncate_inode_blocks(struct inode *inode, pgoff_t from);
int f2fs_truncate_xattr_node(struct inode *inode);
int f2fs_wait_on_node_pages_writeback(struct f2fs_sb_info *sbi,
					unsigned int seq_id);
bool f2fs_nat_bitmap_enabled(struct f2fs_sb_info *sbi);
int f2fs_remove_inode_page(struct inode *inode);
struct page *f2fs_new_inode_page(struct inode *inode);
struct page *f2fs_new_node_page(struct dnode_of_data *dn, unsigned int ofs);
void f2fs_ra_node_page(struct f2fs_sb_info *sbi, nid_t nid);
struct page *f2fs_get_node_page(struct f2fs_sb_info *sbi, pgoff_t nid);
struct page *f2fs_get_node_page_ra(struct page *parent, int start);
int f2fs_move_node_page(struct page *node_page, int gc_type);
void f2fs_flush_inline_data(struct f2fs_sb_info *sbi);
int f2fs_fsync_node_pages(struct f2fs_sb_info *sbi, struct inode *inode,
			struct writeback_control *wbc, bool atomic,
			unsigned int *seq_id);
int f2fs_sync_node_pages(struct f2fs_sb_info *sbi,
			struct writeback_control *wbc,
			bool do_balance, enum iostat_type io_type);
int f2fs_build_free_nids(struct f2fs_sb_info *sbi, bool sync, bool mount);
bool f2fs_alloc_nid(struct f2fs_sb_info *sbi, nid_t *nid);
void f2fs_alloc_nid_done(struct f2fs_sb_info *sbi, nid_t nid);
void f2fs_alloc_nid_failed(struct f2fs_sb_info *sbi, nid_t nid);
int f2fs_try_to_free_nids(struct f2fs_sb_info *sbi, int nr_shrink);
int f2fs_recover_inline_xattr(struct inode *inode, struct page *page);
int f2fs_recover_xattr_data(struct inode *inode, struct page *page);
int f2fs_recover_inode_page(struct f2fs_sb_info *sbi, struct page *page);
int f2fs_restore_node_summary(struct f2fs_sb_info *sbi,
			unsigned int segno, struct f2fs_summary_block *sum);
void f2fs_enable_nat_bits(struct f2fs_sb_info *sbi);
int f2fs_flush_nat_entries(struct f2fs_sb_info *sbi, struct cp_control *cpc);
int f2fs_build_node_manager(struct f2fs_sb_info *sbi);
void f2fs_destroy_node_manager(struct f2fs_sb_info *sbi);
int __init f2fs_create_node_manager_caches(void);
void f2fs_destroy_node_manager_caches(void);

/*
 * segment.c
 */
bool f2fs_need_SSR(struct f2fs_sb_info *sbi);
int f2fs_commit_atomic_write(struct inode *inode);
void f2fs_abort_atomic_write(struct inode *inode, bool clean);
void f2fs_balance_fs(struct f2fs_sb_info *sbi, bool need);
void f2fs_balance_fs_bg(struct f2fs_sb_info *sbi, bool from_bg);
int f2fs_issue_flush(struct f2fs_sb_info *sbi, nid_t ino);
int f2fs_create_flush_cmd_control(struct f2fs_sb_info *sbi);
int f2fs_flush_device_cache(struct f2fs_sb_info *sbi);
void f2fs_destroy_flush_cmd_control(struct f2fs_sb_info *sbi, bool free);
void f2fs_invalidate_blocks(struct f2fs_sb_info *sbi, block_t addr);
bool f2fs_is_checkpointed_data(struct f2fs_sb_info *sbi, block_t blkaddr);
int f2fs_start_discard_thread(struct f2fs_sb_info *sbi);
void f2fs_drop_discard_cmd(struct f2fs_sb_info *sbi);
void f2fs_stop_discard_thread(struct f2fs_sb_info *sbi);
bool f2fs_issue_discard_timeout(struct f2fs_sb_info *sbi);
void f2fs_clear_prefree_segments(struct f2fs_sb_info *sbi,
					struct cp_control *cpc);
void f2fs_dirty_to_prefree(struct f2fs_sb_info *sbi);
block_t f2fs_get_unusable_blocks(struct f2fs_sb_info *sbi);
int f2fs_disable_cp_again(struct f2fs_sb_info *sbi, block_t unusable);
void f2fs_release_discard_addrs(struct f2fs_sb_info *sbi);
int f2fs_npages_for_summary_flush(struct f2fs_sb_info *sbi, bool for_ra);
bool f2fs_segment_has_free_slot(struct f2fs_sb_info *sbi, int segno);
int f2fs_init_inmem_curseg(struct f2fs_sb_info *sbi);
void f2fs_save_inmem_curseg(struct f2fs_sb_info *sbi);
void f2fs_restore_inmem_curseg(struct f2fs_sb_info *sbi);
int f2fs_allocate_segment_for_resize(struct f2fs_sb_info *sbi, int type,
					unsigned int start, unsigned int end);
int f2fs_allocate_new_section(struct f2fs_sb_info *sbi, int type, bool force);
int f2fs_allocate_pinning_section(struct f2fs_sb_info *sbi);
int f2fs_allocate_new_segments(struct f2fs_sb_info *sbi);
int f2fs_trim_fs(struct f2fs_sb_info *sbi, struct fstrim_range *range);
bool f2fs_exist_trim_candidates(struct f2fs_sb_info *sbi,
					struct cp_control *cpc);
struct page *f2fs_get_sum_page(struct f2fs_sb_info *sbi, unsigned int segno);
void f2fs_update_meta_page(struct f2fs_sb_info *sbi, void *src,
					block_t blk_addr);
void f2fs_do_write_meta_page(struct f2fs_sb_info *sbi, struct page *page,
						enum iostat_type io_type);
void f2fs_do_write_node_page(unsigned int nid, struct f2fs_io_info *fio);
void f2fs_outplace_write_data(struct dnode_of_data *dn,
			struct f2fs_io_info *fio);
int f2fs_inplace_write_data(struct f2fs_io_info *fio);
void f2fs_do_replace_block(struct f2fs_sb_info *sbi, struct f2fs_summary *sum,
			block_t old_blkaddr, block_t new_blkaddr,
			bool recover_curseg, bool recover_newaddr,
			bool from_gc);
void f2fs_replace_block(struct f2fs_sb_info *sbi, struct dnode_of_data *dn,
			block_t old_addr, block_t new_addr,
			unsigned char version, bool recover_curseg,
			bool recover_newaddr);
int f2fs_allocate_data_block(struct f2fs_sb_info *sbi, struct page *page,
			block_t old_blkaddr, block_t *new_blkaddr,
			struct f2fs_summary *sum, int type,
			struct f2fs_io_info *fio);
void f2fs_update_device_state(struct f2fs_sb_info *sbi, nid_t ino,
					block_t blkaddr, unsigned int blkcnt);
void f2fs_wait_on_page_writeback(struct page *page,
			enum page_type type, bool ordered, bool locked);
void f2fs_wait_on_block_writeback(struct inode *inode, block_t blkaddr);
void f2fs_wait_on_block_writeback_range(struct inode *inode, block_t blkaddr,
								block_t len);
void f2fs_write_data_summaries(struct f2fs_sb_info *sbi, block_t start_blk);
void f2fs_write_node_summaries(struct f2fs_sb_info *sbi, block_t start_blk);
int f2fs_lookup_journal_in_cursum(struct f2fs_journal *journal, int type,
			unsigned int val, int alloc);
void f2fs_flush_sit_entries(struct f2fs_sb_info *sbi, struct cp_control *cpc);
int f2fs_fix_curseg_write_pointer(struct f2fs_sb_info *sbi);
int f2fs_check_write_pointer(struct f2fs_sb_info *sbi);
int f2fs_build_segment_manager(struct f2fs_sb_info *sbi);
void f2fs_destroy_segment_manager(struct f2fs_sb_info *sbi);
int __init f2fs_create_segment_manager_caches(void);
void f2fs_destroy_segment_manager_caches(void);
int f2fs_rw_hint_to_seg_type(enum rw_hint hint);
unsigned int f2fs_usable_segs_in_sec(struct f2fs_sb_info *sbi,
			unsigned int segno);
unsigned int f2fs_usable_blks_in_seg(struct f2fs_sb_info *sbi,
			unsigned int segno);

#define DEF_FRAGMENT_SIZE	4
#define MIN_FRAGMENT_SIZE	1
#define MAX_FRAGMENT_SIZE	512

static inline bool f2fs_need_rand_seg(struct f2fs_sb_info *sbi)
{
	return F2FS_OPTION(sbi).fs_mode == FS_MODE_FRAGMENT_SEG ||
		F2FS_OPTION(sbi).fs_mode == FS_MODE_FRAGMENT_BLK;
}

/*
 * checkpoint.c
 */
void f2fs_stop_checkpoint(struct f2fs_sb_info *sbi, bool end_io,
							unsigned char reason);
void f2fs_flush_ckpt_thread(struct f2fs_sb_info *sbi);
struct page *f2fs_grab_meta_page(struct f2fs_sb_info *sbi, pgoff_t index);
struct page *f2fs_get_meta_page(struct f2fs_sb_info *sbi, pgoff_t index);
struct page *f2fs_get_meta_page_retry(struct f2fs_sb_info *sbi, pgoff_t index);
struct page *f2fs_get_tmp_page(struct f2fs_sb_info *sbi, pgoff_t index);
bool f2fs_is_valid_blkaddr(struct f2fs_sb_info *sbi,
					block_t blkaddr, int type);
bool f2fs_is_valid_blkaddr_raw(struct f2fs_sb_info *sbi,
					block_t blkaddr, int type);
int f2fs_ra_meta_pages(struct f2fs_sb_info *sbi, block_t start, int nrpages,
			int type, bool sync);
void f2fs_ra_meta_pages_cond(struct f2fs_sb_info *sbi, pgoff_t index,
							unsigned int ra_blocks);
long f2fs_sync_meta_pages(struct f2fs_sb_info *sbi, enum page_type type,
			long nr_to_write, enum iostat_type io_type);
void f2fs_add_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type);
void f2fs_remove_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type);
void f2fs_release_ino_entry(struct f2fs_sb_info *sbi, bool all);
bool f2fs_exist_written_data(struct f2fs_sb_info *sbi, nid_t ino, int mode);
void f2fs_set_dirty_device(struct f2fs_sb_info *sbi, nid_t ino,
					unsigned int devidx, int type);
bool f2fs_is_dirty_device(struct f2fs_sb_info *sbi, nid_t ino,
					unsigned int devidx, int type);
int f2fs_acquire_orphan_inode(struct f2fs_sb_info *sbi);
void f2fs_release_orphan_inode(struct f2fs_sb_info *sbi);
void f2fs_add_orphan_inode(struct inode *inode);
void f2fs_remove_orphan_inode(struct f2fs_sb_info *sbi, nid_t ino);
int f2fs_recover_orphan_inodes(struct f2fs_sb_info *sbi);
int f2fs_get_valid_checkpoint(struct f2fs_sb_info *sbi);
void f2fs_update_dirty_folio(struct inode *inode, struct folio *folio);
void f2fs_remove_dirty_inode(struct inode *inode);
int f2fs_sync_dirty_inodes(struct f2fs_sb_info *sbi, enum inode_type type,
								bool from_cp);
void f2fs_wait_on_all_pages(struct f2fs_sb_info *sbi, int type);
u64 f2fs_get_sectors_written(struct f2fs_sb_info *sbi);
int f2fs_write_checkpoint(struct f2fs_sb_info *sbi, struct cp_control *cpc);
void f2fs_init_ino_entry_info(struct f2fs_sb_info *sbi);
int __init f2fs_create_checkpoint_caches(void);
void f2fs_destroy_checkpoint_caches(void);
int f2fs_issue_checkpoint(struct f2fs_sb_info *sbi);
int f2fs_start_ckpt_thread(struct f2fs_sb_info *sbi);
void f2fs_stop_ckpt_thread(struct f2fs_sb_info *sbi);
void f2fs_init_ckpt_req_control(struct f2fs_sb_info *sbi);

/*
 * data.c
 */
int __init f2fs_init_bioset(void);
void f2fs_destroy_bioset(void);
bool f2fs_is_cp_guaranteed(struct page *page);
int f2fs_init_bio_entry_cache(void);
void f2fs_destroy_bio_entry_cache(void);
void f2fs_submit_read_bio(struct f2fs_sb_info *sbi, struct bio *bio,
			  enum page_type type);
int f2fs_init_write_merge_io(struct f2fs_sb_info *sbi);
void f2fs_submit_merged_write(struct f2fs_sb_info *sbi, enum page_type type);
void f2fs_submit_merged_write_cond(struct f2fs_sb_info *sbi,
				struct inode *inode, struct page *page,
				nid_t ino, enum page_type type);
void f2fs_submit_merged_ipu_write(struct f2fs_sb_info *sbi,
					struct bio **bio, struct page *page);
void f2fs_flush_merged_writes(struct f2fs_sb_info *sbi);
int f2fs_submit_page_bio(struct f2fs_io_info *fio);
int f2fs_merge_page_bio(struct f2fs_io_info *fio);
void f2fs_submit_page_write(struct f2fs_io_info *fio);
struct block_device *f2fs_target_device(struct f2fs_sb_info *sbi,
		block_t blk_addr, sector_t *sector);
int f2fs_target_device_index(struct f2fs_sb_info *sbi, block_t blkaddr);
void f2fs_set_data_blkaddr(struct dnode_of_data *dn, block_t blkaddr);
void f2fs_update_data_blkaddr(struct dnode_of_data *dn, block_t blkaddr);
int f2fs_reserve_new_blocks(struct dnode_of_data *dn, blkcnt_t count);
int f2fs_reserve_new_block(struct dnode_of_data *dn);
int f2fs_get_block_locked(struct dnode_of_data *dn, pgoff_t index);
int f2fs_reserve_block(struct dnode_of_data *dn, pgoff_t index);
struct page *f2fs_get_read_data_page(struct inode *inode, pgoff_t index,
			blk_opf_t op_flags, bool for_write, pgoff_t *next_pgofs);
struct page *f2fs_find_data_page(struct inode *inode, pgoff_t index,
							pgoff_t *next_pgofs);
struct page *f2fs_get_lock_data_page(struct inode *inode, pgoff_t index,
			bool for_write);
struct page *f2fs_get_new_data_page(struct inode *inode,
			struct page *ipage, pgoff_t index, bool new_i_size);
int f2fs_do_write_data_page(struct f2fs_io_info *fio);
int f2fs_map_blocks(struct inode *inode, struct f2fs_map_blocks *map, int flag);
int f2fs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
			u64 start, u64 len);
int f2fs_encrypt_one_page(struct f2fs_io_info *fio);
bool f2fs_should_update_inplace(struct inode *inode, struct f2fs_io_info *fio);
bool f2fs_should_update_outplace(struct inode *inode, struct f2fs_io_info *fio);
int f2fs_write_single_data_page(struct page *page, int *submitted,
				struct bio **bio, sector_t *last_block,
				struct writeback_control *wbc,
				enum iostat_type io_type,
				int compr_blocks, bool allow_balance);
void f2fs_write_failed(struct inode *inode, loff_t to);
void f2fs_invalidate_folio(struct folio *folio, size_t offset, size_t length);
bool f2fs_release_folio(struct folio *folio, gfp_t wait);
bool f2fs_overwrite_io(struct inode *inode, loff_t pos, size_t len);
void f2fs_clear_page_cache_dirty_tag(struct page *page);
int f2fs_init_post_read_processing(void);
void f2fs_destroy_post_read_processing(void);
int f2fs_init_post_read_wq(struct f2fs_sb_info *sbi);
void f2fs_destroy_post_read_wq(struct f2fs_sb_info *sbi);
extern const struct iomap_ops f2fs_iomap_ops;

/*
 * gc.c
 */
int f2fs_start_gc_thread(struct f2fs_sb_info *sbi);
void f2fs_stop_gc_thread(struct f2fs_sb_info *sbi);
block_t f2fs_start_bidx_of_node(unsigned int node_ofs, struct inode *inode);
int f2fs_gc(struct f2fs_sb_info *sbi, struct f2fs_gc_control *gc_control);
void f2fs_build_gc_manager(struct f2fs_sb_info *sbi);
int f2fs_gc_range(struct f2fs_sb_info *sbi,
		unsigned int start_seg, unsigned int end_seg,
		bool dry_run, unsigned int dry_run_sections);
int f2fs_resize_fs(struct file *filp, __u64 block_count);
int __init f2fs_create_garbage_collection_cache(void);
void f2fs_destroy_garbage_collection_cache(void);
/* victim selection function for cleaning and SSR */
int f2fs_get_victim(struct f2fs_sb_info *sbi, unsigned int *result,
			int gc_type, int type, char alloc_mode,
			unsigned long long age);

/*
 * recovery.c
 */
int f2fs_recover_fsync_data(struct f2fs_sb_info *sbi, bool check_only);
bool f2fs_space_for_roll_forward(struct f2fs_sb_info *sbi);
int __init f2fs_create_recovery_cache(void);
void f2fs_destroy_recovery_cache(void);

/*
 * debug.c
 */
#ifdef CONFIG_F2FS_STAT_FS
struct f2fs_stat_info {
	struct list_head stat_list;
	struct f2fs_sb_info *sbi;
	int all_area_segs, sit_area_segs, nat_area_segs, ssa_area_segs;
	int main_area_segs, main_area_sections, main_area_zones;
	unsigned long long hit_cached[NR_EXTENT_CACHES];
	unsigned long long hit_rbtree[NR_EXTENT_CACHES];
	unsigned long long total_ext[NR_EXTENT_CACHES];
	unsigned long long hit_total[NR_EXTENT_CACHES];
	int ext_tree[NR_EXTENT_CACHES];
	int zombie_tree[NR_EXTENT_CACHES];
	int ext_node[NR_EXTENT_CACHES];
	/* to count memory footprint */
	unsigned long long ext_mem[NR_EXTENT_CACHES];
	/* for read extent cache */
	unsigned long long hit_largest;
	/* for block age extent cache */
	unsigned long long allocated_data_blocks;
	int ndirty_node, ndirty_dent, ndirty_meta, ndirty_imeta;
	int ndirty_data, ndirty_qdata;
	unsigned int ndirty_dirs, ndirty_files, nquota_files, ndirty_all;
	int nats, dirty_nats, sits, dirty_sits;
	int free_nids, avail_nids, alloc_nids;
	int total_count, utilization;
	int nr_wb_cp_data, nr_wb_data;
	int nr_rd_data, nr_rd_node, nr_rd_meta;
	int nr_dio_read, nr_dio_write;
	unsigned int io_skip_bggc, other_skip_bggc;
	int nr_flushing, nr_flushed, flush_list_empty;
	int nr_discarding, nr_discarded;
	int nr_discard_cmd;
	unsigned int undiscard_blks;
	int nr_issued_ckpt, nr_total_ckpt, nr_queued_ckpt;
	unsigned int cur_ckpt_time, peak_ckpt_time;
	int inline_xattr, inline_inode, inline_dir, append, update, orphans;
	int compr_inode, swapfile_inode;
	unsigned long long compr_blocks;
	int aw_cnt, max_aw_cnt;
	unsigned int valid_count, valid_node_count, valid_inode_count, discard_blks;
	unsigned int bimodal, avg_vblocks;
	int util_free, util_valid, util_invalid;
	int rsvd_segs, overp_segs;
	int dirty_count, node_pages, meta_pages, compress_pages;
	int compress_page_hit;
	int prefree_count, free_segs, free_secs;
	int cp_call_count[MAX_CALL_TYPE], cp_count;
	int gc_call_count[MAX_CALL_TYPE];
	int gc_segs[2][2];
	int gc_secs[2][2];
	int tot_blks, data_blks, node_blks;
	int bg_data_blks, bg_node_blks;
	int curseg[NR_CURSEG_TYPE];
	int cursec[NR_CURSEG_TYPE];
	int curzone[NR_CURSEG_TYPE];
	unsigned int dirty_seg[NR_CURSEG_TYPE];
	unsigned int full_seg[NR_CURSEG_TYPE];
	unsigned int valid_blks[NR_CURSEG_TYPE];

	unsigned int meta_count[META_MAX];
	unsigned int segment_count[2];
	unsigned int block_count[2];
	unsigned int inplace_count;
	unsigned long long base_mem, cache_mem, page_mem;
};

static inline struct f2fs_stat_info *F2FS_STAT(struct f2fs_sb_info *sbi)
{
	return (struct f2fs_stat_info *)sbi->stat_info;
}

#define stat_inc_cp_call_count(sbi, foreground)				\
		atomic_inc(&sbi->cp_call_count[(foreground)])
#define stat_inc_cp_count(si)		(F2FS_STAT(sbi)->cp_count++)
#define stat_io_skip_bggc_count(sbi)	((sbi)->io_skip_bggc++)
#define stat_other_skip_bggc_count(sbi)	((sbi)->other_skip_bggc++)
#define stat_inc_dirty_inode(sbi, type)	((sbi)->ndirty_inode[type]++)
#define stat_dec_dirty_inode(sbi, type)	((sbi)->ndirty_inode[type]--)
#define stat_inc_total_hit(sbi, type)		(atomic64_inc(&(sbi)->total_hit_ext[type]))
#define stat_inc_rbtree_node_hit(sbi, type)	(atomic64_inc(&(sbi)->read_hit_rbtree[type]))
#define stat_inc_largest_node_hit(sbi)	(atomic64_inc(&(sbi)->read_hit_largest))
#define stat_inc_cached_node_hit(sbi, type)	(atomic64_inc(&(sbi)->read_hit_cached[type]))
#define stat_inc_inline_xattr(inode)					\
	do {								\
		if (f2fs_has_inline_xattr(inode))			\
			(atomic_inc(&F2FS_I_SB(inode)->inline_xattr));	\
	} while (0)
#define stat_dec_inline_xattr(inode)					\
	do {								\
		if (f2fs_has_inline_xattr(inode))			\
			(atomic_dec(&F2FS_I_SB(inode)->inline_xattr));	\
	} while (0)
#define stat_inc_inline_inode(inode)					\
	do {								\
		if (f2fs_has_inline_data(inode))			\
			(atomic_inc(&F2FS_I_SB(inode)->inline_inode));	\
	} while (0)
#define stat_dec_inline_inode(inode)					\
	do {								\
		if (f2fs_has_inline_data(inode))			\
			(atomic_dec(&F2FS_I_SB(inode)->inline_inode));	\
	} while (0)
#define stat_inc_inline_dir(inode)					\
	do {								\
		if (f2fs_has_inline_dentry(inode))			\
			(atomic_inc(&F2FS_I_SB(inode)->inline_dir));	\
	} while (0)
#define stat_dec_inline_dir(inode)					\
	do {								\
		if (f2fs_has_inline_dentry(inode))			\
			(atomic_dec(&F2FS_I_SB(inode)->inline_dir));	\
	} while (0)
#define stat_inc_compr_inode(inode)					\
	do {								\
		if (f2fs_compressed_file(inode))			\
			(atomic_inc(&F2FS_I_SB(inode)->compr_inode));	\
	} while (0)
#define stat_dec_compr_inode(inode)					\
	do {								\
		if (f2fs_compressed_file(inode))			\
			(atomic_dec(&F2FS_I_SB(inode)->compr_inode));	\
	} while (0)
#define stat_add_compr_blocks(inode, blocks)				\
		(atomic64_add(blocks, &F2FS_I_SB(inode)->compr_blocks))
#define stat_sub_compr_blocks(inode, blocks)				\
		(atomic64_sub(blocks, &F2FS_I_SB(inode)->compr_blocks))
#define stat_inc_swapfile_inode(inode)					\
		(atomic_inc(&F2FS_I_SB(inode)->swapfile_inode))
#define stat_dec_swapfile_inode(inode)					\
		(atomic_dec(&F2FS_I_SB(inode)->swapfile_inode))
#define stat_inc_atomic_inode(inode)					\
			(atomic_inc(&F2FS_I_SB(inode)->atomic_files))
#define stat_dec_atomic_inode(inode)					\
			(atomic_dec(&F2FS_I_SB(inode)->atomic_files))
#define stat_inc_meta_count(sbi, blkaddr)				\
	do {								\
		if (blkaddr < SIT_I(sbi)->sit_base_addr)		\
			atomic_inc(&(sbi)->meta_count[META_CP]);	\
		else if (blkaddr < NM_I(sbi)->nat_blkaddr)		\
			atomic_inc(&(sbi)->meta_count[META_SIT]);	\
		else if (blkaddr < SM_I(sbi)->ssa_blkaddr)		\
			atomic_inc(&(sbi)->meta_count[META_NAT]);	\
		else if (blkaddr < SM_I(sbi)->main_blkaddr)		\
			atomic_inc(&(sbi)->meta_count[META_SSA]);	\
	} while (0)
#define stat_inc_seg_type(sbi, curseg)					\
		((sbi)->segment_count[(curseg)->alloc_type]++)
#define stat_inc_block_count(sbi, curseg)				\
		((sbi)->block_count[(curseg)->alloc_type]++)
#define stat_inc_inplace_blocks(sbi)					\
		(atomic_inc(&(sbi)->inplace_count))
#define stat_update_max_atomic_write(inode)				\
	do {								\
		int cur = atomic_read(&F2FS_I_SB(inode)->atomic_files);	\
		int max = atomic_read(&F2FS_I_SB(inode)->max_aw_cnt);	\
		if (cur > max)						\
			atomic_set(&F2FS_I_SB(inode)->max_aw_cnt, cur);	\
	} while (0)
#define stat_inc_gc_call_count(sbi, foreground)				\
		(F2FS_STAT(sbi)->gc_call_count[(foreground)]++)
#define stat_inc_gc_sec_count(sbi, type, gc_type)			\
		(F2FS_STAT(sbi)->gc_secs[(type)][(gc_type)]++)
#define stat_inc_gc_seg_count(sbi, type, gc_type)			\
		(F2FS_STAT(sbi)->gc_segs[(type)][(gc_type)]++)

#define stat_inc_tot_blk_count(si, blks)				\
	((si)->tot_blks += (blks))

#define stat_inc_data_blk_count(sbi, blks, gc_type)			\
	do {								\
		struct f2fs_stat_info *si = F2FS_STAT(sbi);		\
		stat_inc_tot_blk_count(si, blks);			\
		si->data_blks += (blks);				\
		si->bg_data_blks += ((gc_type) == BG_GC) ? (blks) : 0;	\
	} while (0)

#define stat_inc_node_blk_count(sbi, blks, gc_type)			\
	do {								\
		struct f2fs_stat_info *si = F2FS_STAT(sbi);		\
		stat_inc_tot_blk_count(si, blks);			\
		si->node_blks += (blks);				\
		si->bg_node_blks += ((gc_type) == BG_GC) ? (blks) : 0;	\
	} while (0)

int f2fs_build_stats(struct f2fs_sb_info *sbi);
void f2fs_destroy_stats(struct f2fs_sb_info *sbi);
void __init f2fs_create_root_stats(void);
void f2fs_destroy_root_stats(void);
void f2fs_update_sit_info(struct f2fs_sb_info *sbi);
#else
#define stat_inc_cp_call_count(sbi, foreground)		do { } while (0)
#define stat_inc_cp_count(sbi)				do { } while (0)
#define stat_io_skip_bggc_count(sbi)			do { } while (0)
#define stat_other_skip_bggc_count(sbi)			do { } while (0)
#define stat_inc_dirty_inode(sbi, type)			do { } while (0)
#define stat_dec_dirty_inode(sbi, type)			do { } while (0)
#define stat_inc_total_hit(sbi, type)			do { } while (0)
#define stat_inc_rbtree_node_hit(sbi, type)		do { } while (0)
#define stat_inc_largest_node_hit(sbi)			do { } while (0)
#define stat_inc_cached_node_hit(sbi, type)		do { } while (0)
#define stat_inc_inline_xattr(inode)			do { } while (0)
#define stat_dec_inline_xattr(inode)			do { } while (0)
#define stat_inc_inline_inode(inode)			do { } while (0)
#define stat_dec_inline_inode(inode)			do { } while (0)
#define stat_inc_inline_dir(inode)			do { } while (0)
#define stat_dec_inline_dir(inode)			do { } while (0)
#define stat_inc_compr_inode(inode)			do { } while (0)
#define stat_dec_compr_inode(inode)			do { } while (0)
#define stat_add_compr_blocks(inode, blocks)		do { } while (0)
#define stat_sub_compr_blocks(inode, blocks)		do { } while (0)
#define stat_inc_swapfile_inode(inode)			do { } while (0)
#define stat_dec_swapfile_inode(inode)			do { } while (0)
#define stat_inc_atomic_inode(inode)			do { } while (0)
#define stat_dec_atomic_inode(inode)			do { } while (0)
#define stat_update_max_atomic_write(inode)		do { } while (0)
#define stat_inc_meta_count(sbi, blkaddr)		do { } while (0)
#define stat_inc_seg_type(sbi, curseg)			do { } while (0)
#define stat_inc_block_count(sbi, curseg)		do { } while (0)
#define stat_inc_inplace_blocks(sbi)			do { } while (0)
#define stat_inc_gc_call_count(sbi, foreground)		do { } while (0)
#define stat_inc_gc_sec_count(sbi, type, gc_type)	do { } while (0)
#define stat_inc_gc_seg_count(sbi, type, gc_type)	do { } while (0)
#define stat_inc_tot_blk_count(si, blks)		do { } while (0)
#define stat_inc_data_blk_count(sbi, blks, gc_type)	do { } while (0)
#define stat_inc_node_blk_count(sbi, blks, gc_type)	do { } while (0)

static inline int f2fs_build_stats(struct f2fs_sb_info *sbi) { return 0; }
static inline void f2fs_destroy_stats(struct f2fs_sb_info *sbi) { }
static inline void __init f2fs_create_root_stats(void) { }
static inline void f2fs_destroy_root_stats(void) { }
static inline void f2fs_update_sit_info(struct f2fs_sb_info *sbi) {}
#endif

extern const struct file_operations f2fs_dir_operations;
extern const struct file_operations f2fs_file_operations;
extern const struct inode_operations f2fs_file_inode_operations;
extern const struct address_space_operations f2fs_dblock_aops;
extern const struct address_space_operations f2fs_node_aops;
extern const struct address_space_operations f2fs_meta_aops;
extern const struct inode_operations f2fs_dir_inode_operations;
extern const struct inode_operations f2fs_symlink_inode_operations;
extern const struct inode_operations f2fs_encrypted_symlink_inode_operations;
extern const struct inode_operations f2fs_special_inode_operations;
extern struct kmem_cache *f2fs_inode_entry_slab;

/*
 * inline.c
 */
bool f2fs_may_inline_data(struct inode *inode);
bool f2fs_sanity_check_inline_data(struct inode *inode);
bool f2fs_may_inline_dentry(struct inode *inode);
void f2fs_do_read_inline_data(struct page *page, struct page *ipage);
void f2fs_truncate_inline_inode(struct inode *inode,
						struct page *ipage, u64 from);
int f2fs_read_inline_data(struct inode *inode, struct page *page);
int f2fs_convert_inline_page(struct dnode_of_data *dn, struct page *page);
int f2fs_convert_inline_inode(struct inode *inode);
int f2fs_try_convert_inline_dir(struct inode *dir, struct dentry *dentry);
int f2fs_write_inline_data(struct inode *inode, struct page *page);
int f2fs_recover_inline_data(struct inode *inode, struct page *npage);
struct f2fs_dir_entry *f2fs_find_in_inline_dir(struct inode *dir,
					const struct f2fs_filename *fname,
					struct page **res_page);
int f2fs_make_empty_inline_dir(struct inode *inode, struct inode *parent,
			struct page *ipage);
int f2fs_add_inline_entry(struct inode *dir, const struct f2fs_filename *fname,
			struct inode *inode, nid_t ino, umode_t mode);
void f2fs_delete_inline_entry(struct f2fs_dir_entry *dentry,
				struct page *page, struct inode *dir,
				struct inode *inode);
bool f2fs_empty_inline_dir(struct inode *dir);
int f2fs_read_inline_dir(struct file *file, struct dir_context *ctx,
			struct fscrypt_str *fstr);
int f2fs_inline_data_fiemap(struct inode *inode,
			struct fiemap_extent_info *fieinfo,
			__u64 start, __u64 len);

/*
 * shrinker.c
 */
unsigned long f2fs_shrink_count(struct shrinker *shrink,
			struct shrink_control *sc);
unsigned long f2fs_shrink_scan(struct shrinker *shrink,
			struct shrink_control *sc);
void f2fs_join_shrinker(struct f2fs_sb_info *sbi);
void f2fs_leave_shrinker(struct f2fs_sb_info *sbi);

/*
 * extent_cache.c
 */
bool sanity_check_extent_cache(struct inode *inode);
void f2fs_init_extent_tree(struct inode *inode);
void f2fs_drop_extent_tree(struct inode *inode);
void f2fs_destroy_extent_node(struct inode *inode);
void f2fs_destroy_extent_tree(struct inode *inode);
void f2fs_init_extent_cache_info(struct f2fs_sb_info *sbi);
int __init f2fs_create_extent_cache(void);
void f2fs_destroy_extent_cache(void);

/* read extent cache ops */
void f2fs_init_read_extent_tree(struct inode *inode, struct page *ipage);
bool f2fs_lookup_read_extent_cache(struct inode *inode, pgoff_t pgofs,
			struct extent_info *ei);
bool f2fs_lookup_read_extent_cache_block(struct inode *inode, pgoff_t index,
			block_t *blkaddr);
void f2fs_update_read_extent_cache(struct dnode_of_data *dn);
void f2fs_update_read_extent_cache_range(struct dnode_of_data *dn,
			pgoff_t fofs, block_t blkaddr, unsigned int len);
unsigned int f2fs_shrink_read_extent_tree(struct f2fs_sb_info *sbi,
			int nr_shrink);

/* block age extent cache ops */
void f2fs_init_age_extent_tree(struct inode *inode);
bool f2fs_lookup_age_extent_cache(struct inode *inode, pgoff_t pgofs,
			struct extent_info *ei);
void f2fs_update_age_extent_cache(struct dnode_of_data *dn);
void f2fs_update_age_extent_cache_range(struct dnode_of_data *dn,
			pgoff_t fofs, unsigned int len);
unsigned int f2fs_shrink_age_extent_tree(struct f2fs_sb_info *sbi,
			int nr_shrink);

/*
 * sysfs.c
 */
#define MIN_RA_MUL	2
#define MAX_RA_MUL	256

int __init f2fs_init_sysfs(void);
void f2fs_exit_sysfs(void);
int f2fs_register_sysfs(struct f2fs_sb_info *sbi);
void f2fs_unregister_sysfs(struct f2fs_sb_info *sbi);

/* verity.c */
extern const struct fsverity_operations f2fs_verityops;

/*
 * crypto support
 */
static inline bool f2fs_encrypted_file(struct inode *inode)
{
	return IS_ENCRYPTED(inode) && S_ISREG(inode->i_mode);
}

static inline void f2fs_set_encrypted_inode(struct inode *inode)
{
#ifdef CONFIG_FS_ENCRYPTION
	file_set_encrypt(inode);
	f2fs_set_inode_flags(inode);
#endif
}

/*
 * Returns true if the reads of the inode's data need to undergo some
 * postprocessing step, like decryption or authenticity verification.
 */
static inline bool f2fs_post_read_required(struct inode *inode)
{
	return f2fs_encrypted_file(inode) || fsverity_active(inode) ||
		f2fs_compressed_file(inode);
}

/*
 * compress.c
 */
#ifdef CONFIG_F2FS_FS_COMPRESSION
bool f2fs_is_compressed_page(struct page *page);
struct page *f2fs_compress_control_page(struct page *page);
int f2fs_prepare_compress_overwrite(struct inode *inode,
			struct page **pagep, pgoff_t index, void **fsdata);
bool f2fs_compress_write_end(struct inode *inode, void *fsdata,
					pgoff_t index, unsigned copied);
int f2fs_truncate_partial_cluster(struct inode *inode, u64 from, bool lock);
void f2fs_compress_write_end_io(struct bio *bio, struct page *page);
bool f2fs_is_compress_backend_ready(struct inode *inode);
bool f2fs_is_compress_level_valid(int alg, int lvl);
int __init f2fs_init_compress_mempool(void);
void f2fs_destroy_compress_mempool(void);
void f2fs_decompress_cluster(struct decompress_io_ctx *dic, bool in_task);
void f2fs_end_read_compressed_page(struct page *page, bool failed,
				block_t blkaddr, bool in_task);
bool f2fs_cluster_is_empty(struct compress_ctx *cc);
bool f2fs_cluster_can_merge_page(struct compress_ctx *cc, pgoff_t index);
bool f2fs_all_cluster_page_ready(struct compress_ctx *cc, struct page **pages,
				int index, int nr_pages, bool uptodate);
bool f2fs_sanity_check_cluster(struct dnode_of_data *dn);
void f2fs_compress_ctx_add_page(struct compress_ctx *cc, struct page *page);
int f2fs_write_multi_pages(struct compress_ctx *cc,
						int *submitted,
						struct writeback_control *wbc,
						enum iostat_type io_type);
int f2fs_is_compressed_cluster(struct inode *inode, pgoff_t index);
void f2fs_update_read_extent_tree_range_compressed(struct inode *inode,
				pgoff_t fofs, block_t blkaddr,
				unsigned int llen, unsigned int c_len);
int f2fs_read_multi_pages(struct compress_ctx *cc, struct bio **bio_ret,
				unsigned nr_pages, sector_t *last_block_in_bio,
				bool is_readahead, bool for_write);
struct decompress_io_ctx *f2fs_alloc_dic(struct compress_ctx *cc);
void f2fs_decompress_end_io(struct decompress_io_ctx *dic, bool failed,
				bool in_task);
void f2fs_put_page_dic(struct page *page, bool in_task);
unsigned int f2fs_cluster_blocks_are_contiguous(struct dnode_of_data *dn,
						unsigned int ofs_in_node);
int f2fs_init_compress_ctx(struct compress_ctx *cc);
void f2fs_destroy_compress_ctx(struct compress_ctx *cc, bool reuse);
void f2fs_init_compress_info(struct f2fs_sb_info *sbi);
int f2fs_init_compress_inode(struct f2fs_sb_info *sbi);
void f2fs_destroy_compress_inode(struct f2fs_sb_info *sbi);
int f2fs_init_page_array_cache(struct f2fs_sb_info *sbi);
void f2fs_destroy_page_array_cache(struct f2fs_sb_info *sbi);
int __init f2fs_init_compress_cache(void);
void f2fs_destroy_compress_cache(void);
struct address_space *COMPRESS_MAPPING(struct f2fs_sb_info *sbi);
void f2fs_invalidate_compress_page(struct f2fs_sb_info *sbi, block_t blkaddr);
void f2fs_cache_compressed_page(struct f2fs_sb_info *sbi, struct page *page,
						nid_t ino, block_t blkaddr);
bool f2fs_load_compressed_page(struct f2fs_sb_info *sbi, struct page *page,
								block_t blkaddr);
void f2fs_invalidate_compress_pages(struct f2fs_sb_info *sbi, nid_t ino);
#define inc_compr_inode_stat(inode)					\
	do {								\
		struct f2fs_sb_info *sbi = F2FS_I_SB(inode);		\
		sbi->compr_new_inode++;					\
	} while (0)
#define add_compr_block_stat(inode, blocks)				\
	do {								\
		struct f2fs_sb_info *sbi = F2FS_I_SB(inode);		\
		int diff = F2FS_I(inode)->i_cluster_size - blocks;	\
		sbi->compr_written_block += blocks;			\
		sbi->compr_saved_block += diff;				\
	} while (0)
#else
static inline bool f2fs_is_compressed_page(struct page *page) { return false; }
static inline bool f2fs_is_compress_backend_ready(struct inode *inode)
{
	if (!f2fs_compressed_file(inode))
		return true;
	/* not support compression */
	return false;
}
static inline bool f2fs_is_compress_level_valid(int alg, int lvl) { return false; }
static inline struct page *f2fs_compress_control_page(struct page *page)
{
	WARN_ON_ONCE(1);
	return ERR_PTR(-EINVAL);
}
static inline int __init f2fs_init_compress_mempool(void) { return 0; }
static inline void f2fs_destroy_compress_mempool(void) { }
static inline void f2fs_decompress_cluster(struct decompress_io_ctx *dic,
				bool in_task) { }
static inline void f2fs_end_read_compressed_page(struct page *page,
				bool failed, block_t blkaddr, bool in_task)
{
	WARN_ON_ONCE(1);
}
static inline void f2fs_put_page_dic(struct page *page, bool in_task)
{
	WARN_ON_ONCE(1);
}
static inline unsigned int f2fs_cluster_blocks_are_contiguous(
			struct dnode_of_data *dn, unsigned int ofs_in_node) { return 0; }
static inline bool f2fs_sanity_check_cluster(struct dnode_of_data *dn) { return false; }
static inline int f2fs_init_compress_inode(struct f2fs_sb_info *sbi) { return 0; }
static inline void f2fs_destroy_compress_inode(struct f2fs_sb_info *sbi) { }
static inline int f2fs_init_page_array_cache(struct f2fs_sb_info *sbi) { return 0; }
static inline void f2fs_destroy_page_array_cache(struct f2fs_sb_info *sbi) { }
static inline int __init f2fs_init_compress_cache(void) { return 0; }
static inline void f2fs_destroy_compress_cache(void) { }
static inline void f2fs_invalidate_compress_page(struct f2fs_sb_info *sbi,
				block_t blkaddr) { }
static inline void f2fs_cache_compressed_page(struct f2fs_sb_info *sbi,
				struct page *page, nid_t ino, block_t blkaddr) { }
static inline bool f2fs_load_compressed_page(struct f2fs_sb_info *sbi,
				struct page *page, block_t blkaddr) { return false; }
static inline void f2fs_invalidate_compress_pages(struct f2fs_sb_info *sbi,
							nid_t ino) { }
#define inc_compr_inode_stat(inode)		do { } while (0)
static inline void f2fs_update_read_extent_tree_range_compressed(
				struct inode *inode,
				pgoff_t fofs, block_t blkaddr,
				unsigned int llen, unsigned int c_len) { }
#endif

static inline int set_compress_context(struct inode *inode)
{
#ifdef CONFIG_F2FS_FS_COMPRESSION
	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);

	F2FS_I(inode)->i_compress_algorithm =
			F2FS_OPTION(sbi).compress_algorithm;
	F2FS_I(inode)->i_log_cluster_size =
			F2FS_OPTION(sbi).compress_log_size;
	F2FS_I(inode)->i_compress_flag =
			F2FS_OPTION(sbi).compress_chksum ?
				BIT(COMPRESS_CHKSUM) : 0;
	F2FS_I(inode)->i_cluster_size =
			BIT(F2FS_I(inode)->i_log_cluster_size);
	if ((F2FS_I(inode)->i_compress_algorithm == COMPRESS_LZ4 ||
		F2FS_I(inode)->i_compress_algorithm == COMPRESS_ZSTD) &&
			F2FS_OPTION(sbi).compress_level)
		F2FS_I(inode)->i_compress_level =
				F2FS_OPTION(sbi).compress_level;
	F2FS_I(inode)->i_flags |= F2FS_COMPR_FL;
	set_inode_flag(inode, FI_COMPRESSED_FILE);
	stat_inc_compr_inode(inode);
	inc_compr_inode_stat(inode);
	f2fs_mark_inode_dirty_sync(inode, true);
	return 0;
#else
	return -EOPNOTSUPP;
#endif
}

static inline bool f2fs_disable_compressed_file(struct inode *inode)
{
	struct f2fs_inode_info *fi = F2FS_I(inode);

	f2fs_down_write(&F2FS_I(inode)->i_sem);

	if (!f2fs_compressed_file(inode)) {
		f2fs_up_write(&F2FS_I(inode)->i_sem);
		return true;
	}
	if (f2fs_is_mmap_file(inode) ||
		(S_ISREG(inode->i_mode) && F2FS_HAS_BLOCKS(inode))) {
		f2fs_up_write(&F2FS_I(inode)->i_sem);
		return false;
	}

	fi->i_flags &= ~F2FS_COMPR_FL;
	stat_dec_compr_inode(inode);
	clear_inode_flag(inode, FI_COMPRESSED_FILE);
	f2fs_mark_inode_dirty_sync(inode, true);

	f2fs_up_write(&F2FS_I(inode)->i_sem);
	return true;
}

#define F2FS_FEATURE_FUNCS(name, flagname) \
static inline bool f2fs_sb_has_##name(struct f2fs_sb_info *sbi) \
{ \
	return F2FS_HAS_FEATURE(sbi, F2FS_FEATURE_##flagname); \
}

F2FS_FEATURE_FUNCS(encrypt, ENCRYPT);
F2FS_FEATURE_FUNCS(blkzoned, BLKZONED);
F2FS_FEATURE_FUNCS(extra_attr, EXTRA_ATTR);
F2FS_FEATURE_FUNCS(project_quota, PRJQUOTA);
F2FS_FEATURE_FUNCS(inode_chksum, INODE_CHKSUM);
F2FS_FEATURE_FUNCS(flexible_inline_xattr, FLEXIBLE_INLINE_XATTR);
F2FS_FEATURE_FUNCS(quota_ino, QUOTA_INO);
F2FS_FEATURE_FUNCS(inode_crtime, INODE_CRTIME);
F2FS_FEATURE_FUNCS(lost_found, LOST_FOUND);
F2FS_FEATURE_FUNCS(verity, VERITY);
F2FS_FEATURE_FUNCS(sb_chksum, SB_CHKSUM);
F2FS_FEATURE_FUNCS(casefold, CASEFOLD);
F2FS_FEATURE_FUNCS(compression, COMPRESSION);
F2FS_FEATURE_FUNCS(readonly, RO);

#ifdef CONFIG_BLK_DEV_ZONED
static inline bool f2fs_blkz_is_seq(struct f2fs_sb_info *sbi, int devi,
				    block_t blkaddr)
{
	unsigned int zno = blkaddr / sbi->blocks_per_blkz;

	return test_bit(zno, FDEV(devi).blkz_seq);
}
#endif

static inline int f2fs_bdev_index(struct f2fs_sb_info *sbi,
				  struct block_device *bdev)
{
	int i;

	if (!f2fs_is_multi_device(sbi))
		return 0;

	for (i = 0; i < sbi->s_ndevs; i++)
		if (FDEV(i).bdev == bdev)
			return i;

	WARN_ON(1);
	return -1;
}

static inline bool f2fs_hw_should_discard(struct f2fs_sb_info *sbi)
{
	return f2fs_sb_has_blkzoned(sbi);
}

static inline bool f2fs_bdev_support_discard(struct block_device *bdev)
{
	return bdev_max_discard_sectors(bdev) || bdev_is_zoned(bdev);
}

static inline bool f2fs_hw_support_discard(struct f2fs_sb_info *sbi)
{
	int i;

	if (!f2fs_is_multi_device(sbi))
		return f2fs_bdev_support_discard(sbi->sb->s_bdev);

	for (i = 0; i < sbi->s_ndevs; i++)
		if (f2fs_bdev_support_discard(FDEV(i).bdev))
			return true;
	return false;
}

static inline bool f2fs_realtime_discard_enable(struct f2fs_sb_info *sbi)
{
	return (test_opt(sbi, DISCARD) && f2fs_hw_support_discard(sbi)) ||
					f2fs_hw_should_discard(sbi);
}

static inline bool f2fs_hw_is_readonly(struct f2fs_sb_info *sbi)
{
	int i;

	if (!f2fs_is_multi_device(sbi))
		return bdev_read_only(sbi->sb->s_bdev);

	for (i = 0; i < sbi->s_ndevs; i++)
		if (bdev_read_only(FDEV(i).bdev))
			return true;
	return false;
}

static inline bool f2fs_dev_is_readonly(struct f2fs_sb_info *sbi)
{
	return f2fs_sb_has_readonly(sbi) || f2fs_hw_is_readonly(sbi);
}

static inline bool f2fs_lfs_mode(struct f2fs_sb_info *sbi)
{
	return F2FS_OPTION(sbi).fs_mode == FS_MODE_LFS;
}

static inline bool f2fs_valid_pinned_area(struct f2fs_sb_info *sbi,
					  block_t blkaddr)
{
	if (f2fs_sb_has_blkzoned(sbi)) {
		int devi = f2fs_target_device_index(sbi, blkaddr);

		return !bdev_is_zoned(FDEV(devi).bdev);
	}
	return true;
}

static inline bool f2fs_low_mem_mode(struct f2fs_sb_info *sbi)
{
	return F2FS_OPTION(sbi).memory_mode == MEMORY_MODE_LOW;
}

static inline bool f2fs_may_compress(struct inode *inode)
{
	if (IS_SWAPFILE(inode) || f2fs_is_pinned_file(inode) ||
		f2fs_is_atomic_file(inode) || f2fs_has_inline_data(inode) ||
		f2fs_is_mmap_file(inode))
		return false;
	return S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode);
}

static inline void f2fs_i_compr_blocks_update(struct inode *inode,
						u64 blocks, bool add)
{
	struct f2fs_inode_info *fi = F2FS_I(inode);
	int diff = fi->i_cluster_size - blocks;

	/* don't update i_compr_blocks if saved blocks were released */
	if (!add && !atomic_read(&fi->i_compr_blocks))
		return;

	if (add) {
		atomic_add(diff, &fi->i_compr_blocks);
		stat_add_compr_blocks(inode, diff);
	} else {
		atomic_sub(diff, &fi->i_compr_blocks);
		stat_sub_compr_blocks(inode, diff);
	}
	f2fs_mark_inode_dirty_sync(inode, true);
}

static inline bool f2fs_allow_multi_device_dio(struct f2fs_sb_info *sbi,
								int flag)
{
	if (!f2fs_is_multi_device(sbi))
		return false;
	if (flag != F2FS_GET_BLOCK_DIO)
		return false;
	return sbi->aligned_blksize;
}

static inline bool f2fs_need_verity(const struct inode *inode, pgoff_t idx)
{
	return fsverity_active(inode) &&
	       idx < DIV_ROUND_UP(inode->i_size, PAGE_SIZE);
}

#ifdef CONFIG_F2FS_FAULT_INJECTION
extern void f2fs_build_fault_attr(struct f2fs_sb_info *sbi, unsigned int rate,
							unsigned int type);
#else
#define f2fs_build_fault_attr(sbi, rate, type)		do { } while (0)
#endif

static inline bool is_journalled_quota(struct f2fs_sb_info *sbi)
{
#ifdef CONFIG_QUOTA
	if (f2fs_sb_has_quota_ino(sbi))
		return true;
	if (F2FS_OPTION(sbi).s_qf_names[USRQUOTA] ||
		F2FS_OPTION(sbi).s_qf_names[GRPQUOTA] ||
		F2FS_OPTION(sbi).s_qf_names[PRJQUOTA])
		return true;
#endif
	return false;
}

static inline bool f2fs_block_unit_discard(struct f2fs_sb_info *sbi)
{
	return F2FS_OPTION(sbi).discard_unit == DISCARD_UNIT_BLOCK;
}

static inline void f2fs_io_schedule_timeout(long timeout)
{
	set_current_state(TASK_UNINTERRUPTIBLE);
	io_schedule_timeout(timeout);
}

static inline void f2fs_handle_page_eio(struct f2fs_sb_info *sbi, pgoff_t ofs,
					enum page_type type)
{
	if (unlikely(f2fs_cp_error(sbi)))
		return;

	if (ofs == sbi->page_eio_ofs[type]) {
		if (sbi->page_eio_cnt[type]++ == MAX_RETRY_PAGE_EIO)
			set_ckpt_flags(sbi, CP_ERROR_FLAG);
	} else {
		sbi->page_eio_ofs[type] = ofs;
		sbi->page_eio_cnt[type] = 0;
	}
}

static inline bool f2fs_is_readonly(struct f2fs_sb_info *sbi)
{
	return f2fs_sb_has_readonly(sbi) || f2fs_readonly(sbi->sb);
}

static inline void f2fs_truncate_meta_inode_pages(struct f2fs_sb_info *sbi,
					block_t blkaddr, unsigned int cnt)
{
	bool need_submit = false;
	int i = 0;

	do {
		struct page *page;

		page = find_get_page(META_MAPPING(sbi), blkaddr + i);
		if (page) {
			if (PageWriteback(page))
				need_submit = true;
			f2fs_put_page(page, 0);
		}
	} while (++i < cnt && !need_submit);

	if (need_submit)
		f2fs_submit_merged_write_cond(sbi, sbi->meta_inode,
							NULL, 0, DATA);

	truncate_inode_pages_range(META_MAPPING(sbi),
			F2FS_BLK_TO_BYTES((loff_t)blkaddr),
			F2FS_BLK_END_BYTES((loff_t)(blkaddr + cnt - 1)));
}

static inline void f2fs_invalidate_internal_cache(struct f2fs_sb_info *sbi,
								block_t blkaddr)
{
	f2fs_truncate_meta_inode_pages(sbi, blkaddr, 1);
	f2fs_invalidate_compress_page(sbi, blkaddr);
}

#define EFSBADCRC	EBADMSG		/* Bad CRC detected */
#define EFSCORRUPTED	EUCLEAN		/* Filesystem is corrupted */

#endif /* _LINUX_F2FS_H */