Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Mark Fasheh | 683 | 54.99% | 18 | 30.51% |
Tao Ma | 409 | 32.93% | 18 | 30.51% |
Joel Becker | 123 | 9.90% | 15 | 25.42% |
Tristan Ye | 9 | 0.72% | 2 | 3.39% |
Eric Ren | 7 | 0.56% | 1 | 1.69% |
Changwei Ge | 5 | 0.40% | 1 | 1.69% |
Junxiao Bi | 3 | 0.24% | 1 | 1.69% |
Julia Lawall | 1 | 0.08% | 1 | 1.69% |
Thomas Gleixner | 1 | 0.08% | 1 | 1.69% |
Masahiro Yamada | 1 | 0.08% | 1 | 1.69% |
Total | 1242 | 59 |
/* SPDX-License-Identifier: GPL-2.0-or-later */ /* * alloc.h * * Function prototypes * * Copyright (C) 2002, 2004 Oracle. All rights reserved. */ #ifndef OCFS2_ALLOC_H #define OCFS2_ALLOC_H /* * For xattr tree leaf, we limit the leaf byte size to be 64K. */ #define OCFS2_MAX_XATTR_TREE_LEAF_SIZE 65536 /* * ocfs2_extent_tree and ocfs2_extent_tree_operations are used to abstract * the b-tree operations in ocfs2. Now all the b-tree operations are not * limited to ocfs2_dinode only. Any data which need to allocate clusters * to store can use b-tree. And it only needs to implement its ocfs2_extent_tree * and operation. * * ocfs2_extent_tree becomes the first-class object for extent tree * manipulation. Callers of the alloc.c code need to fill it via one of * the ocfs2_init_*_extent_tree() operations below. * * ocfs2_extent_tree contains info for the root of the b-tree, it must have a * root ocfs2_extent_list and a root_bh so that they can be used in the b-tree * functions. It needs the ocfs2_caching_info structure associated with * I/O on the tree. With metadata ecc, we now call different journal_access * functions for each type of metadata, so it must have the * root_journal_access function. * ocfs2_extent_tree_operations abstract the normal operations we do for * the root of extent b-tree. */ struct ocfs2_extent_tree_operations; struct ocfs2_extent_tree { const struct ocfs2_extent_tree_operations *et_ops; struct buffer_head *et_root_bh; struct ocfs2_extent_list *et_root_el; struct ocfs2_caching_info *et_ci; ocfs2_journal_access_func et_root_journal_access; void *et_object; unsigned int et_max_leaf_clusters; struct ocfs2_cached_dealloc_ctxt *et_dealloc; }; /* * ocfs2_init_*_extent_tree() will fill an ocfs2_extent_tree from the * specified object buffer. */ void ocfs2_init_dinode_extent_tree(struct ocfs2_extent_tree *et, struct ocfs2_caching_info *ci, struct buffer_head *bh); void ocfs2_init_xattr_tree_extent_tree(struct ocfs2_extent_tree *et, struct ocfs2_caching_info *ci, struct buffer_head *bh); struct ocfs2_xattr_value_buf; void ocfs2_init_xattr_value_extent_tree(struct ocfs2_extent_tree *et, struct ocfs2_caching_info *ci, struct ocfs2_xattr_value_buf *vb); void ocfs2_init_dx_root_extent_tree(struct ocfs2_extent_tree *et, struct ocfs2_caching_info *ci, struct buffer_head *bh); void ocfs2_init_refcount_extent_tree(struct ocfs2_extent_tree *et, struct ocfs2_caching_info *ci, struct buffer_head *bh); /* * Read an extent block into *bh. If *bh is NULL, a bh will be * allocated. This is a cached read. The extent block will be validated * with ocfs2_validate_extent_block(). */ int ocfs2_read_extent_block(struct ocfs2_caching_info *ci, u64 eb_blkno, struct buffer_head **bh); struct ocfs2_alloc_context; int ocfs2_insert_extent(handle_t *handle, struct ocfs2_extent_tree *et, u32 cpos, u64 start_blk, u32 new_clusters, u8 flags, struct ocfs2_alloc_context *meta_ac); enum ocfs2_alloc_restarted { RESTART_NONE = 0, RESTART_TRANS, RESTART_META }; int ocfs2_add_clusters_in_btree(handle_t *handle, struct ocfs2_extent_tree *et, u32 *logical_offset, u32 clusters_to_add, int mark_unwritten, struct ocfs2_alloc_context *data_ac, struct ocfs2_alloc_context *meta_ac, enum ocfs2_alloc_restarted *reason_ret); struct ocfs2_cached_dealloc_ctxt; struct ocfs2_path; int ocfs2_split_extent(handle_t *handle, struct ocfs2_extent_tree *et, struct ocfs2_path *path, int split_index, struct ocfs2_extent_rec *split_rec, struct ocfs2_alloc_context *meta_ac, struct ocfs2_cached_dealloc_ctxt *dealloc); int ocfs2_mark_extent_written(struct inode *inode, struct ocfs2_extent_tree *et, handle_t *handle, u32 cpos, u32 len, u32 phys, struct ocfs2_alloc_context *meta_ac, struct ocfs2_cached_dealloc_ctxt *dealloc); int ocfs2_change_extent_flag(handle_t *handle, struct ocfs2_extent_tree *et, u32 cpos, u32 len, u32 phys, struct ocfs2_alloc_context *meta_ac, struct ocfs2_cached_dealloc_ctxt *dealloc, int new_flags, int clear_flags); int ocfs2_remove_extent(handle_t *handle, struct ocfs2_extent_tree *et, u32 cpos, u32 len, struct ocfs2_alloc_context *meta_ac, struct ocfs2_cached_dealloc_ctxt *dealloc); int ocfs2_remove_btree_range(struct inode *inode, struct ocfs2_extent_tree *et, u32 cpos, u32 phys_cpos, u32 len, int flags, struct ocfs2_cached_dealloc_ctxt *dealloc, u64 refcount_loc, bool refcount_tree_locked); int ocfs2_num_free_extents(struct ocfs2_extent_tree *et); /* * how many new metadata chunks would an allocation need at maximum? * * Please note that the caller must make sure that root_el is the root * of extent tree. So for an inode, it should be &fe->id2.i_list. Otherwise * the result may be wrong. */ static inline int ocfs2_extend_meta_needed(struct ocfs2_extent_list *root_el) { /* * Rather than do all the work of determining how much we need * (involves a ton of reads and locks), just ask for the * maximal limit. That's a tree depth shift. So, one block for * level of the tree (current l_tree_depth), one block for the * new tree_depth==0 extent_block, and one block at the new * top-of-the tree. */ return le16_to_cpu(root_el->l_tree_depth) + 2; } void ocfs2_dinode_new_extent_list(struct inode *inode, struct ocfs2_dinode *di); void ocfs2_set_inode_data_inline(struct inode *inode, struct ocfs2_dinode *di); int ocfs2_convert_inline_data_to_extents(struct inode *inode, struct buffer_head *di_bh); int ocfs2_truncate_log_init(struct ocfs2_super *osb); void ocfs2_truncate_log_shutdown(struct ocfs2_super *osb); void ocfs2_schedule_truncate_log_flush(struct ocfs2_super *osb, int cancel); int ocfs2_flush_truncate_log(struct ocfs2_super *osb); int ocfs2_begin_truncate_log_recovery(struct ocfs2_super *osb, int slot_num, struct ocfs2_dinode **tl_copy); int ocfs2_complete_truncate_log_recovery(struct ocfs2_super *osb, struct ocfs2_dinode *tl_copy); int ocfs2_truncate_log_needs_flush(struct ocfs2_super *osb); int ocfs2_truncate_log_append(struct ocfs2_super *osb, handle_t *handle, u64 start_blk, unsigned int num_clusters); int __ocfs2_flush_truncate_log(struct ocfs2_super *osb); int ocfs2_try_to_free_truncate_log(struct ocfs2_super *osb, unsigned int needed); /* * Process local structure which describes the block unlinks done * during an operation. This is populated via * ocfs2_cache_block_dealloc(). * * ocfs2_run_deallocs() should be called after the potentially * de-allocating routines. No journal handles should be open, and most * locks should have been dropped. */ struct ocfs2_cached_dealloc_ctxt { struct ocfs2_per_slot_free_list *c_first_suballocator; struct ocfs2_cached_block_free *c_global_allocator; }; static inline void ocfs2_init_dealloc_ctxt(struct ocfs2_cached_dealloc_ctxt *c) { c->c_first_suballocator = NULL; c->c_global_allocator = NULL; } int ocfs2_cache_cluster_dealloc(struct ocfs2_cached_dealloc_ctxt *ctxt, u64 blkno, unsigned int bit); int ocfs2_cache_block_dealloc(struct ocfs2_cached_dealloc_ctxt *ctxt, int type, int slot, u64 suballoc, u64 blkno, unsigned int bit); static inline int ocfs2_dealloc_has_cluster(struct ocfs2_cached_dealloc_ctxt *c) { return c->c_global_allocator != NULL; } int ocfs2_run_deallocs(struct ocfs2_super *osb, struct ocfs2_cached_dealloc_ctxt *ctxt); struct ocfs2_truncate_context { struct ocfs2_cached_dealloc_ctxt tc_dealloc; int tc_ext_alloc_locked; /* is it cluster locked? */ /* these get destroyed once it's passed to ocfs2_commit_truncate. */ struct buffer_head *tc_last_eb_bh; }; int ocfs2_zero_range_for_truncate(struct inode *inode, handle_t *handle, u64 range_start, u64 range_end); int ocfs2_commit_truncate(struct ocfs2_super *osb, struct inode *inode, struct buffer_head *di_bh); int ocfs2_truncate_inline(struct inode *inode, struct buffer_head *di_bh, unsigned int start, unsigned int end, int trunc); int ocfs2_find_leaf(struct ocfs2_caching_info *ci, struct ocfs2_extent_list *root_el, u32 cpos, struct buffer_head **leaf_bh); int ocfs2_search_extent_list(struct ocfs2_extent_list *el, u32 v_cluster); int ocfs2_trim_fs(struct super_block *sb, struct fstrim_range *range); /* * Helper function to look at the # of clusters in an extent record. */ static inline unsigned int ocfs2_rec_clusters(struct ocfs2_extent_list *el, struct ocfs2_extent_rec *rec) { /* * Cluster count in extent records is slightly different * between interior nodes and leaf nodes. This is to support * unwritten extents which need a flags field in leaf node * records, thus shrinking the available space for a clusters * field. */ if (el->l_tree_depth) return le32_to_cpu(rec->e_int_clusters); else return le16_to_cpu(rec->e_leaf_clusters); } /* * This is only valid for leaf nodes, which are the only ones that can * have empty extents anyway. */ static inline int ocfs2_is_empty_extent(struct ocfs2_extent_rec *rec) { return !rec->e_leaf_clusters; } int ocfs2_grab_pages(struct inode *inode, loff_t start, loff_t end, struct page **pages, int *num); void ocfs2_map_and_dirty_page(struct inode *inode, handle_t *handle, unsigned int from, unsigned int to, struct page *page, int zero, u64 *phys); /* * Structures which describe a path through a btree, and functions to * manipulate them. * * The idea here is to be as generic as possible with the tree * manipulation code. */ struct ocfs2_path_item { struct buffer_head *bh; struct ocfs2_extent_list *el; }; #define OCFS2_MAX_PATH_DEPTH 5 struct ocfs2_path { int p_tree_depth; ocfs2_journal_access_func p_root_access; struct ocfs2_path_item p_node[OCFS2_MAX_PATH_DEPTH]; }; #define path_root_bh(_path) ((_path)->p_node[0].bh) #define path_root_el(_path) ((_path)->p_node[0].el) #define path_root_access(_path)((_path)->p_root_access) #define path_leaf_bh(_path) ((_path)->p_node[(_path)->p_tree_depth].bh) #define path_leaf_el(_path) ((_path)->p_node[(_path)->p_tree_depth].el) #define path_num_items(_path) ((_path)->p_tree_depth + 1) void ocfs2_reinit_path(struct ocfs2_path *path, int keep_root); void ocfs2_free_path(struct ocfs2_path *path); int ocfs2_find_path(struct ocfs2_caching_info *ci, struct ocfs2_path *path, u32 cpos); struct ocfs2_path *ocfs2_new_path_from_path(struct ocfs2_path *path); struct ocfs2_path *ocfs2_new_path_from_et(struct ocfs2_extent_tree *et); int ocfs2_path_bh_journal_access(handle_t *handle, struct ocfs2_caching_info *ci, struct ocfs2_path *path, int idx); int ocfs2_journal_access_path(struct ocfs2_caching_info *ci, handle_t *handle, struct ocfs2_path *path); int ocfs2_find_cpos_for_right_leaf(struct super_block *sb, struct ocfs2_path *path, u32 *cpos); int ocfs2_find_cpos_for_left_leaf(struct super_block *sb, struct ocfs2_path *path, u32 *cpos); int ocfs2_find_subtree_root(struct ocfs2_extent_tree *et, struct ocfs2_path *left, struct ocfs2_path *right); #endif /* OCFS2_ALLOC_H */
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1